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Executive Summary 

TRC-SFD-1-08 
Dynamic Performance of a Squeeze Film Damper with Non-Circular, Multi-Frequency Motions 

Reproducing Multi-Spool Engine Operating Conditions 
    

Squeeze film dampers (SFDs) in rotating machinery provide structural isolation, 

reduce amplitudes of response to imbalance, and increase the threshold speed of rotor-

bearing system instability. SFDs are usually installed at the bearing supports, either in 

series or in parallel. In multi-spool engines, SFDs are also located in the interface 

between rotating shafts. These intershaft dampers show multiple frequency whirl motions 

resulting from the combined imbalance responses of both the low speed rotor and the 

high speed rotor.  

The report presents an experimental investigation simulating the dynamic forced 

response of a SFD subject to multiple frequency motions, as in a jet engine intershaft 

damper. For these operating condition, the forced response of the damper is non linear 

since its mechanical parameters, damping and inertia, are a function of the instantaneous 

journal position, static or dynamic.  

The TRC-SFD test rig comprises of a vertical (stationary) journal and a flexibly 

supported housing that holds the test damper and instrumentation. The open ends SFD is 

127 mm in diameter, 25.4 mm film land length, and radial clearance of 0.127 mm. The 

damper is lubricated with an ISO VG 2 oil and operated at room temperature (24 oC, feed 

pressure 24 kPa). In the experiments, two orthogonally positioned shakers are 

programmed to deliver dynamic forces to the test damper that produce certain controlled 

amplitude motions and, by using multi-frequency sine sweep excitations, to cover a 

frequency response range that includes the natural frequency of the test system. In the 

tests, a low frequency is maintained at 25 Hz, while a second frequency ramps from 30 

Hz to 120 Hz over a specified time span. The test data collected, forces and motions 

versus time, is converted into the frequency domain for parameter identification, The 

SFD force coefficients are identified from system impedance functions and considering 

only the frequency component that coincides with the forced excitation frequency, since 

this is the only component that dissipates mechanical energy. The frequency dependent, 

identified viscous damping coefficients are strong functions of the amplitude of journal 

motion. In the tests, the damper operates free of oil cavitation or air entrainment, and 
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hence, the identified cross-coupled coefficients are negligible. The experimental added 

mass coefficients are three times larger than those predicted by classical theory, which 

ignores the influence of the inlet and discharge annular grooves. On the other hand, an 

improved bulk-flow model developed earlier (TRC-SFD-2-07) predicts added mass 

coefficient within 15% of the experimental values. The experimental damping 

coefficients are within the range of predictions derived from classical formulas for 

circular centered orbits or small amplitude motions about an eccentric journal position.  

 

Note: The P.I. edited this report four times, English and technical content, prior to its 
release to TRC members.  
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Nomenclature 
 
c Bearing radial clearance [m] 
Crv  Structure remnant damping coefficient [N.s/m] 
Csα Structure damping coefficient [N.s/m] α=x,y 
Cs-αβ Identified system damping coefficients [N.s/m] α,β=x,y 

 CSFDαβ  Identified squeeze film damping coefficients [N.s/m] α,β=x,y 
 D  2 R. Damper journal diameter [m] 
 e  Amplitude or radius of circular centered orbit [m] 
Fx,y External (shaker) forces applied to bearing [N] 

yx FF ,  Complex components of external forces applied to bearing [N] 

Fd Dry friction force from contact in mechanical seal [N] 
fn Test system natural frequency [Hz] 
Hαβ, Dynamic transfer functions [N/m], α,β=x,y 
Ksx,Ksy Structural (support) stiffnesses [N/m] 
L, R Length and radius of SFD land [m] 
Ms Mass of SFD housing [kg] 
Mf Estimated mass of lubricant (feed plenum & end groove) [kg] 

 MSFDαβ  Squeeze film inertia coefficients [kg], α,β=x,y 
Ms-αβ Identified system inertia coefficients [kg], α,β=x,y 

Mplenum Oil mass at the SFD inlet plenum [kg] 
T Lubricant temperature [°C] 
x,y Bearing dynamic motions along X,Y directions [m] 

,x y  Complex components of bearing motions [m] 
,x y  Bearing dynamic velocities along X,Y directions 

Z(ω) Vector of displacements in frequency domain [m] 
ρ, η Lubricant density [kg/m3] and viscosity [Pa-s] 
τ Sampling period of excitation signal [sec] 
ω Excitation frequency [rad/s] 
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I Introduction 

Squeeze film dampers provide structural isolation, reduce imbalance response 

amplitude levels in rotating machinery, and in some instances, increase the rotor speed 

stability threshold. SFDs are typically found in aircraft engines and also in land base 

rotating equipment. SFDs are usually installed at the bearing supports, either in series or 

in parallel. In the case of multi-spool engines, SFDs can also be located in the interface 

between rotating shafts (see Fig. 1). These dampers, known as intershaft dampers (ISDs), 

are subject to whirl motions resulting from the combined imbalance response of both the 

low speed and the high speed rotors. The resulting motions are non-circular and with 

multiple frequency components.   

The present work aims to investigate the dynamic response of a SFD subject to 

multiple frequency whirling motions, similar to those found in the operation of an 

intershaft SFD in a jet engine. For such motions, the forced response of the damper is 

apparently nonlinear since the SFD force coefficients are a function of the instantaneous 

motion amplitude.  

Presently, damping coefficients are identified from multiple frequency sine sweep 

force excitations over a frequency range that includes the natural frequency of the test 

system. Prior reports [1-4] describe the test rig for experimentation on a SFD with a 

contacting mechanical end seal. Currently, the mechanical end seal is not active, and the 

oil is free to exit the damper at the discharge end. A review of prior relevant work to this 

research and a description of the test rig follow.   

II Literature Review 
 

This review includes publications related to intershaft dampers (ISDs) and 

identification of SFD force coefficients from non-circular orbits. In the late 1970’s, 

Hibner [5] presents an analysis to predict the dynamic response of a multi-shaft gas 

turbine engine with an ISD. The analysis provides natural frequency maps and deflection 

modes of the two shafts for two different speed ratios between the low speed rotor and 

high speed rotor (2X and 3X). Engine operation is simulated with different levels of 

imbalance for both shafts, and the amplitude response of the machine housing is 

presented for two cases, with and without ISD. Hibner indicates that the typical speed 

ratio (high speed shaft/ low speed shaft) is between 4 and 2 (any fraction) for this type of 
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damper. The author also shows the importance on the dynamic response due to the 

interaction of the rotor vibration modes and the resulting relative motions at the damper 

location. 

Hibner et al. [6,7] present an analytical and experimental study of the dynamic 

performance of intershaft dampers in multi-spool gas turbines, and consider possible 

methods to tune the damper to avoid unstable operation. At the time, intershaft dampers 

did not include an anti-rotation pin, and thus the damper exhibited the same dynamic 

response as that of a large clearance plain journal bearing, which explains the unstable 

operation reported in Refs. [6,7].    

Gupta et al. [8] test three ISD configurations including combinations of support 

springs (i.e. attached to the outer race of damper) and centralizing springs (i.e. attached to 

inner race of the damper) as shown in Fig. 1. Incidentally, the pressure profile sketched in 

the figure is most likely incorrect since it assumes a null dynamic pressure at the central 

feed groove (see Ref. [9]). 

 

 
Figure 1 Schematic view of intershaft tested in Ref. [8] 

 

The results in Ref. [8] reveal that the most favorable ISD configuration is the one 

with a centralizing spring. The authors present analytical expressions for the force 

coefficients integrated into a FE model of the rotor-bearing system to predict the system 

rotordynamic response. Based on predictions, the authors identify the optimum clearance 

for the damper. There is no experimental validation and the authors define a stiffness 

High 
Pressure 

Low 
Pressure Feed groove 
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associated to the squeeze film that is function of the whirl frequency. This is a pervasive 

incorrect assumption since squeeze films do not generate forces proportional to journal 

displacement but to journal velocity.    

Chen et al. [10] present an analysis to predict the response of an ISD for the case 

where the high and low speed shafts describe synchronous offset elliptical orbits. The 

authors derive the pressure profile from a simplified Reynolds equation using the short 

bearing length model and obtaining linearized force coefficients from a harmonic balance 

procedure. The method is limited to operating conditions with a steady state response for 

the ideal case (i.e. synchronous vibration of both shafts).  

The literature on parameter identification methods is extensive. In particular, the 

identification of force coefficient in SFDs has been extensively reported. However, most 

works deal with identification of force coefficients from circular orbits. Adilleta and 

Della Pietra [11,12] review most of the relevant analytical and experimental work 

conducted on SFDs up to 2002. San Andrés and Delgado [4] present a review of 

additional experimental works conducted from on SFDs from 2002 to date.   

Tiwari et al. [13] provide a comprehensive review of the techniques used to 

characterize the mechanical parameters of fluid film bearings. The review includes 

different approaches for identifying force coefficients in all bearing types, including 

different input excitations, mathematical models, and uncertainty associated to the 

identification methods.   

El-Shafei [14] presents a technique to estimate equivalent force coefficients best 

representing the dynamic response of a SFD describing elliptic orbits. The method relies 

on the least square minimization of the difference between the actual and equivalent 

linearized forced response of the test system. Linear force coefficients are obtained from 

the energy dissipated in terms of the respective system response (i.e. acceleration, 

velocity, displacement). The method is applied to estimate the imbalance response of a 

rotor mounted on two SFDs. The response orbits of the system are estimated using an 

iterative algorithm to identify the linear coefficients. The results compare well to 

numerical transient response simulations using SFD (nonlinear) impedances. El-Shafei 

uses various combinations of parameters (mass, stiffness and damping) to characterize 

the damper forced response. One of the models includes direct stiffnesses generated by 

the squeeze film while ignoring the added mass terms. This approach is not consistent 
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with prevailing literature [11,12], in which squeeze films do not generate forces 

proportional to journal (static) displacements and the added mass coefficients are not 

negligible.  

Zhang and Roberts [15] present a method to identify force coefficients on a SFD 

executing both radial and circular motions about a centered position. The equations of 

motion and corresponding nonlinear parameters are presented for radial and circular 

motions, and a matrix of nonlinear response terms (following a power law form) is 

constructed. The coefficients of each response terms are obtained in the frequency 

domain by multiplying the inputs and outputs by windowing functions that allow 

correlating each of the nonlinear outputs to the input (using properties of the Fourier 

transform). The parameters are identified for pure radial motions using numerical 

integration of a SFD system excited with a force containing three single frequency 

signals. The identified SFD parameters show good correlation with similar parameters 

obtained from a numerical simulated response depending on the excitation frequencies 

selected (i.e. with or w/o including the natural frequency). The authors model the SFD 

damping force as a polynomial function of the journal displacement including odd and 

even coefficients. This representation is not physically correct. Using an odd polynomial 

terms yield a force that both follows and opposes the journal motion in a single period of 

motion. Thus, such force can not be dissipative. Furthermore, the authors characterize the 

response of the damper in terms of 10 force coefficients, which is rather impractical. The 

mayor limitation of this method lies on the requirements for the excitation signal. In 

addition, some of the non-linear inputs given on the equations of motion of the SFD are 

correlated, and this method cannot distinguish between the contributions of these inputs 

(i.e. 2 *  and x x x ) 

Ellis et al. [16] experimentally identify the force coefficients of a SFD using a time-

domain technique. The identification method is based on the instrumental variable filter 

(IVF) method and relies on solving an auxiliary system of differential equation to obtain 

the force parameters of the damper. The excitation force includes the sum of two 

sinusoidal signals at frequencies below and above the natural frequency of the system. 

The force coefficients are presented as a function of the operating clearance and 

compared to theoretical predictions. Although the authors use multiple frequency 
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excitations, the force coefficients are identified for centered and off-centered operation 

for small motion amplitudes to avoid non-linear effects.  

Diaz and San Andrés [17] present two methods for identification of damping 

coefficients in a SFD. The first method consists on a least-squares curve fitting of the 

damping forces in the time domain, and the second one is based on approximating a 

measured rotor orbit with its synchronous components (Filtered Orbit Method). The 

frequency domain method proves to be more adequate and simpler than the time domain 

method. The results from the experiments show that the identified damping coefficients 

are insensitive to whirl frequency and nearly independent of the imbalance magnitude. 

San Andrés and De Santiago [18] identify experimentally the damping and added 

mass coefficients of an open-end squeeze film damper for large elliptical and circular 

orbits. The force coefficients are obtained from single frequency excitations following an 

identification procedure frequency domain neglecting cross-coupled coefficients. The 

authors investigate the reduction of the film damping capabilities due to air entrapment. 

For the largest test journal orbits, the air entrapment is accounted for as a reduction of the 

effective length of the damper rather than a reduction in the effective viscosity of the 

fluid/air film mixture (as represented in previous analytical efforts). The effective length 

of the SFD is frequency and amplitude dependent, as the amount of air entrapped is a 

function of these two variables. In the experiments presented, the effective length ranged 

from 82% to 78% of the actual damper length. The identified damping force coefficients 

for small amplitude orbits agree well with predictions from classical theory [19], except 

for the identified inertia coefficients that are approximately twice as large as those 

obtained from predictions.  

III Test Rig Description  

A prior TRC report [4] describes the main components of the test rig incorporating a 

SFD with a contacting (non rotating) mechanical seal. Presently, the wave spring loading 

the end seal is removed and the oil can leak through this end. Figure 2 depicts a 

schematic view of the test rig consisting of a vertical rigid shaft, mounted on three 

precision ball bearings (natural frequency 400 Hz [3]), which holds a steel journal of 5” 

(127 mm) diameter and 3” (76.2 mm) long. The bearing assembly includes two steel 

plates clamping an acrylic bearing. The two horizontal plates are attached by two vertical 
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steel plates, which also serve as an interface to apply external forces onto the bearing 

assembly. The top plate includes a lubricant supply connection, a static pressure gauge 

displaying the feed pressure into the bearing and four eddy current sensors facing the 

shaft. The composite bearing housing hangs from a top structure with four steel rods 

providing structural stiffness to the test bearing section. A mechanism atop of the test rig, 

comprising two sliding flat plates (top and bottom support plates), allows adjusting the 

position of the bearing center with respect to the shaft to simulate centered and off-

centered operation conditions.  

 

 

Figure 2 Test rig for dynamic force measurements and flow visualization in a 
sealed end SFD 

 

The bearing housing design integrates a SFD land and inlet groove. Figure 3 and 4 

depict a cross section and a cut view of the end sealed SFD design along with its 

components, respectively. Figure 4 shows the instrumentation arrangement and the 

reference coordinate system on the SFD housing. The instrumentation consists of two 

accelerometers, four eddy current sensors and two load cells. The system is excited via 

two electromagnetic shakers suspended from separate steel structures (90 degrees apart). 

Slender stingers connect the electromagnetic shakers to the piezoelectric load cells 
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attached to vertical plates on the bearing housing. A customized data acquisition system 

records all the sensor signals and controls the electromagnetic shakers.  

 

 
Figure 3 SFD assembly cross section view. Detail view of SFD land and oil flow 
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Figure 4 Open-end SFD assembly cut view 
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Figure 5 SFD housing reference coordinate system and location of sensors 

 

  

2 in (50.8 mm) 

Shaft  

Oil inlet 

  

Ring carrier Recirculation annulus 

Plexiglas bearing   

Journal   

Housing 
top plate 

Bottom plate 

Eddy current sensor 

Vertical  
plate 

Nominal clearance   0.005 in (0.127 mm)   

End gap 
(open end)

Oil flow 

Discharge groove Oil flow



TRC-SFD-1-08 17

IV Experimental Procedure and Parameter identification  
Two orthogonally mounted electromagnetic shakers excite the system with 

superimposed multiple frequencies to reproduce the operation of two cylinders whirling 

with different amplitudes and frequencies (i.e. an intershaft squeeze film damper). The 

excitation force includes the combination of a single frequency excitation (25 Hz) 

representing the low speed shaft and a varying sine sweep (or chirp) excitation (30 Hz to 

120 Hz) representing the high speed shaft. In the tests, the SFD is excited with a 

combination of the following functions: 

( )
( )

0 1

0 1

( ) sin(2 ) sin(2 );

( ) cos(2 ) cos(2 );
s

c

F t A f t B f t t

F t A f t B f t t

π π

π π

= +

= +
 (1)

where f0 (25 Hz) is the fixed frequency representing the low speed rotor whirling 

frequency, and  

( )1( ) 30 90f t t= +  (2) 

varies from 30 up to 120 Hz  and represents the whirling frequency of the high speed 

rotor. A, B are the amplitudes of the excitation load. The sine sweep excitations last one 

(1) second and the record sampling frequency is 4096 points/sec. Note that the forcing 

function repeats every one second.    

 Table 1 presents the test conditions and lubricant properties and Fig. 6 details the 

geometry of the SFD land.  

Table 1 Test conditions for dynamic load tests (CCO). Lubricated SFD (ISO VG 2) 

Inlet Pressure (Ps)* 31 kPa           
Frequency Range  25, 30-120 Hz (sine sweep)  
Lubricant temperature (T) 23-25 0C (73-77 0F) 
Viscosity (η) 3.1 cP- 2.8 cP 
Clearance (c) 122-125 μm (4.8-4.9 mil) 
Motion amplitude (|e|) 20-60 μm (0.8-2.4 mil) 

  *: Gauge pressure.  
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Figure 6 Detail view of test squeeze film damper geometry (open end) 

 

Figure 7 shows a schematic view of the equivalent mechanical system representation 

of the SFD.  

 

Figure 7  Schematic view of the equivalent representation of the SFD with 
mechanical seal 

 

The equations of motion for the test bearing section are [4] 

0
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⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭
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Above 10.2 kgs fM M M= + = ; where Ms is the mass of the vibrating structure and Mf  is 

the mass of fluid enclosed in the plenum above the fluid film land section. (Cs)x,y  are the 

equivalent viscous damping coefficients that characterize the damping arising from the 

structural support. These coefficients, obtained from impact tests on the dry structure, 

equal 130 N.s/m, see Appendix A.  

The SFD reaction forces are   

( ) ( )

( ) ( )

xx xy xx xy

yx yy yx yy

SFD SFD SFD SFDe ex

y SFD SFD SFD SFDe eSFD

C C M MF x x
F C C y M M y

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= +⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎣ ⎦
 (4)

where ( )( ) ( ),t te f x y=  is the journal center instantaneous position and {CSFDαβ}αβ=x,y 

{MSFDαβ}αβ=x,y are the squeeze film damping and inertia force coefficients, respectively. 

The mass coefficients can be approximated to a constant value for the range of test orbit 

amplitudes (i.e. up to 60 % of the damper clearance) [20].  

The multiple frequency load excitations in Eq. (1) can be expressed in complex form 

as 

and the ensuing  bearing displacement  (i.e. x and y) as 

( )
0

k

M
k i t

k k

xx
e

yy
ω

ω
=

⎧ ⎫⎧ ⎫
= =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑Z  (6) 

where ( , ), and ( , )x yx y F F  are the discrete Fourier Transform (DFT) of the time varying 

displacements and forces, respectively.  

Note that the damping coefficients are generalized functions of the journal 

instantaneous position. Thus, the damping force depends on the magnitude and direction 

of the velocity vector as well as on the instantaneous position of the journal center. Since 

the journal eccentricity is a periodic function, the damping coefficients can also be 

represented as a periodic function. Furthermore, the multiplication of the damping 

( ) ( )

( ) ( )

1 0

1 0

( )

( )

k k

k k

M M
i t i t

x xc xs xk k
k k

M M
i t i t

y yc ys yk k
k k

F t F iF e F e

F t F iF e F e

ω ω

ω ω

= =

= =

= − =

= − =

∑ ∑

∑ ∑

 (5) 
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coefficient and the velocity vector components (i.e. two periodic functions) can be 

expressed in the frequency domain as the summation of multiple frequency components, 
3 (2 1)

1 2

3 (2 1)
1 2

( , , ) ...

( , , ) ...

k k k

k k k

k k k

k k k

t t n t
D x x k x k nx k

t t n t
D y y k y k ny k

F e x x e x e x e

F e y y e y e y e

ω ω ω

ω ω ω

ω α ω α ω α ω

ω α ω α ω α ω

−

−

= + + +

= + + +
 (7) 

 The damping force includes the frequency that coincides with the (force) excitation 

frequency (i.e. 1X component of the sine sweep) in order to dissipate energy. Considering 

that the work input into the system is related to the main excitation frequency (i.e. 1X), 

the damping coefficients can be directly extracted from the imaginary part of the transfer 

function 1 . Thus, for each individual frequency component the damping coefficient 

corresponds to the first frequency component of the dissipative force 

(i.e. 1 , : , 
k ijij SFD i j x yCα = ). Substituting Eq.(5) and Eq. (6) into the EOM Eq. (3) and 

separating for each frequency component of the sine sweep excitation force yields  

where the impedance functions H are defined  as 

with  

The system damping coefficients (Cs-ij) are a function of frequency since the 

displacement amplitude also varies with frequency. Thus, the damping coefficients in Eq. 

(10) can not be estimated with a single parameter as in the case of circular journal 

motions about a centered position, for example.    

The impedance functions Hij are identified from three different force excitation 

vectors using a combination of the multiple frequency sine sweep excitation loads 

presented in Eq. (1). For all test cases, the identification range is limited to frequencies 

from 40 to 80 Hz. This limitation is due to the fact that when using sine sweep excitations 

                                                 
1 Note from Editor: The paragraph is incomprehensible  as per its physical or mathematical rationale 

 

x 
x xx xy

y yy yx

F H x H y

F H y H

= +

= +
 (8) 

2
ij S i s ij s ijH K M i Cω ω− −= − +  ;   , ,i j x y=  (9) 

iis ii SFDM M M− = +  

; ;   , ,
ii ijs ii SFD si s ij SFDC C C C C i j x y− −= + = =  

(10) 
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it is not possible to discern the contribution of the components of higher order (2X, 3X) 

to the (1X) input excitation frequency.  This range is appropriate to characterize intershaft 

dampers since it includes the natural frequency of the system (~50 Hz) and covers from 

2X to 3X of the fixed frequency (25 Hz) representing the low speed shaft.  

The identified damping coefficients are compared to well-known formulas for open-

ends SFDs (Ref. [18]) for two cases: circular centered orbits (CCOs) and small amplitude 

displacements about an off-centered position (ORMs). Figure 8 depicts the predictions 

versus journal eccentricity and the corresponding equations valid for uncavitated films. 

Since the multiple frequency excitations exert a combination of radial and tangential 

journal motion paths, the damping coefficients are expected to be within the region 

enclosed between the limiting cases. The description of the experimental results and 

identified force coefficients follow.  
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Figure 8 Damping coefficient versus journal eccentricity for circular centered 
orbits and radial displacements about an off-centered position [18] 
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V Identified SFD Force Coefficients and Comparisons to 
Predictions  

Multiple Sine Sweep Excitations with Fixed Load Amplitude (F1 & F2)  

For the first tests, the four impedance functions (Hxx, Hxy, Hyy, Hxy) are identified 

assuming that the cross-coupled coefficients are non zero (i.e. an oil cavitated damper). 

To identify the full set of impedance functions  it is necessary to excite the system with 

two independent force excitation vectors. Considering that a damping coefficient is a 

function of the journal position, each excitation vector needs to induce similar journal 

motion amplitudes such that the direct impedance functions are similar for both 

excitations. A pair of force excitation vectors that meet these conditions is 

1 2

1 2

1 2

( ) ( )
,

( ) ( )
x xs s

s sy y

F FF t F t
F t F tF F

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

F F
 (11)

with Fs(t) defined in Eq. (1). This pair of excitation vectors renders multiple frequency 

motions enclosed within elliptical envelope curves with the mayor axes oriented θ=450 

and θ=1350 from the X direction. In an intershaft system, this condition simulates the case 

where the motion response vector for each shaft is either in or out of phase with each 

other.        

Force excitations F1 and F2 induce bearing motions and the impedance coefficients H 

are obtained from 

1 2

1 2

1
1 2

1 2

x xxx xy

yx yy y y

F FH H x x
H H y yF F

−⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦  (12) 

where 1,2( , )T
i i ix y =  are the bearing displacement response due to the corresponding 

excitation load vector. The system impedance functions are identified and averaged from 

30 sets of excitations built with F1 and F2. This procedure is repeated three times to yield 

a single average set of impedance functions. The stiffness and added mass coefficients 

are identified from the real part of the impedance functions, Eq. (9), using a quadratic 

curve fit in terms of the response frequency,  

( )2 ReS i s ij ijK M Hω−− =
 (13)
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The system damping coefficients are extracted from the imaginary part of the 

impedance functions,  

( )Im ij
s ij SFD ij si

H
C C C

ω− −= = +
 

(14)

Figures 9 and 10 depict the journal displacement path induced by the excitation 

vectors F1 and F2, respectively. Notice that the motion paths over the sample period are 

overlapped and can not be clearly distinguished. The motion path is predominantly in the 

radial direction along the axes given by the equations x=y and x=-y (θ=45º, θ=135º). 

However, the multiple frequency motions are not purely radial. Figure 11 shows a 

representative time trace of the excitation loads and ensuing motions in both directions 

when exciting the system with F1.  Figure 12 depicts the FFT of the loads and 

displacements shown in Fig. 11. The frequency spectra include a fixed excitation 

frequency (25 Hz) and sine sweep excitations (30 Hz- 120 Hz).  

 

Figure 9  Bearing displacements for three amplitude load magnitudes, force 
excitation vector F1. Multiple frequency excitation (constant 25 Hz + chirp 30-
120Hz). Clearance circle noted. 

θ =450
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Figure 10  Bearing displacements for three amplitude load magnitudes, force 
excitation vector F2. Multiple frequency excitation (constant 25 Hz + chirp 30-
120Hz). Clearance circle noted) 

 

 

Figure 11 X, Y Forces and ensuing X, Y displacements versus  time. Excitation 
vector F1. Multiple-frequency excitation (constant 25Hz + sine sweep 30-120Hz). 
(Maximum motion amplitude ~60 μm)  

 

θ =1350

Fx 

Fy 

x 

y 
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Figure 12 FFT of input forces and ensuing displacements X, Y due to excitation 
vector F1 

 

Figure 13 depicts the real part of the direct impedance functions and the 

corresponding curve fit of the dynamic stiffness (Ksi - Ms-ii ω2; i=x,y). Table 2 presents the 

identified mass coefficients and the extracted added mass coefficient associated to the 

squeeze film only. The table also shows the predicted added mass coefficient using the 

model in Ref. [9], which takes into account the effects of the inlet and discharge grooves 

on the dynamic forced response of the damper. The cross-coupled coefficients are rather 

small as expected for SFD operation in the absence of oil cavitation. Appendix B presents 

the cross-coupled impedance functions and the identified cross-coupled coefficients. 

| |  xF

| |yF  

x  

y  

25 Hz 

Sine sweepSingle Frequency           +
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Figure 13 Real part of direct impedances versus frequency. Multiple frequency 
excitation (constant 25Hz + sine sweep 30-120Hz). (Ksx= 860 kN/m, Ksy= 890 kN/m). 
Excitation vectors F1 & F2 
 

Table 2 SFD inertia coefficients identified from non-circular centered orbit tests 
(frequency range 40-80 Hz) (Ksx= 860 kN/m, Ksy= 890 kN/m) 

 
Parameter xx yy 
Identified Mass, (Ms-) 16.3 kg 16.1kg 

Squeeze film inertia (MSFD) 6.1 kg  5.9 kg 
r2 (goodness of curve fit) 0.97 0.98 
System Mass, (Ms) [kg] 9.6  
Fluid Mass, (Mf) [kg] 0.62 
Added mass coefficient (Predictions from 
Ref.[9]) 

6.6 kg 

 

Re(Hxx)= Ksx-Ms-xxω2 

Re(Hyy)= Ksy- Ms-yy ω2 

Identification Range
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Figure 14 shows the imaginary part of the direct impedance functions divided by the 

excitation frequency (ω). The damping coefficients (CSFDxx and CSFDyy) decay throughout 

the frequency identification range with a similar trend to that shown in the frequency 

spectra of the journal displacements shown in Fig. 12. This is, as expected, a clear 

indication of the dependency of the squeeze film damping coefficients on the amplitude 

of journal motions.           

 

Figure 14 Imaginary part of direct impedances x (1/ω) versus excitation frequency. 
Multiple frequency excitation (constant 25Hz + sine sweep 30-120Hz). Excitation 
vectors F1 & F2 
 

Figure 15 presents the identified damping coefficients CSFDxx and CSFDyy versus 

amplitude of journal motion. The figure also includes the damping coefficients for the 

Im(Hxx/ω) 

Im(Hyy/ω) 
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two limiting cases:  circular centered orbits (CCOs) and radial motions about an off-

centered journal position (ORMs). 
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Figure 15 Direct squeeze film damping coefficients identified from fixed load 
amplitude, multiple frequency load excitations. (25Hz + sine sweep 30-120Hz). 
Excitation vectors F1 & F2). Predictions for circular centered orbits (CCO) and 
radial motion about an off-centered journal position  
 

Sine Sweep Excitations with Varying Load Amplitude (F1 & F2) 

In the following, the amplitude of the excitation load vector increases with excitation 

frequency such as to induce a constant amplitude journal motion throughout the 

identification frequency range.  The varying amplitude of load, see Eq. (1), increases 

linearly with time as shown in Fig. 16 through 18. Figure 19 depicts the frequency 

spectrum representative of each set of tests (~15, 30, 50 μm). 

T
C
C
C

CSFD-Theory- CCO  
CSFD-Theory- ORM 
CSFDxx-Experimental data  
CSFDyy-Experimental data 
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Figure 16 Excitation forces FX, FY and ensuing X, Y bearing displacements versus 
time (Set maximum journal amplitude ~15 μm) 

 

Figure 17 Excitation forces FX, FY and ensuing X, Y bearing displacements versus 
time (Set maximum journal amplitude ~30 μm) 
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Figure 18 Excitation forces FX, FY and ensuing X, Y bearing displacements versus 
time (Set maximum journal amplitude ~50 μm). 

 

Figure 19 Frequency spectra of X-force and ensuing X-displacement. Time data 
shown in Figures 16-18 
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Figure 20 shows the imaginary part of the direct impedances versus frequencies for 

the tests with sine sweep excitation loads of increasing amplitude. The results show that 

the imaginary part of the transfer function (Fx/x) can be approximated with a line fit. 

Thus, the direct damping coefficients are readily identified as the slope of the curve fit, 

i.e.  

Im( )   ; ,ii si SFDiiH C C i x yω− = =  (15) 

This indicates that the damping can be represented with a single coefficient as long as 

the amplitude of journal motion is constant throughout the identification frequency range. 

Table 3 presents the identified mass coefficients and the squeeze film added mass 

coefficients (MSFDxx, MSFDyy). Notice that the identified added mass coefficients are 

similar to those presented in Table 2, and also correlate well with a prediction of 6.6 kg, 

see Table 2. 

Table 3 SFD inertia coefficients identified from non-circular centered orbit tests 
(frequency range 40-80 Hz). Varying load amplitude 

 
Max. displ. 
Amplitude (|X|,|Y|) 20 μm 40 μm 60 μm R2 

Mxx  16.1 kg 16.1 kg 16.2 kg 0.99 

MSFDxx 5.9 kg  

Myy  15.8 kg 15.9 kg 16.1 kg 0.99 

MSFDyy  5.8 kg  
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Figure 20 Imaginary part of impedance functions, Im(Fx/X) & Im(Fy/Y). Non-
circular orbits, multiple frequency load excitations. Maximum displacement 
amplitudes: 15 μm and 50 μm.   

 
Table 4 presents the damping coefficients identified from the sine sweep load 

excitations forcing constant amplitude journal motions. The uncertainty associated to the 

estimated squeeze film damping coefficients (i.e. slope of curve fit) is presented for a 

95 % confidence interval, as in Ref. [21].  

Table 4 Damping coefficients estimated from fixed (set) SFD amplitudes (varying 
load amplitude) tests  

 
Amplitude 15μm 30μm 50μm 

CSFDxx[N.s/m] 6,100(±300) 6,400(±400) 8,200(±600)

Constant 
displacement 
amplitude 

CSFDyy [N.s/m] 5,300(±600) 5,500(±500) 7,000(±700)
 

Figure 21 depicts the damping coefficients identified from the varying excitation 

force amplitude. The figure also includes the predicted damping coefficients for CCOs 

x≈50μm 

x≈15μm 

y≈50μm 

y≈15μm 
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and ORMs. The identified damping coefficients for the largest test journal amplitude are 

slightly smaller (~20 %) than those identified in the previous section using constant load 

amplitude, multiple frequency excitations. The small discrepancy is expected since for 

both experiments the journal follows different motion paths. Furthermore, the motions 

exerted by the constant load excitation include larger variations of the journal motion 

amplitude (i.e. motions with a larger radial component) when compared to the 

experiments with increasing load amplitudes and relatively constant journal motion 

amplitudes.       
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Figure 21 Direct squeeze film damping coefficients identified from varying load 
amplitude, multiple frequency load excitations. (25Hz + sine sweep 30-120Hz). 
Predictions for circular centered orbits (CCO) and radial motion about an off-
centered journal position 
 

Sine Sweep Excitations with Rotating Load Vector F3  

For this case, non-circular bearing motions are induced by the multiple frequency 

force vector: 

T
C
C
C

CSFD-Theory-CCO 
CSFD-Theory-ORM  
CSFDxx-Experimental data  
CSFDyy-Experimental data 
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0 1
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( ) cos(2 ) cos(2 );
s

c
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F t A f t B f t t

π π

π π

= +

= +
 (1)

That is, the y-force lags by 90º the x-force (excitation vector F3).  The force vector 

describes circular loads, as with a rotating imbalance, for example. 

Figure 22 shows the multiple frequency excitation load and ensuing displacements 

versus time. Figure 23 depicts the frequency spectra of the excitation force and ensuing 

displacements. Notice that the excitation force amplitude is nearly constant within the 

frequency range of 40-80 Hz, while the displacement amplitude steadily decays with 

frequency.  

 

Figure 22 Excitation forces FX, FY and ensuing X, Y bearing displacements versus 
time. Excitation vector F3: rotating load, sine sweep frequency 
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Figure 23 Frequency spectra of X&Y forces and ensuing X&Y displacements. Time 
data shown in Figure 22. rotating load vector F3 

 

Figure 24 shows a sequence of the journal center path for a full 1 second when 

exciting the system with F3. The maximum amplitude is 70 μm, around 60 % of the 

damper clearance.  
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Figure 24 Recorded bearing orbits due to rotating load vector F3. Motions shown for time 
intervals 0-1/4τ, 0-1/2τ, 0-3/4τ, 0-1τ. Multi-frequency excitation (constant 25 Hz + sine sweep 
30-120Hz). Clearance circle noted. 

 

Figure 25 shows the real part of the impedance function identified form the tests and 

the curve fit of the dynamic stiffness. Table 5 presents the identified system mass 

coefficients and the squeeze film added mass coefficients. The identified values are 

similar to those obtained in the previous cases with different force excitations.  

0-¼ τ 0-½τ 

0- ¾ τ 0−τ=1sec 
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Figure 25 Real part of direct impedances versus frequency. Constant amplitude 
rotating load with multiple frequency sine sweep excitation (Ksx= 860 kN/m, Ksy= 
890 kN/m) 
 

Table 5 SFD inertia coefficients identified from rotating load of constant amplitude 
rotating load with multiple frequency sine sweep excitation (frequency range 40-
80 Hz) 

Parameter xx yy 
System Mass, (Ms) 16.3 kg 16.7kg 

Squeeze film inertia (MSFD) 5.9 kg  6.5 kg 
r2 (goodness of curve fit) 0.97 0.97 
Fluid Mass, (Mf) [kg] 0.62 

 

Figure 26 and 27 show the imaginary part of the direct impedances divided by the 

excitation frequency, i.e. Im(H/ω) and the identified squeeze film damping coefficients, 

respectively. As with the previous cases, the test derived damping coefficients are within 

Kyy-Myyω2 

Kxx-Mxxω2 
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the predictions for CCOs and ORMs. However, the resulting coefficients are smaller and 

closer to the predictions for CCOs than those previously identified. These results are 

expected considering that the motion amplitudes exerted by the rotating force vector F3 

represent more circular orbital paths than purely radial motions (i.e. with F1 & F2).  

 

Figure 26 Imaginary part of direct impedances x (1/ω) versus frequency. Constant 
amplitude rotating load with multiple frequency sine sweep excitation. 

 

 

 

 

 

Im(Hxx/ω) 

Im(Hyy/ω) 
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Figure 27  Direct squeeze film damping coefficients identified from constant 
amplitude rotating load with multiple frequency sine sweep excitations (Excitation 
vector F3). Predictions for circular centered orbits (CCO) and radial motion about 
an off-centered journal position 

 
VI Conclusions 

Force coefficients of a SFD are identified while executing non-circular, multiple 

frequency motions. The multiple frequency excitations simulate the operation of an 

intershaft damper (IFD). The experiments show that the IFD damping coefficients can be 

obtained from system impedance functions and considering only the motion frequency 

component that coincides with the force excitation frequency, since this is the only 

component that dissipates mechanical energy.  Identified cross-coupled coefficients are 

negligible, thus confirming the test damper operates without oil cavitation.  

The forcing functions superimpose to a constant frequency excitation (25 Hz), 

simulating a low speed shaft, a sine sweep excitation (30 to 120 Hz) representing the 

excitation of a high speed shaft. The damper is excited with three types of force vectors 

representing either purely radial motions or circular paths due to a rotating load. The 

experiments include excitation with loads keeping a magnitude either constant or varying 

to obtain a preset bearing displacement amplitude. For the case of constant amplitude 

T
C
C
C

CSFD-Theory-CCO 
CSFD-Theory-ORM  
CSFDxx-Experimental data  
CSFDyy-Experimental data 
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excitation force, the ensuing bearing amplitude decays steadily with frequency, and the 

identified viscous damping coefficients are strong functions of the amplitude of journal 

motion and frequency. For the case of amplitude of force increasing to maintain a certain 

displacement magnitude, the damping coefficients are constant within the frequency 

range for identification.  

The experimentally obtained added mass coefficients are three times larger than those 

predicted by classical theory that does not include the influence of the inlet and discharge 

annular grooves. Predictions of added mass coefficients from an improved bulk-flow 

model, developed and reported in Ref.[9], are within 15% of the test values. The 

experimental damping coefficients are within the range of predictions derived from 

classical formulas for circular centered orbits or small amplitude motions about an 

eccentric journal position.  
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Appendix A Identification of Structural Parameters (dry system tests) 
 

The static and impact tests stand to verify the stiffness, mass and damping 

coefficient of the test damper and structure prior to the identification of the force 

parameter of the squeeze film alone. Figure A1 shows the results from the static tests 

using a strain gauge load cell and readings from the eddy current sensors. Table A 1 

shows the identified coefficients. The coefficients are within the uncertainty of the 

ones previously identified, see Ref. [3]  Ksx=853 kN/m, Ksy=885 kN/m. 
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Figure A 1 Bearing deflection versus static load (X,Y directions) 

 
Table A 1 Structural stiffnesses of support from static load tests 

 Ksx[N/m] Ksy[N/m] 
Value 840 x103  865 x103 
Uncertainty 25 x103[~3%] 26 x103 [~3%] 
Range[N] 0 to 50 0 to 50 

 
 

Figure A2 shows a typical impact load and bearing displacement responses in the x 

and y directions. Figures A3 and A4 show the system transfer functions in the X and Y 

directions obtained from the impact test (10 averages), respectively. Table A 2 presents 

the results from the impact tests exerted on the bearing assembly. Again, the results are 
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consistent with values reported in Ref [3]. Notice in Fig. A3 and A4 that the curve fit 

reproduces well the experimental data at the frequencies close to zero, which is important 

to obtain accurate stiffness coefficient (i.e. similar to that obtained from static tests).  
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Figure A 2 Impact load and displacements (X, Y)  versus time (dry system) 

 

Table A 2 Identified parameters from impact tests exerted on SFD test section (no 
lubricant) 

 Parameters X Y 
 Stiffness, Ks  [kN/m] 863 (±43) 906 (±45) 
SI Mass,  M  [kg] 9.5 (±0.5) 9.3 (±0.5) 
 Damping, Cs [N.s/m] 124 125 
 Damping ratio, ζ 0.019 0.022 
 Natural Frequency fn[Hz] 48 ±1  50 ±1   
 R2 (goodness of fit) 0.99 0.99 
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Figure A 3 Transfer function (X/Fx) from impact load tests and curve fit for motions 
along X direction. (Dry system, no seal)  
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Figure A 4 Transfer function (Y/Fy) from impact load tests and curve fit for motions 
along Y direction. (Dry system, no seal)  
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Appendix B Cross-coupled Impedance Functions Identified From 
Multiple Frequency Sine Sweep Excitation with Constant 
Amplitude  

The appendix presents the cross-coupled impedance functions resulting from the 

identification procedure using sine sweep excitation with constant load amplitude (i.e. 

forcing vectors F1 and F2). Figures B1 and B2 show the real and imaginary part of the 

cross-coupled impedance functions, respectively. The results indicate that the cross 

coupled coefficients are negligible within the frequency range for identification. Table B1 

presents the identified force coefficients. Note that the cross-coupled coefficients are of 

the same order of magnitude as the uncertainty associated to the identified direct 

coefficients. Furthermore, the cross impedance functions are relatively constant and close 

to zero. Thus, regardless of the physical model used to curve fit, the correlation values are 

expected to be small.    

 
 

 
Figure B 1 Real part of cross-coupled impedances versus frequency. Multiple 
frequency excitation (constant 25 Hz + sine sweep 30-120 Hz). Excitation vectors 
F1 & F2 
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Figure B 2 Imaginary part of cross-coupled impedances versus frequency. 
Multiple frequency excitation (constant 25 Hz + sine sweep 30-120 Hz). Excitation 
vectors F1 & F2 

 
Table B 1 Identified cross-coupled coefficients from constant amplitude load & 
sine sweep excitation tests 

Kxy Mxy Kyx Myx  Cxy Cyx 
[N/m] [kg] [N/m] [kg] [N.s/m] [N.s/m] 
-1445 0.1 -61220 0.2 -140 -170 

r2=0.21 r2=0.19 r2=0.18 r2=0.19 
 


