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IDENTIFICATION OF BEARING SUPPORTS’ FORCE COEFFICIENTS FROM ROTOR
RESPONSES DUE TO IMBALANCES AND IMPACT LOADS

EXECUTIVE SUMMARY

Experimental identification of fluid film bearing parameters is eritical for adequate
interpretation of rotating machinery performance and necessary to validate or calibrate
predictions from often restrictive computational fluid film bearing models. Parameter
identification in the field 15 also promising for condition monitoring and troubleshooting,
and in the near future for self-adapting rotor-bearing control systems. Two procedures for
bearing supports parameter identification with potential for in-situ implementation
follow.

The analytical bases for the identification of bearing support coefficients derived
from measurements of rotor responses to impact loads and due to calibrated imbalances
in characteristic planes are thoroughly discussed. Subsequent implementation of the
procedures to measurements performed in a (nearly) rigid massive rotor traversing two
critical speeds forward force coefficients for a novel beaning support comprising a tilting
pad bearing (TP.JB) in series with an integral squeeze film damper (8FD). Compared to
conventional bearing configurations, the novel support has the advantage of compactness,
integral construction and lightweight; and most importantly, it offers increased
rotordynamic stability, control of critical speed positioning, and reduced force
transmissibility.

At a constant rotor speed, the first method requires impacts loads exerted along two
lateral planes for identification of frequency-dependent force coefficients. Simulation
numerical examples show the method is reliable with a reduced sensitivity to noise as the
number of impacts increases (frequency averaging). In the experiments, an ad-hoc fixture
delivers impacts to the rotor middle disk at speeds of 2,000 and 4,000 rpm, just below
and above the system first critical speed (~3,000 rpm). The experimentally identified
force coefficients are in close agreement with predicted coefficients for the series support
TPJB-SFD). In particular, damping coefficients are best identified around the system first
natural frequency (— 52 Hz). Bearing stiffness are correctly identified in the low
frequency range (below 30 Hz), but show a marked reduction at higher frequencies
apparently due to inertial effects not accounted for in the model (test rig base resonance).

Measurements of rotor response to calibrated imbalances allow identification of
speed-dependent force coefficients. The procedure requires a minimum of two different
imbalance distributions for identification of force coefficients from the two bearing
supports. The rotor responses show minimal cross-coupling effects, as also predicted by
the computational analysis. Presently, the identification procedure disregards cross-
coupled force coefficients thereby reducing the effect of false cross-correlations that
cause ill-conditioning of the identification matrix and pollute the end results. The
procedure renders satisfactory force coefficients in the speed range between 1,500 and
3,500 rpm, enclosing the first critical speed. The identified direct force coefficients are in
accordance with those derived from the impact load excitations.




The second methed 1dentifying bearing support parameters from imbalance response
measurements is simpler since it does not rely on direct application (and measurement) of
external forces or transmitted bearing reaction forces. However, its adequate
implementation requires of accurate measurement of phase angles, which are difficult to
assess if the amplitude of rotor response is not large enough (instrumentation and
software constraints).

Dr. Luis San Andreés
Principal Investigator
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NOMENCLATURE
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CHAPTER 1

INTRODUCTION

1.1 FOREWORD AND OBJECTIVES

Thin film fluid flow models for journal bearings and seals, as well as advanced
computational techniques for rotor modeling, allow predictions of rotordynamic stability
and imbalance response of rotating machinery. Often, observations of rotor vibration in
real machines show marked discrepancies with theoretical predictions mainly due to
inadequate assumptions used in the models. Journal bearings are particularly sensitive to
small variations in geometry and operating conditions, thus often being the source of the
differences between predictions and observations [1].

Journal bearings (stiffness and damping) force coefficients are important in rotor
analysis since they largely determine the rotor dynamic response and stability, There
have been many efforts to develop reliable techniques to accurately identify journal
bearing coefficients under controlled experimental conditions for verification of the
models. However, there is presently the need for proven identification techniques that
allow assessing the validity of the predicted bearing force coefficients in their working
environment,

Recently, the turbomachinery industry is using novel bearing configurations for
control of rotor vibrations. In particular, the combination of tilting pad bearings (7F./5s)
and squeeze film dampers (SFDs) is commonly applied due to its desirable capabilities of
inherent stability and low force transmissibility. This bearing configuration requires
validation of the steady state and dynamic performance for widespread application.
Additionally, there is the need in some cases to verify the dynamic force coefficients of
this bearing configuration in machines that are already operating in the field.

The objectives of this research are to forward useful procedures for in-situ bearing
parameter identification and to provide the results of identification for a combined TF.JR-
SFD bearing support. The key feature of the proposed methods 1s the requirement of
minimal external equipment, little or no changes to existing hardware, and the use of
measuring instruments commonly found in the field for machine protection and
monitoring.

Chapter 2 provides an account of past methodologies utilized for identification of
parameters in journal bearings and squeeze film dampers. The discussion focuses in
frequency domain formulations, highlighting their advantages and pointing out their
limitations. Chapter 2 also describes the importance of novel bearing configurations for
vibration control, in particular the combined series support composed of a squeeze film
damper and a hydrodinamic film bearing. This support has been applied in several
compressors and steam turbines for improved stability and imbalance response [2].



Widespread use of this support in turbomachinery requires of validation of predictive
tools by means of experimental measurements of the bearing dynamic response and
subsequent reliable parameter identification.

Chapter 3 describes an existing experimental facility for testing the series support
incorporating squeeze film dampers of the integral type and flexure pivot tilting pad
bearings [3]. This bearing combination has speed and frequency-dependent force
coefficients due to the series impedance that results of the two lubricant films.
Identification of frequency-dependent force coefficients is made using an ad-hoc fixture
to deliver impact loads to the rotating shaft at a fixed rotor speed. Special experimental
procedures include the development of a time domain-based digital filter for shaft runout
subtraction and comparison to alternative frequency domain-based filters. A second test
apparatus is also used to identify (speed-dependent) bearing coefficients of rigid (two
lobed) fluid film bearings from measurements of the rotor response to calibrated
imbalances. The proposed methods for bearing parameter identification are derived from
appropriate models of the rotor-bearing system representing the available experimental
facilities.

Chapter 4 introduces the first identification method based on impact excitations
applied to the rotating shaft. The method is particularly applicable for bearings featuring
frequency-dependent force coefficients, such as tilting pad bearings or supports with two
fluid films operating in series. The chapter contains the analytical derivation of the
method from the equations of conservation of linear and angular momentum, and
establishes the experimental conditions that must be met for identification of frequency-
dependent bearing parameters. A numerical study shows the robustness of the method to
noise and error in the measurements. Finally, the chapter presents an experimental
validation of the method by application to the transient response of a rigid rotor supported
on series squeeze film dampers and tilting pad bearings. Discussion of results includes an
analysis to determine the optimum amount of experiments (repetitions) required to
estimate reliable values of bearing force coefficients.

Chapter 5 describes a method for identification of speed-dependent bearing force
coefficients from measurements of the imbalance response in a rotor supported on fluid
film bearings. The chapter presents the identification method, describes the conditions for
parameter identification and forwards all major assumptions. Discussion of the
experimental conditions for proper identification is important because it leads to
simplifying assumptions that may often improve the results of the identification. This is
particularly useful because the identification method derived from a full rigid rotor model
supported on two (different) anisotropic bearings is very sensitive to noise, to errors in
the measurements and to extraneous dynamic effects (for example, from support
resonance or other mechanical elements not accounted for in the model).

The experimental validation includes the identification of the equivalent (speed-
dependent) parameters for the combined squeeze-film damper and fluid film bearing
support, The major simplifying assumption is that the bearings' crossed-coupled
coefficients are negligible. This important observation is supported by the measurements



and identification presented in Chapter 4, and leads to a pair of systems of equations fully
uncoupled. The second case presented for validation of the method includes
measurements of the imbalance response of a rotor supported on identical (two lobe)

fuid film bearings. The experimental rotor configuration simplifies the identification
model because the two bearings carry the same static load and have identical nominal
operating conditions. The experimental conditions allow estimation of a reduced number
of bearing parameters from the dynamic rotor response using only one set of imbalance
masses.

Chapter 6 summarizes the methods and results, and forwards conclusions and
recommendations for continuation of the work, Appendix A lists the program utilized for
data acquisition of the transient response of the rotor to impact excitations, and Appendix
B shows the formulation for the equivalent impedance of two fluid films in series,
resulting in frequency-dependent force coefficients.
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CHAPTER 2

LITERATURE REVIEW ON BEARING PARAMETER IDENTIFICATION AND
INTRODUCTTON TO MODERN BEARING CONFIGURATIONS FOR
CONTROL OF ROTOR VIBRATIONS

2.1 INTRODUCTION

The objectives of the present work are to forward useful procedures for in-situ
bearing parameter identification and to provide results of force coefficients for a
combined FPJB-SFD bearing support. The first part of this chapter presents a review of
general techniques for bearing parameter identification, from simple static loading
procedures for measurement of fluid film flexibility to more elaborated procedures
including noise rejection. The following section details the advantages of the series
FPIB-SED bearing support, and states the need for experimental validation of current
predictive tools, Finally, the last part outlines common force coefficient identification
procedures for squeeze film dampers and tilting pad bearings used in the past, and
discusses the quality of results obtained using each method. The discussion focuses on
the applicability of the methods for implementation in the field.

2.2 BRIEF REVIEW OF PAST RELEVANT LITERATURE ON BEARING
PARAMETER IDENTIFICATION METHODS

In general, bearing reaction forces applied on the rotor due to the shaft displacements
about a static equilibrium position are modeled by:

F=-KX-CX -MX (1)

Where F is the external force applied to the rotor, X is the vector of displacements
(x,), and K, C and M are the bearing stiffness, damping, and inertia matrices,
respectively. The entries of these matrices are the rotordynamic force coefficients known
as bearing parameters. [n Equation (1), the dot over the variables denotes differentiation
with respect to time. The rotordynamic force coefficients are defined as:

__8E . #E o,
Ky==o—t, Cpm=mort, My =—— @)

Dx B%, 81,
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where {K, C, M}y - ., are the coefficients relating the bearing reaction forces in the
direction to the rotor displacements, velocities and accelerations in the & direction,

respectively, £ in Equation (2) is the force that the fluid film applies on the rotor

(journal). Notice that a fluid film bearing develops forces acting in the orthogonal
direction to the instantaneous displacement, velocity or acceleration, This so-called cross-




coupling effect is a characteristic of hydrodynamic fluid film bearings. If the cross-
coupled stiffness coefficients have reversed signs, a follower force arises that tends to
destabilize the rotor.

The general problem of bearing parameter identification requires measurements (or
estimates) of the bearing force (excitation) and rotor displacements (response). For
bearings operating at low excitation frequencies, inertia forces are not significant with
respect to the elastic and viscous (damping) forces. Many squeeze film bearing dampers
have a centering spring and do not develop accountable fluid film stiffness, in which case
the number of variables for identification is reduced.

There are numerous methods advanced for bearing parameter identification. Kozin
and Natke [4] divide the identification methods into two major groups according to the
nature of the data used for identification: time domain and frequency domain methods.
The authors present a comprehensive study on the advantages and limitations of each
group, Time domain methods are usually based on the minimization of an error function
integrated over a finite period of motion. These formulations often require the use of
mamerical schemes for solution of non-linear Equations, rendering in general slow
procedures that might suffer from numerical instabilities, for example

Recently, Diaz and San Andrés [5] forward a “filtered orbit method” for identification
of squeeze film damper force coefficients. In this method, a time orbit is reconstructed
from the measured synchronous (1X filtered) vibration signals. Damping forces are
adjusted to best fit a predicted orbit to the experimental measurements. This method 1s
promising for in-field applications since it uses data acquired with readily available
instrumentation, The filtered orbit method can be seen as a combination of time and
frequency domain techniques, since the filtering of synchronous amplitudes is performed
in the frequency domain.

Bearing parameter identification methodologies in the frequency domain are
generally faster, and thus preferred for identification of force coefficients. Many methods
use frequency response functions and curve fitting procedures to experimental data in
order to estimate the bearing parameters. Usually, curve fitting methods assume that the
bearing parameters remain constant over a range of frequencies. This assumption is not
justified for certain types of bearings, such as in tilting pad bearings for example.

Goodwin [6] reviews experimental techniques for identification of bearing
impedances. Bearing impedances (Z;) are complex functions, whose real part represent
the dynamic stiffness, and whose imaginary part is proportional to the damping
coefficients, 1.e..

Zy=(Ky =" My Jj(aCy) (3)
(where ik =xyandj= J=1). When the inertia forces induced by the fluid film are

small. the real part of the bearing impedance is approximated by the stiffness coefficients
(K.). Estimation of bearing impedances at several frequencies renders an over-



determined system of Equations to solve for the bearing parameters. Then, a least squares
estimator provides identification of the parameters over the range of frequencies tested.

Bearing impedances have the advantage over flexibilities of being linear functions of
the bearing parameters, and are thus used extensively for identification. For example, a
simple case of the use of impedance functions for identification of stifiness coefficients is
that in which a static load 1s applied to the test bearing [7]. In this case, the damping
forces (proportional to the rotor center velocity) are zero, and measurement of bearing
reaction forces to displacements in only one direction render the stiffness coefficients.
This method requires simultaneous application of forces in two directions (o maintain
displacements in only one direction, but the use of influence coefficients (flexibilities in
this case) allow identification with only one load applied in each direction. Static
methods are relatively simple to carry out, but usually render large errors in the identified
coefficients and, as indicated before, only allow for identification of stiffness coefficients.

Other excitation sources allow estimation of the bearing impedance functions using
dynamic loading, such as harmonic forces, pseudo-random periodic excitation, rotor
imbalance and transient impulse loads, among others. Burrows and Sahinkaya [8]
demonstrate that frequency domain estimations reduce bias error as compared to time-
domain methods because the frequency transformation naturally filters out high-
frequency noise. On the other hand, discrete sampled data introduce other limitations that
must be carefully assessed (sampling rate-related aliasing and leakage phenomenon, for
example),

Morton [9] uses electromagnetic shakers to apply a sinusoidal excitation to a test
journal bearing and measures receptance (displacement over load) frequency response
functions from unidirectional loading. The receptance matrix entries correspond to the
individual dynamic flexibility functions obtained from excitation to the bearing housing
floating on a rigid shaft, first in one direction and then in an orthogonal direction. The
inverse of the receptance matnx corresponds to the impedance matrix, from which
bearing parameters are estimated from curve fitting of the real and imaginary parts of the
impedance function. Identified parameters correlate well with predictions of the bearing
force coefticients.

Parkins | 10] utilizes sinusoidal excitations in two directions and applied to a floating
test bearing on a rigid shaft. The magnitude of the applied forces and the phase angle
between them are varied until the bearing orbital motion collapses along one direction of
excitation (straight-line orbit). Then, the bearing stiffness and damping coefficients are
readily estimated by measuring the instantaneous force (magnitude and phase) at the
precise instant of time when the displacements (x, y) or velocities ( ¥, ) of the bearing
housing are exactly zero. In this manner, the inversion of the receptance matnx is avoided
and the identification is simpler and with less error from the inversion operation
Brockwell et al [11] use this method for identification of stiffness and damping force
coefficients of a five-pad, tilting pad journal bearing, as discussed later.



The procedure outlined in [10] is simple in theory, yet its actual implementation is
complicated due to the nature of the expensive experimental facility required (shakers
and controllers), and the need to precisely determine the occurrence of the journal
position and velocity of interest. Identification of bearing parameters usually shows large
variations using this method due to the difficulty in obtaining accurate measurements of
the instantancous force. At times, the appearance of sudden (transitory) changes of short
duration in the measured forces and displacements from unaccounted sources adds to the
uncertainty of the identification results. In this case, averaging of forces and
displacements is mandatory over a large amount of periodic motions, in order to reduce
the scattering of the identified coefficients.

Although frequency domain methods reduce the influence of high frequency noise, it
may occur that noise with frequency components in the range of interest introduce errors
in the estimation of mass, stiffness and damping force coefficients. Fritzen [12]
introduces the Instrumental Variable Filter (IVF) as a refinement to the least squares
method and that reduces the bias error from the measurements of rotor response used in
the identification process. Diaz and San Andreés [13] use the flexibility matrix as a
weighing function to improve the minimization procedure in the neighborhood of the
system resonance where the dynamic flexibilities are maximums. In this way, the regions
in the frequency range containing resonance peaks of response have more weight on the
fitted system parameters, improving the identification with the Instrumental Variable
Filter.

Uncorrelated noise in the measurements of vibration with respect to the input force
appears during identification of bearing and seal parameters operating in turbulent regime
(high Reynolds numbers). The random noise caused by the turbulence in the flow has
frequency components within the range of the parameter identification. Rouvas and
Childs [14] demonstrate that if the bearing is excited with a pseudo-random periodic
excitation of several frequencies, then, the cross power spectral density between the
applied force and the noise from the turbulent flow is zero. Using the definition of the
spectral densities, the Equations of motion can be solved for the bearing impedances, and
then a standard least squares (L.S) estimator or IVF may render the parameter
identification. In this case, the authors use least squares fitting of the analytical
impedances to the identitied impedance functions. The identification method presented in
[14] is useful when noise exists in the same frequency range as the test signals,
eliminating the possibility of rejection through filtering. On the other hand, it requires
vast instrumentation and a more elaborated signal processing procedure that includes
generation of the pseudo-random signals and caleulation of power spectral densities,
among others.

One of the simplest excitation methods to generate an (apparent) excitation load is to
apply calibrated imbalances to the rotating shaft, so that the centrifugal force excites the
system. Woodcock and Holmes [15] present results of parameter identification of a fluid
film bearing in a turhorotor using imbalance response measurements. In this case, only
four coefficients are determined from the Equations of motion due to the nature of the

excitation forces being 207 out of phase at all times. Sahinkaya and Burrows [16] identify




bearing coefficients from imbalance responses in the time domain using minimization of
a cost function integrated over a period of vibration. But, as before, only four coefficients
are identified if a planar model is used for describing the motion of the rotor supported on
the fluid film bearing. Goodwin [17] overcomes this shortcoming by using a complicated
test rig that uses a second internal shaft to generate imbalances at frequencies
independent from the rotor speed. In this case, excitations at two different frequencies
render the required set of Equations for identification of all bearing parameters at a single
speed. However, the test bearing must have frequency-independent force coefficients for
this approach to render satistactory results.

In general, the system of Equations of motion generated by imbalance excitations
tend to be ill-conditioned, and most experimental identifications show considerable
scatter of results [6]. However, despite the limitations, this method is appealing for in-situ
identification of bearing parameters due to the minimal requirements of external
excitation systems and easiness of implementation in the field,

In addition to the methods discussed above, transient loading of rotor-bearing systems
(from impact loads, for example) represents yet another option for bearing parameter
identification. This method has the advantage of exciting a broad range of frequencies in
a single experiment, considerably reducing the experimental effort and identification
time. Besides, repetition of the experiment is extremely simple, allowing for economical
averaging and variability studies.

Robison et al [18] use cross-spectral densities to minimize noise and to identify
dynamic force coefficients of a squeeze film damper from transient excitations (impacts)
applied to the bearing housing in a vertical test rig. The bearing housing is suspended by
four steel rods that provide structural stiffness for centering of the damper within its
clearance. In this case, damping and inertia force coefficients are identilied from the
impedance functions since the stiffness of the bars are known a-priori, Correlation with
theoretical predictions of force coefficients is good for a large range of static
eccentricities, up to 50% of the damper radial clearance.

Nordmann and Shollhorn [19] present a method for identification of eight bearing
parameters of a symmetric rotor supported on identical bearings using impact excitations
directly applied to the rotating shaft. As indicated before, the main advantage of this
method is the simplified experimental effort by exciting a large range of frequencies at
once, Nordmann and Shollhorn assume that the bearing parameters are constant over a
frequency range and use curve fitting of the frequency response (mobility) function
amplitudes determined from the Fourier transform of the measured displacements and
force. The method renders excellent correlation with theoretical predictions in the range
of Sommerfeld numbers tested (0.75 to 2.3) for cylindrical journal bearings.

Despite the good results obtained with the identification from impact response
measurements, there is still an obvious limitation for field application of this method,
namely the difficulty in accessing the rotor shaft while the machine 1s in operation
Several methods are devised to overcome this shortcoming, including the use of support



and casing excitations. However, this procedure requires an appropriate model of the
support structure, therefore producing a more elaborated method.

Morton [20] applies a slowly incremental lateral load to a rotating turborotor shafi
from outside the machine through a calibrated link that breaks under a predetermined
load magnitude. When the link breaks, the rotor suffers a sudden acceleration that dies
out with time, The transient dynamic load has a broad range of frequency components
that excite the rotor, and the measurement of the response allows calculation of the
bearing impedances for identification of stiffness and damping coefficients.

Actual rotating machinery often features journal bearings, which are different on each
end of the rotor. Furthermore, most turbo rotors are not symmetrical, and the bearings on
both ends usually support different static loads. In some extreme cases, as in overhung
rotors, the ratio of carrying loads between the two bearings can be of up to two. In these
cases, bearing coefficients largely differ between the drive and free ends (even in the case
of identical bearings) of the rotor. Note that many methods follow from the equations of
motion for a point mass (rigid) rotor. If methods are to be developed for in-situ
identification of bearing coefficients (without means to measure the transmitted forces
through the bearings), then it is necessary to expand the previously presented methods as
to include the effect of rotor dynamics.

A major consequence of including the rotor dynamics in the equations of motion is
that the inertia matrix must include additional terms for estimating the rotor inertia and
gyroscopic moments at the bearing locations. An additional benefit of the expanded
models is that identification of all § force coefficients for each one of the two supporting
bearings is feasible at a single speed or frequency because of the increased number of
independent Equations of motion. However, note that the complications due to more
comprehensive rotor dynamics modeling is totally overcome if the bearing transmitted
forces are directly measured, although this task requires additional instrumentation and
bearing housing design modifications.

Lee and Hong [ 1] estimate speed-dependent synchronous bearing coefficients of two
different bearings supporting a rigid rotor by separating the forward and backward whirl
responses resultant of the gyroscopic moments. However, this procedure is not necessary
since the measured vibration already contains the forward and backward whirl
components, thus filtered synchronous vibration data is just suitable to be used, making
the identification procedure very easy to implement from running machine data. Force
coefficients from isotropic bearings will cause numerical singularities during the
inversion of the response matrnx. Thus, the procedure 15 not able to identify the force
coeflicients in this case.

Tieu and Qiu [21] also identify sixteen synchronous coetficients of two different
bearings supporting a rigid rotor from two or more imbalance response measurements.
The authors utilize unfiltered responses and forward a numerical procedure to minimize
noise influence. The experimental results show good correlation with theoretical
predictions of force coefficients for a cylindrical journal bearing. However, the method




can be easily modified to use filtered synchronous responses, and thus not be affected by
high frequency noise introduced in the measurements, as described in Chapter 5.

The importance of the works by Lee and Hong [1] and Tieu and Qiu [21] is that
identification of parameters of two different bearings at different axial locations has the
potential for application as an in-situ method. These procedures pave the way for
improved modeling of fluid film bearings, verification of predicted force coefficients, and
ultimately real-time bearing parameters monitoring and troubleshooting.

2.3 NOVEL BEARING CONFIGURATIONS FOR ENHANCED VIBRATION
CONTROL OF TURBOMACHINERY

Tilting pad journal bearings (7P.J/Bs) are commonly used in turbo-compressors and
other high-speed machinery due to their ability to suppress instabilities commonly found
in other rigid fluid film bearing geometries. However, 7P.JBx are very sensitive to small
variations in the geometry of the convergent clearance between the journal and the pads,
say due to static or thermal deformations, TPJEs are also very sensitive to stacking of
manufacturing tolerances and pivot wear and fretting, which can severely deteriorate their
performance.

The Flexure Pivot tilting pad bearing design (F7.JF) alleviates most drawbacks of
TP.JBs associated with tolerance stacking and pivot wear because the pivot is integrally
machined with the bearing outer nng. The pivot consists of a cantilevered thin beam
(web) attaching the bearing pad with the outer ring and manufactured with the Electro-
Discharge Machining (£DM) process. De Choudhury et al. [22] present an early
application of P.JBs to a high speed centrifugal compressor. Comparisons with similar
sized conventional TPJ/Bs show that the FPJE gives a reduced temperature raise and
power loss. Also, the rotor bearing system remains stable for the entire speed range of
operation. Several geometric factors affect the performance of FP.J/Bs, namely pad
circumferential position with respect to the load, pad preload and pivot offset, among
others. Zeidan and Paquette [23] discuss the effects of these parameters on the
performance of conventional 7P.JBs and FP./Bs. FFJBs can provide a very wide range of
stiffness and damping coefficients. For example, the pivot beam rotational stiffness
modifies the direct bearning stiffness coefficients, thus becoming an additional factor to be
accounted for in the design of FP.JBs.

TPJBs exhibit large stiffness coefficients that often locate the critical speeds very
close to the machine operating speed. In such cases, it is desirable to soften the support in
order to move the critical speeds away from the operating speed. It is also necessary to
provide an additional source of damping because the large values of stiffness in the TPJE
prevent the damping forces from the lubricant film to effectively attenuate rotor
vibrations and forces transmitied to the support structure. Operating the machine above
the critical speed (resonance) allows for much lower transmissibility and requires small
amounts of damping for adequate vibration control at the operating speed. Safe passage
through the crtical speeds, however, demands adequate damping forces from the bearing



supports. Zeidan [2] incorporates squeeze film dampers (S/-0s) in series with FP.JBs to
stabilize marginally stable rotors operating on 7P.JBs. Squeeze film dampers provide the
required amount of damping to cross the critical speed resonance, maintain rotor stability
and keep low force transmissibility to the bearing housing.

A squeeze film damper (5F1)) consists mainly of a cylindrical journal and an outer
ring separated by a thin annular lubricant film, A ball or roller bearing typically connects
the damper journal with the shafl, and a radial spring centers the journal within the outer
ring and prevents it from rotation. The journal motion (whirling) caused by external
forces applied to the rotor squeezes the lubricant that fills the clearance between the
journal and the outer ring. The lubricant then develops hydrodynamic pressure that
generates the damping forces. A number of geometry factors such as diameter, length and
clearance, as well as operating conditions such as supply pressure, feeding and discharge
mechanisms, among others, determine the performance of SFDs in real applications. All
these factors must be properly addressed for successful application of the damper

Most gas turbines for aerospace applications feature squeeze film dampers with a
centering spring in the shape of a squirrel cage. This spring often requires up to four
times the axial length of the hydrodynamic land itself and thus represenis a costly
solution for vibration control in terms of weight and space. Recently, the EDM process
enables also the manufacturing of integral squeeze film dampers (/SFDs). In this case, the
damper journal and the outer ring are machined of a single steel piece connected with
thin S-shaped springs that substitute the old squirrel cage-type spring. The springs divide
the hydrodynamic land into four arc segments. The spring webs can be manufactured at
any desired stiffness value for control of critical speed location. Also, the clearance
around the damper journal can be made uneven to compensate for static deflection of the
springs once the damper takes the rotor weight. Additionally, the damper can be split for
casiness of installation and retrofit. Zeidan [2] discusses successful applications of ISFDs
in the petrochemical industry.

Several applications of the combined support 7P.JB-SFD are in use today, However,
there is currently the need for experiments to provide design guidelines and to validate
predictive toals. The Turbomachinery Laboratory at Texas A&M University has several
instrumented test rigs available for study of the dynamic characteristics of novel bearing
configurations. The experimental programs aim to characterize the steady state and
dynamic properties of the new bearing designs and provide reliable databases for
calibration of predictive tools.

2.4 COMMON PARAMETER IDENTIFICATION TECHNIQUES IN SQUEEZE FILM
DAMPERS AND TILTING PAD BEARINGS.

Bearing parameter identification plays an important role for model validation, design
development and troubleshooting of high-speed machinery [24], [25] This section
focuses on the methods most commonly employed for identification of force coefficients
in squeeze film dampers and tilting pad bearings. It is important to notice that the
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definition of the bearing reaction forces in Equation (1) 1s basically a useful
representation of bearing forces linearized about a journal equilibrium position. Force
coefficients from squeeze film dampers are not strictly rotordynamic force coefficients as
defined by Equation (2). Hydrodynamic fluid film forces in the damper arise from the
instantaneous position and velocity of the journal, and are proportional to the orbit size
However, damper forces can still be represented by force coefficients as used in Equation
(1), so that the parameter identification procedures for journal bearings can be used all
the same in this case.

Thomsen and Andersen [26] and Tonnessen [27] identify damper coefficients by
direct measurement of damper reaction forces to calibrated imbalances. The experimental
facility consists of a vertical test rig featuring a squeeze film damper supported by load
cells measuring the reaction [orces in one axial plane and in two directions. Direct
damping coefficients are determined simply as the proportionality constant between the
journal instantancous velocity and the viscous force. This viscous force 15 estimated as
the difference between the total measured reaction force and the estimated elastic force
from the centening spring. This method of identification is very reliable because it
directly measures the reaction force transmitted through the bearings but 1s difficult to
implement in practice because the load cells must support the bearings.

San Andrés and Vance [28] present a test rig for measurements of the lubricant
dynamic pressure in a squeeze film damper whose journal is constrained to describe
centered circular orbits (CCOs). Integration of the pressure field around the damper
journal renders radial and tangential forces from where damping coefficients are readily
determined. This test rig is extensively used to study details of the fluid flow and
lubricant inertia effects. Although the use of circular centered orbits allows the study of
many damper parameters, CCOs are hardly seen in practice mainly due to support
asymmetry. Thus, there is still the need of developing adequate 1dentification procedures
for dampers operating under real operating conditions.

As mentioned before, Robison et al. [18] use cross-spectral densities to minimize
noise and to wdentify dynamic force coefficients of a squeeze film damper from impulse
load excitations applied to the bearing housing in a vertical test rig. Rouvas and Childs
[14] first use spectral densities to reduce noise from undesired excitation sources created
by turbulent flow in hydrostatic bearings. With this advanced identification method,
Robison et al. find that correlation of identified (inertia and damping) force coefficients
with theoretical predictions is good for a large range of static eccentricities, up to 50% of
the damper radial clearance.

San Andrés et al. [29] compare damping coeflicients of a squeeze film damper
instrumented in a small rotor kit operating with a bubbly mixture of o1l and air. The
experimental set-up allows applying external excitation loads on the flexibly supported
damper housing, In one case, damping coefficients are estimated from measurements of
the steady state response of the damper housing to unidirectional sinusoidal excitations
applied with an electromagnetic shaker. In the second method, impact guns deliver a
calibrated force impulse to the damper housing, and proximity probes measure its



transient response. In both cases damping coefficients are estimated as a function of the
air volume content in the mixture at zero rotational speed. The identified bearing
coefficients show different trends according to the excitation method employed, thus
showing that the fluid forces developed in the film are motion dependent. The major
shortcoming of the experimental set-up for in-situ applications is that it is difficult to
access the damper housing because it is usually contained within a bearing housing
(pedestal).

San Andres and Lubell [30], and De Santiago et al. [3] estimate viscous damping
coefficients from squeeze film dampers supporting a rigid rotor from measurements of
the rotor response to calibrated imbalances. Damping coefficients are estimated at a
single point corresponding to the first critical speed of a simplified 1 DOF system. The
measurements reveal that damping coefficients increase with the rotor orbit size. but not
as much as predicted by theory, Kudzal et al. [25] also utilize imbalance response
measurements to estimate the loganithmic decrement and damping force coefficients of
flexible rotors in turbo-compressors for petrochemical applications. Diaz and San Andrés
[5] use experimental orbits to determine damping coefficients as a function of the rotor
speed in a rigid rotor subjected to calibrated imbalance loads, as described in a previous
section. The main advantage of these methods is that they allow direct use of field-
measured vibration to determine the equivalent viscous damping from the bearing
SUppOoTts.

Parameter identification techniques for journal bearings are equally applicable for
identification of parameters of tilting pad bearings. The main difference (in terms of
dynamic properties) between tilting pad bearings and fixed-geometry (rigid) fluid film
bearings i1s that TP.JBs have frequency-dependent force coefficients. Thus, suitable
techniques must allow for estimation of synchronous and asynchronous bearing
parameters of /F./Bs. This is important also for the case of the combined support SFD-
FFJER presented earlier,

One of the most common test rigs for identification of bearing parameters is one in
which a rigid shaft spins but is prevented from whirling by precision ball or roller
bearings. The test bearing is installed at midspan and is free to whirl about the shafi
center. Special mechanisms apply static loads in any direction desired. Dynamic loading
comes from hydraulic or electromagnetic shakers attached to the test bearing outer shell
in two orthogonal directions. This allows to conveniently vary the force field applied to
the bearing, and to control the eccentricity of the response. Independent adjustment of the
shaker frequency also allows studying the frequency dependence of bearing force
coefficients.

Brockwell and Kleinbub [31] and Brockwell et al. [11] present experimentally
identified synchronous bearing coefficients of a five pad 7FJB using electromagnetic
shakers inducing bearing motions along a single direction (line orbits). The
measurements show that bearing stiffness can be overpredicted even if considering pad
and pivot deformations which usually reduce the overall bearing stiffness. The source of
the discrepancy in this case is the inadequate modeling of the pivot flexibility, A common



result in identification of 7FJB force coefficients is that damping is largely overpredicted,
the experimental identification vielding force coefficient magnitudes less than one half of
the predicted values for heavily loaded bearings. In general, the experiments show that
IPJBs are sensitive to small changes in geometry due to pivot flexibility and
thermoelastic pad deformations, among others.

Someya [32] presents a summary of design curves validated by experimental
identification of bearing coeflicients in a group of experimental facilities, most of them
very similar with two vibrators in two orthogonal directions for direct bearing housing
excitation, Design curves are presented for 77JBs as well as for other (rigid wall) fluid
film bearings of different geometry, and under different load and operating conditions. In
general, 7P./Bs with larger dimensions and larger loads present larger differences with
predictions than smaller bearings.

Ha and Yang [33] also utilize the same test rig configuration to study the dependence
of force coefficients of a 5 pad tilting pad bearing on the frequency of excitation. The
authors identify all 8 stiffness and damping coefficients from the test bearing. The results
of the identification show that rotordynamic force coefficients are less frequency-
dependent than predicted. Pettinato et al. [34] identify non-synchronous force coefficients
of a highly preloaded, 3 lobe bearing using sinusoidal excitations applied in two
directions. The experiments confirm also in this case that the force coefficients of ngid
bearings are not in general a strong function of the excitation frequency.

The test rig configurations described above 1s appropriate for model validation, but
falls short to simulate actual operating conditions. Recently, Pettinato and De Choudhury
[35] utilize an imbalanced (horizontal) rotor supported on a tilting pad bearing in one of
its ends to identify stiffness and damping coefficients in the main directions. The test
rotor is idealized as a point mass rotor, and the stiffness coeflicients are identified from
static response measurements. Imbalance response measurements serve only to identify
damping coefficients as a function of the rotor speed. The test results indicate that
identified force coefiicients correlate well with predictions from an elastohydrodynamic
model that considers most of the TF./Bs variables such as pad and pivot flexibility, etc.

This chapter reviews several experimental techniques currently available for
identification of bearing parameters. The main difference among them is the type of
excitation force applied to the test element. Some methods are more appealing for field
application, namely harmonic excitations from imbalance as well as impact excitations.
These methods are the easiest methods to implement and involving the least experimental
effort. These procedures are also suited for identification of speed dependent and
frequency dependent force coefficients, typical of the modern bearing designs for
enhanced control of rotor vibration, such as the combined SFD-FPJE support.

Presently, the objectives are to develop and test methods for identification of the
combined support SFD-FPJE and to demonstrate their potential for application in
industry. The application of the identification methods is carried out in a test rig featuring
a rigid rotor supported by a pair of SFO-FPJBs. The following chapter describes the
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experimental facilities and experimental procedures for identification of bearings
dynamic force coefficients.




CHAPTER 3

DESCRIPTION OF EXPERIMENTAL FACILITIES AND TEST PROCEDURES

3.1 INTRODUCTION

This section presents the test facilities and particular measurement procedures
developed for testing novel bearing configurations and to experimentally verify the
proposed methods for bearing parameter identification. The test rigs described are located
in the Turbomachinery Laboratory of Texas A&M University.

Figure 1 shows a fully operational test rig for study of steady state and transient
response of a three disk rigid rotor supported on squeeze film dampers and hydrodynamic
bearings [36]. This rotor has the size and inertia properties similar to those found in small
atreraft gas turbines, and is part of an important experimental facility that closely
resembles actual dynamic operating conditions. Figure | includes the major dimensions
and rotor characteristics.

Currently, the test ng features the novel bearing configuration consisting of a flexible
pivot tilting pad journal bearing installed in series with a squeeze film damper of the
integral type. The damper soft centering spring determines the location of the critical
speeds while the squeeze film provides damping forces for vibration control. The tilting
pad bearing allows operation of the test rotor with small viscous drag and enhances
system stability, as compared to rigid fluid film bearings.

Figure 2 shows a second test rig recently installed in the iahommqj, and allowing
similar measurements of rotor response as the test nig described above. The rig features a
lighter test rotor that allows for thick disks to be installed in different configurations. The
test rig has a pair of identical two-lobe fluid film bearings supporting the rotor shaft and
eddy current sensors for measurements of imbalance response at the bearing locations.
The rotar disks have threaded holes for attachment of calibrated imbalance masses to
generate the dvnamic excitation. The small size of the test rig allows for quick ramping of
rotor speed and minimal experimental preparation effort.

3.2 DESCRIPTION OF TEST RIG FOR IDENTIFICATION OF EQUIVALENT
BEARING FORCE COEFFICIENTS

This section describes the experimental apparatus for parameter identification of the
combined support tilting pad bearing in series with an integral squeeze film damper. As
mentioned earlier, this support has many advantages over other types of bearings. It
shows small cross coupling force coefficients for increased rotor stability, reduced
stiffness for low force transmissibility and large tolerance to rotor imbalance. The

"The rig is a domation by the rotating equipment group at AMOCO Corp, and is gratefully acknowledged
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integral construction of both bearing elements considerably reduces the axial space
required and allows much simpler assembly procedure. Figure 3 shows a schematic of the
bearing support, and Table 1 presents its main dimensions and geometry characteristics.
This bearing configuration has equivalent bearing coefficients that are a function of both
the running speed and the frequency of excitation, and requires two different techniques
for parameter identification. As described in a later section, identification of frequency-
dependent coefficients is achieved by delivering impulse loads (impacts) to the rotor
while it spins. On the other hand, imbalance response measurements allow identification
of speed-dependent, synchronous force coefficients.

The test damper consists of two (outer and inner) rings connected with four pairs of
S-shaped structural springs machined with EDM process. A small clearance of 229
microns (—~ 9 mils) separates the two rings and forms the damper land where the lubricant
film creates the damping forces. The damper land is thus sectioned by the springs into
four pads with an arc extent of 52°, Lubricant enters the film lands through four radial
holes (1.6 mm in diameter) located around the damper outer ring, and a groove machined
on the outer face of the ring forms a plenum for lubricant supply once the damper seats in
its housing.

The damper inner ring (also called damper journal) accommodates the tilting pad
bearing and provides a lateral orifice for independent bearing lubricant supply. An inner
groove machined on the damper inner ring also forms a plenum from where the lubricant
enters the bearing radially at locations between the pads. The test bearing has four pads
(70° i extent) flexibly attached to an outer ring through integrally machined thin elastic
beams (pivots). The bearing material is steel with a soft matenal liner (babbitt) in the pad
inner surface. During the current experiments, the rotor weight (load) 1s directed between
pads to minimize cross-coupled forces [37].

The test nig used 15 the same experimental facility described in [36] for earlier
experiments on the imbalance response of the combined /§FD-FPJEB support. The rig
consists of a three disk rigid rotor supported on a pair of identical bearings housed in
bearing pedestals resting on a steel plate. This plate is attached to a concrete table isolated
from the laboratory floor by a bottom steel plate and elastomeric material. Figure 1
depicts the test rig and Figure 4 shows details of the test rotor and main dimensions
Table 2 presents a summary of the rotor inertia properties and geometry characteristics.
The drive end and middle disks have a diameter of 279 mum (11 in) and the free end disk
has a diameter of 229 mm (9 in). Each disk has 12 threaded holes where imbalance
masses are attached at 114 mm (4.5 in) radius in the large disks, and 95.3 mm (3.75 in)
radius in the small disk. Notice that imbalance masses are attached only for identification
of speed-dependent, synchronous force coefficients.

A DC motor (7.5 kW, 10 HP) drives the test rotor up to a top speed of 4,000 rpm for
the current experiments through a flexible coupling and an unidirectional drawn-cup
clutch. Rotor speed is maintained manually through a variable-voltage power supply.



The bearing pedestals are split elements with a machined groove to accommodate the
damper outer ring. Lubricant for the squeeze film dampers enters the pedestals from
lubricant ports located at one side of the pedestals, and for the journal bearings through
flexible connections attached to the damper outboard face. The pedestals have plexiglass
transparent covers in the outboard face that allow visual inspection of the bearing
elements, and custom-made hose seals on the inboard faces to prevent lubricant spill.

The lubrication system consists of a 150 It main reservoir and gear pump with lines
for independent supply to the damper and the journal bearing. Figure 2-12 shows a
diagram of the lubrication system with valves and instrumentation for the experiments.
An electric heater/cooler and automatic control keeps the lubricant to a predetermined
temperature. The lubricant for the squeeze film dampers goes directly to the bearing
pedestals and the lubricant to tilting pad bearings is directed through flexible hoses to the
damper journal form where it goes to the bearing. The lubricant returns to the main
reservorr through drain ducts machined in the bearing pedestals suctioned by an auxiliary
return pump.

For wdentification of frequency dependent force coefficients, an ad-hoc fixture
delivers impact loads to the rotor middle disk while the rotor spins. The impact force is
transmitted through a tandem arrangement of (four) miniature ball bearings whose axis 1s
aligned with the rotor main axis, as shown in Figure 5. A medium-hardness rubber
hammer impacts an aluminum rod which slides in a bronze guide supported on a metallic
structure attached to the test rig base plate. A coil spring returns the rod assembly to the
initial position and an elastomeric material over-dampens the assembly motion. The
aluminum rod transmits the load through a calibrated load cell that measures the total
applied load to the rotor. The opposite end of the load cell features a special yoke
mechanism upon which the miniature bearings are installed, In all experiments, special
care is taken to ensure that the axis of the impact mechanism is always aligned in the
corresponding radial direction (x,)) and perpendicular to the rotor axis of rotation. The
resting position of the ball bearings is no more than 0.5 mm from the rotor disk surface to
minimize inertia effects and undesirable signal noise arising from bouncing after the
shock. After installation of the impact delivery fixture on the test rig, a detailed
calibration of all mechanical components and the instrumentation followed.

The rig instrumentation consists of two pairs of eddy current transducers located in
the inboard side of the bearing housings that measure the rotor vibration in the two
orthogonal directions (x,y) resulting from the impact or calibrated imbalances. An analog
conditioner removes the DC component from the sensor signals and amplifies rotor
displacements for display in oscilloscopes and for the acquisition system. An optical
tachometer provides a reference signal to the acquisition system for further signal
filtering and to a digital display of rotor speed. A pair of piezoelectric load cells also
provides time signals of the applied load to the rotor as described before. Table 3
summarizes the instrumentation sensors and the corresponding sensitivities. Additionally,
K-type thermocouples and displays indicate the lubricant temperature in the tank and at
the exits of the bearing elements. Turbine type flow meters measure the lubricant flow
rate to the damper and bearing components.
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3.3. DESCRIPTION OF TEST RIG FOR IDENTIFICATION OF SYNCHRONOUS
FORCE COEFFICIENTS FROM IMBALANCE RESPONSE MEASUREMENTS

The second test rig used for identification of synchronous bearing coefficients from
imbalance response measurements consists mainly of a two-disk steel rotor supported on
a pair of two-lobe rigid journal bearings, as shown in Figure 2. Aluminum housings
accommodate the test bearings and are bolted to a 50,4 mm (2 in) thick aluminum table
A 0.74 KW (1 HP), DC motor provides power to the shaft through a multiplier belt and
pulley mechanism, and is able to drive the rotor up to 8,000 rpm. An electronic controller
built-in to the rig allows for speed and torque control. A hinged plate covering the test
rotor and bearing housings provides safety during the rig operation. The rig is bolted to a
steel plate laying on padding material for isolation from the laboratory floor.

The test elements are identical, two-lobe, lightly preloaded, fluid film bearings and
are split horizontally, as shown in Figure 6. The bearing back material is bronze and the
liner material in contact with the shafl 1s soft babbitt metal. The free end bearing features
a pair of thrust collars integral to the radial bearing. Close examination of the bearing
surfaces reveals that the bearings have uneven wear around the inner diameter from
previous experiments in which the bearings operated with pressurized air as the working
fluid, Wear makes 1t difficult to precisely determine the oniginal preload of the bearing
lobes, and a small nominal value of 0.05 dimensionless preload is used in the
calculations. Table 4 summarizes the bearing geometry and operating clearance. The
bearings recelve the lubricant from the housings through rectangular slots machined at
the partition line of the bronze metal section. The slots end at the lobes on either side of
the bearings where the fluid forms a recess for appropriate land lubricant supply.

The test rotor consists of a shaft, 25.4 mm (1.0 in) of main diameter and 640 mm
(25.2 in) long, with a bearing span of 532 mm (20,95 in), as shown in Figure 7. The shaft
has three annular inserts mounted along the shaft within the bearing span. Massive disks
can be fitted onto the annular inserts rendering different rotor configurations. For the
experiments presented here, the rotor features two disks attached to the shaft, 280 mm
(11.0in) apart from each other and centered in the bearing span. The shaft has rectified
surfaces at the bearing locations and a notched groove at one end where a flexible
coupling drives the shaft. Table 5 summarizes the rotor main dimensions and measured
inertia properties

The rotor disks are made of steel with a diameter of 165 mm (6,50 in), Each disk has
an axial length of 31.9 mm (1.26 in) and weighs 3.86 kg (8.5 lbs). There are 24 equally
spaced threaded holes in each disk for attachment of imbalance weights at a radius of
699 mm {2.75 in). The disks are attached to the shaft by means of clamping through-
bolts and semi-circular lateral plates. The shaft (press-fitted) annular inserts provide
support for the removable disks and locate them axally.



The bearing housings are split in the honizontal direction at the bearing centerline, and
have a circumferential groove for radial oil delivery to the bearings. Split lateral covers
made of aluminum provide an enclosure to avoid spills and incorporate grooves for
custom stopper seals. The lubricant enters the bearings radially through slots in the
partition across the horizontal direction, passes through the film lands; then falls to the
bottom of the bearing housings to finally return to the main tank by gravity through the
return ducts.

The lubrication system consists of a 25-It (6.6 gal) oil tank, a submerged gear pump,
pressure control valves and ducts. The o1l tank is built integral with the test rig and is
located at its lowest level. The gear pump delivers the lubricant (ISO VG 10 turbine oil)
to the bearing housings at a supply pressure of 60 kPa (10 psig). Rigid pipelines conduct
the lubricant to the bearing pedestals and a pressure gauge indicates the main inlet
pressure. Lubricant temperature in the tank is measured with a handheld thermometer and
recorded at the beginning and at the end of each test.

Measurements of the test rotor displacements are taken with two pairs of eddy current
sensors located very close to the bearing locations. The bearing housings have threaded
holes for installation of the sensors in two orthogonal directions, and located at 45° away
from the vertical line, as shown in Figure 8. An additional eddy-current sensor aligned in
the vertical direction and facing the rotor shaft (downwards) provides a reference signal
for measurement of the phase angle and rotor speed.

Vibration signals from the eddy current sensors connect directly into a commercial
data acquisition system for industrial machinery monitoring and diagnostic (Bently
Nevada, Adre DAQ system). A personal computer hosts the acquisition system and runs
the signal processing and analysis software. A two-channel dynamic signal analyzer
displays the frequency content of the selected signals, and an analog oscilloscope
displays the unfiltered rotor orbit in real time, The acquisition system displays the rotor
speed in the computer monitor and records it for further processing.

3.4 EXPERIMENTAL PROCEDURES FOR IMPACT RESPONSE MEASUREMENTS

As mentioned earlier, the identification method developed for frequency-dependent
force coefficients is based on measurements of the rotor-bearing system response to
impulse load excitations. This section describes the special instrumentation and
experimental procedures for data acquisition and processing of the recorded signals.

The data acquisition system consists of a Zonic 7000 series, high-speed acquisition
unit interfaced with a Pentium 11 personal computer through an Ethernet board, as shown
in Figure 9 The system configuration includes 6 channels [or simultaneous acquisition of
four displacement signals (two signals at each axial plane), one force signal and the
tachometer reference signal. Appendix A lists the acquisition routine programmed for the
experiments and including user-defined inputs for adequate file management. The
program records six time varying signals and stores them in ASCII files. The main
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advantage of the acquisition system is that it allows simultaneous sampling with a high
time-resolution rate required for capturing the time history of the applied load. The
program includes a pre-triggering function to ensure that the impact force signal is
completely acquired within the time record. When the triggering condition is met
(increasing voltage level at the load cell channel), the system begins acquisition of all six
signals including the reference pick-up, which is essential to the filtering process, as
explained below.

3.4.1 Development of a digital filter for shaft runout subtraction

Parameter identification of bearing coefficients at frequencies different from the
running speed (synchronous) require the time signal of response to impact loads to be
free from shafi runout. This section describes the development of the required filter in the
time domain from experimental measurements of rotor response of the test rig featuring
the series support [SFD-FFJB, but the procedure is applicable to any rotor and bearing
configuration. The most challenging task when subtracting the shaft runout and remnant
imbalance vibration signature is to adequately time the recorded signal with such
signature. Recall that since the remnant rotor imbalance creates a synchronous excitation
force, shaft runout and remnant imbalance response are indistinguishable from each
other. However, this is not a limitation because the filter subtracts the two effects at once.

The filtering procedure is as follows. First, identify the experimental period of rotor
speed using the tachometer signal. Figure 10 shows a typical tachometer signal, A
programmed algorithm identifies the period of time elapsed between two consecutive
pulses from the tachometer signal. Notice that depending on the rotor speed, the number
of cycles in the time register varies and is usually not an entire number.

Once the experimental period of the rotor speed is identified and the number of
samples per period is known, the next step is to create a runout vector for each channel
(x7, x5 ¥1, ¥2). The acquisition system must have a pre-trigger time long enough so as to
record a full perniod of pseudo-vibration (shaft runout) before the impact. Figures 11 and
12 show raw displacement signals as recorded by the data acquisition system for an
impact in the horizontal (x) direction and the identified runout signals prior to the impact.
Runout signatures are also identified at the end of the time record after the dynamic
motion due to the impact has already died out.

Mext, the vibration signatures are subtracted from the time register of the overall
vibration point by point. The subtraction procedure runs forward in time for the vibration
signatures identified at the beginning of the register, and backward in time for the
signatures recorded at the end. This procedure continues until the subtractions meet at the
middle of the register. The final time signal is smooth at the point of encounter at the
center of the register because the rotor speed remains essentially constant and there are
many points sampled in each rotor revolution (i.e. there is little error accumulated during
the subtraction).
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Figure 13 shows the filtered signals in the direction of the impact and in the
orthogonal direction. The initial straight line is the result of the perfect subtraction
(filtering) at the beginning of the register. Notice that the signal in the orthogonal
direction of impact is very small and the filter does only a regular job due to the
accumulation of error along the time register.

Figure 14 shows a comparison between the signals before and after the filtering.
Notice the large levels of rotor vibration which include shaft runout and remnant
imbalance (stationary vibration at the running speed),

The filtered signal is now suitable for transformation into the frequency domain using
the discrete fast Fourier transform algorithm. Figure 15 shows the resultant spectra at
each measurement location, along with the spectrum from the applied load in the interval
between 0-200 Hz. Notice that this is only a small fraction of the total spectrum whose
maximum frequency is 6.4 kHz, However, most of the frequencies of interest are only
within a small fraction of this band (running speed: 2.000 cpm = 33.3 Hz). Note that the
scales in the same direction of impact are different from the scales for the crossed-
coupled direction. Notice that, as expected, the frequency spectra of the signals in the
direction of impact (horizontal) is much smoother than the spectra in the vertical
direction, which are only due to the cross-coupled forces (small in this case). Also, notice
that the main peak occurs at the rotor natural frequencies (52-56 Hz). The running speed
is also present as a small protuberance at 33 Hz. An averaging procedure in the frequency
domain of consecutive impacts should smoothen the experimental spectra if the system
behaves linearly.

3.4.2 Comparison of transient vibration signal filtering in time and frequency
domains

This section shows a comparison between the filter presented in the section above and
a filter implementation in the frequency domain. The basic idea for the new filter is Lo
record a runout time signal of the same length as the original time register presented in
the previous section, and then obfain the FFT of this signal. The runout time signal is
generated from the identified period of rotor speed using the portion of the original time
register prior to the impact. Figure 16 shows a typical time record (overall vibration at x»
location) for an impact in the horizontal direction.

The impact begins at — 38 ms 1n the time register. This pre-trigger time is enough to
caplure at least one complete cycle of shaft runout. Figure 17 shows the identified period
of remnant vibration (runout). For the frequency domain filter, the vibration signature is
copied forward in time until completing a full time register (0.320 sec). Figure 18 shows
the corresponding synchronized vibration trace from shaft runout. The Fourier transform
of this signal can now be used for filtering by direct subtraction point by point in the
frequency domain from the FFT of the signal shown in Figure 16 (oniginal time record).

Figure 19 shows a comparison of the FFT of the vibration records for the original
signal, the ranout vibration signal and the filtered signal. Figure 20 shows the resultant
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filtered frequency spectrum in a different scale to better appreciate the effect of the
subtraction process. Notice the large synchronous component of the original signal at
33.3 Hz. Also, note that the filtered signal still shows a small peak at the running speed.

The filtered signal shown in Figure 20 coincides almost perfectly with the FFT of the
filtered signal in the time domain. Figure 21 compares the complex (real and imaginary)
spectra of the filtered signals in the time and frequency domains. There is virtually no
difference in the range between 0 and 200 Hz. However, Figure 22 reveals only a small
difference at the synchronous frequency between the amplitudes of the spectra for the
two filter methods. The spectrum of the frequency-filtered signal shows a slightly smaller
peak than the spectrum of the signal treated with the time-based filter.

Rotor vibration in directions orthogonal to the impact shows a nearly identical
spectrum derived from both filters, as in the cases presented above. Naticeable
differences occur only at frequencies higher than the range of interest (200 Hz).

The frequency-filtered data can be converted into time domain for comparison with
the time-filtered time record. Figure 23 shows the recovered time signal for vibration in
the direction of impact and in an orthogonal direction. Vibration signals in the direction
of the impact show virtually no difference between the two methods. However, the
signals in the direction orthogonal to the impact do show differences, in particular at the
end of the record. This noise at the end of the record is largely of high-frequency content,
and unlikely to be true vibration. In this case, the time trace compensated in the time
domain shows much less disruption at the end of the record because of the way the
subtraction 1s performed (runout subtracted from left to right and from right to left).

The observed differences are not as important for the parameter identification in the
frequency domain because the useful frequency range for parameter identification 15 well
below the observed noise frequencies. Alternatively, another method may record two
different time traces of each channel, one containing the impact and a second one
containing the shaft runout immediately before or after the impact. The same procedure
described above would then be applied to the recorded signals. The main difficulty of this
method 15 to synchronize the acquisition of the two time records in order to carry out the
subtraction (complex numbers) in the frequency domain Failure to synchronize the two
signals renders erroneous results because the reference for the phase angle in the complex
spectrum is not the same for the two traces. The presented methodology, on the other
hand, requires only one time trace with a pre-trigger time long enough to capture a full
period of shaft runout prior to the impact and then estimates the rest of the record, thus
simplifying the experimental and programming effort.

3.5 EXPERIMENTAL PROCEDURES FOR IMBALANCE RESPONSE
MEASUREMENTS

Imbalance response measurements are useful for identification of synchronous force
coefficients, as described in Chapter 5. The first procedure prior to conduct imbalance




response measurements is rotor balancing. Rotor balancing is important because it
provides a baseline for measurement of rotor response to calibrated imbalance masses.
This is particularly important for sensitive systems because large orbital motions of the
rotor at the bearings might compromise the estimation of linearized force coefficients.
For the test rotors presented above, a standard influence coefficient method for two-plane
balancing substantially reduces the original rotor synchronous response to satisfactory
small levels of vibration.

Imbalance response tests consist of taking the rotor to a top speed and then coasting it
down by shutting the power off from the driving motor. Measurements of rotor response
are taken while the rotor coasts downs freely at a slow deceleration rate. The measured
synchronous vibration vector (amplitude and phase, V) at each speed is the sum of the
remnant imbalance vector (V,), the dynamic rotor response to the calibrated imbalance
(V) and the shaft runout vector (also called slow-roll vector, V,). Thus, at each rotor
speed (£2):

V=V, -V,-V, 4)

Equation (4) renders the desired dynamic response to use in the identification
procedure. Shaft runout is represented as a constant vector (V) that acts in all tests and
for the entire speed range. If the remnant imbalance vector is not slow-roll compensated

from shaft runout, (this is, if V, =V, +V, ) then the true dynamic response to calibrated
imbalance is simply

V=V -V (5)

Ll e

Equation (5) does not require apriori knowledge of the slow roll vector, and is the
form used in the compensated responses implemented for the identification of
synchronous force coefficients.



CHAPTER 4
IDENTIFICATION OF FREQUENCY-DEPENDENT FORCE COEFFICIENTS

4.1 INTRODUCTION

As described in Chapter 2, a combined bearing support consisting of squeeze film
dampers and tilting pad bearings (SFD-TPJB) shows frequency-dependent force
coefficients resulting from its series impedance action. Incidentally, tilting pad bearings
possess linearized rotordynamic force coefficients that are dependent upon the frequency
of rotor vibration [38]. Thus, suitable procedures for parameter identification should
render synchronous and non-synchronous bearing coefficients.

Non-synchronous rotordynamic coefficients are of paramount importance for rotor-
bearing stability studies when asynchronous sources of excitation are known to be present
in the system. Parsell et al. [39] demonstrate that asynchronous rotordynamic force
coefficients of TP./HBs remain nearly constant at any frequency ratio (frequency/running
speed) for the case of heavily preloaded bearings. Unpreloaded bearings, however,
present non-synchronous coefficients that can be substantially different from
synchronous ones. The general trend shows that stiffness coefticients slightly decrease as
the frequency of excitation increases. On the other hand, bearing damping coefficienis
slightly increase as the excitation frequency increases. Ha and Yang [33] present
experimental force coefficients of a null-preload, five pad TPJB using steady sinusoidal
excitations from hydraulic shakers. Ha and Yang find that the frequency of excitation has
little effect on the rotordynamic force coefficients for the test bearing considered.
Stiftness coefficients slightly decrease as the excitation frequency ratio increases while
damping coefficients increase, according to the predictions in [39].

Non-synchronous bearing stiffness and damping coefficients at any rotor speed can
also be identified from the rotor response to transient excitations, say due to impacts for
example. This method has the advantage of exciting a whole range of frequencies in a
single experiment, thus considerably shortening the experimentation effort as compared
with steady state sinusoidal excitations. Additionally, impact excitations have the
potential for in-situ identification of frequency-dependent bearing force coefficients.

4.2 IDENTIFICATION METHOD FOR FREQUENCY DEPENDENT FORCE
COEFFICIENTS

The dynamics of the test rotor supported on series [SFD-FPJE described in Chapter 3
are satisfactorily modeled by a four-degree of freedom system where the cylindrical and
conical modes of vibration are excited in the frequency range of interest (0-10,000 cpm)
The recorded critical speeds of the rotor-bearing system [36] equal 2,900 cpm and 6,100
cpm, corresponding to cylindrical and conical rotor motions, respectively. The first rotor
bending mode is estimated at 17,000 cpm from a transfer matrix model, well above the
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maximum frequency of interest. Figure 24 shows the test rotor and coordinate system
used in the analysis presented below.

The derivation of the identification procedure begins with the Equations of motion of
the rotor-bearing system establishing the conservation of linear and angular momentum
for a perfectly balanced rotor:

Mg+Cq+2Gq+Kq=E(t) (6)

where M, C, and K are the (4x4) inertia, damping and stiffness matrices and G is the
gyroscopic moments matrix given below. q is a vector containing the lateral response of
the rotor at the bearing locations (/,2) and in two orthogonal directions (x, ), £2is the
rotor speed and 7 is time. E(%) is the transient rotor excitation (impact load) given by the
generalized vector:

[ XE.
£ ’ Ff.t + I:Z‘x e
i LAE \dF, +d,F .. ?
= e [ e L @
E" dr | |&F,+d:iF, +..
where F) (1), F, ... F,,F,, . arethe excitation forces (impacts) applied at the i-th

location along the rotor and at a distance ¢, from the rotor center of mass. The simplest
form of the excitation vector corresponds to the case in which only one impact is applied
to the rotor in one direction. If the load is delivered at the center of gravity (ie. d; = d> =
.= (), then the excitation vector has only one row entry different from zero,

The mass (M), damping (C), stiffness (K) and gyroscopic (G) matrices are given by:
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where M is the rotor mass, [y and /- are the rotor transverse and polar inertia respectively,
[}z are the axial distances from the rotor c.g. to each bearing location, L is the bearing
span. ({&, Clik —x,)1 2 are the bearing support damping and stiffness coefficients at the two
bearing locations. Notice that the bearing stiffness and damping force coefficients are
rotor speed and frequency dependent. Thus the matrices are dependent on these variables,
Le. C, K =/{Q2 a.

Finally, the response vector (q) in Equation (6) is given as:

qQ={x;. %, 9., 1" (9
Equation (9) is written in the frequency domain as

Mol w)+Cqlw)+2Gqfw)+ Kqlw)=Efa) (10)

At any given frequency @ the excitation vector can be written as E(w )=E (w)e’™

( j=~/—1) and the response vector is then qf @ )=q,e’™ . Thus, at a selected frequency

@, Equation (10) reduces to

—w'Mq, + joXq,+ jwCq, +Kq,=E_ (11)

Do note that Equation (11) holds at any constant rotor speed (2 and at any particular
frequency @ At the rotor speed (2 the steady state response is of the form q=q_ '™
with the components of q, being complex numbers. This response at =2 defines the
synchronous rotor response solely due to the impact excitation. In practice, it is difficult
to subtract the remnant unbalance and synchronous noise components (due say to shaft
eccentricity). An adequate data acquisition procedure must then filter out these
components for adequate identification ol synchronous force coefficients, as described in
Chapter 3.

The bearing support reaction forces in the left hand side of Equation (11) can be
expressed as the product of a (4x16) response matrix Q, composed of linear combinations

of the response vector (q,), and a vector of system (synchronous stiffness and damping)
parameters P (16x1) as:

QP=jwCq_+Kgq, (12)

where:
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The symbol 0 in Equation (13) represents a (1x4) zero vector. Equation (11) is
rewritlen as

QP=E +[w' M- jwG]q, (15)

Separating real and imaginary parts, a system of 8 (real) algebraic linear Equations
can be written to identify 16 (frequency dependent) rotordynamic force coefficients
representing the two anisotropic support bearings. A second set (5) of excitations
generating linearly independent responses then completes the required number of
Equations to solve for the parameters vector P, i.e.

P=Q 'E,; (16)
=@ Re[Q]| = [En]| = [RelE ]
h s _.4 _' = Al - _.{ o 3
where Q) [QH Q mfQ] |’ E; [Em . S me B, ) (17a)
and E.=E +[o" M- jo2Glq, (17b)

The conditions for the linear independence of the transient responses are easily
inferred from the solution of Equation (11) for q, as;

q,=H'(2,0)E, (18)
where H{ow)=—o M+ joiXs + joC+K (19)

Two linearly independent excitations E,; and E.5 thus generate linearly independent
responses quq and qog., respectively, The conditions for linearly independent excitations
can be stated from the defimition of the excitation vector in Equation (7), i.e.;
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Recall that F| (1) represent impact loads applied in directions x,y on the rotor

Consider the case of a single impact applied at a time. The excitation in test £ is linearly
independent from the one applied in test 4 by simply shifting the excitation location
along the rotor, even if the impact is applied in the same direction, i.c,

Fy, F.
B, 0)=| | g, =] B (20)
' 0 # 0

0 0

E. is linearly independent from Ey if d, = d, Applying impacts first in one direction
and then in an orthogonal direction also vields linearly independent excitation vectors,
even if the axial location of the impacts is the same:

Fie
A J:'.T."‘T::ljr = u ; .
E(1)=" " Eslt)7 (21)
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Clearly, E4 is linearly independent from Eg in (21). Impact loads may be applied at
the rotor center of gravity (d; = () or away from it. Applying the load at the rotor center
of mass is obviously difficult to accomplish in a real machine, however note that this
condition works at advantage for experimental identification in the laboratory.

Assuming the bearings coefficients to be identical on both sides of the rotor reduces
the number of unknowns to eight, and the identification becomes possible with only one
impact excitation’. In all cases, several consecutive impacts at the same rotor speed
provide redundant data for error minimization

Equation (16) is in a suitable form for programming the identification method.
However, the use of bearing impedances (£ = K + jaw() considerably simplifies the
programming effort and renders simpler 1dentification Equations. Redefine the parameter
vector P in complex form as:

* This condition assumes exactly the same static load, identical bearing geometry and lubricant operating
conditions.



P=[K  +joC K, +joC K, +joC, K_, G e D
ﬁ:_!-'l'.l' + -"rm {':'_I-.'Ef ¥ K e ..jﬂlr' '_l..‘\’:" 'K' + --'i‘-(u{'13'_;.|' J K;}': 25 .;ax..:l.-r: ]T Fxl {EEJ
= [Z.L':.f d Z:_r?‘ Zz:r? ¥ Z.r_u;‘ '2".:1.‘1J Z_nr:’ s ZJ.:I.'I-' Z;.;uz]r

pz2 el

The system response matrix Q can then be easily decomposed into two submatrices

as:
] T
X qr.l qn
Q B 23
{ﬂJIJm " {—QIIJM -

The superindeces x and y in Equation (4.18) are meaningful in the sense that these
two matrices define the identification Equations for the bearing coefficients that affect the
forces in the corresponding direction, as follows. Divide the parameter vector P into:

P:'_[Z.ur-gw:-zay_r-zmyz 2 ’ I”'=[Z_m,,ZJ“__Z;T',,ZH_:,]T (24)

Then, the identification Equations in complex form can easily be derived from the
balance of forces and moments:

0 P =B, +{o* M- jonGlq, | (254)
@’ P =[E, +[o’M - ju2Glq. |’ (25b)

Two linearly independent tests (4, B) are still required to form the response matrices
and perform the identification from the two sets of Equations as:

P

Pr=Qr B (26a)
P?zﬁ}' ‘IETI.‘ {Eﬁlb}
where Q= Qs , Q7= Q-fj o Bet= Ey g Ef'-.'t (27)
Q% Q's 5 I
and
E =B, +[0'M- jwGly, | (28a)
E”=[E, +[0°M - jo2Glq,| (28b)

The 1dentification Equations (26) are two sets of four Equations with four unknown
impedances. Although the mathematical development is lengthier. the programming of
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Equations (26) 1s much simpler with current mathematical software able to handle
inversion operations with complex matrices.

Finally, if measurements of the rotor response are not taken at the bearing locations /;
and /5, a simple geometrical transformation using the assumption of rigid rotor motion
allows the use of imbalance responses Xp5, Xpz al locations s; and s> away from the rotor
center of gravity (see Figure 24):

=11 (I / ("r:‘l's_:.r'l ('5"f_*lrff] Lo
5| (s, 150\ (sa-L) (L+s,) | . (29)

43 NUMERICAL EXPERIMENTS AND ASSESSMENT OF METHOD
ROBUSTNESS TO NOISE

As demonstrated in the previous section, rotor response to impact excitations allows
identification of frequency-dependent bearing rotordynamic coefficients at a fixed rotor
speed. This section presents a numerical study with predictions obtained for the test rotor
with the characteristics listed in Table 2. This rotor is of interest for the present study
because it is supported on fluid film bearing that have frequency-dependent force
coefticients, For the first part of this numerical study, the rotordynamic coefficients are
held constant in the frequency range from 2 to 200 Hz (120-12,000 cpm) to cover an
operating range of speeds (0-10,000 rpm). The choice of constant force coefficients is
useful to assess the accuracy and robustness of the identification procedure. The rotor
speed is set to 1,000 rpm (17 Hz) to demonstrate that the identification method provides
good results for synchronous force coefficients even at low rotor speeds.

Figure 25 shows the time trace of a typical impact applied to the test rotor in the (x)
horizontal direction, The particular impact shown has a duration of 2.0 ms (typical of
medium-hardness rubber impact tips). One impact along the vertical direction and one
impact along the horizontal direction are applied to the test rotor at the center of gravity.
The impacts have also different magnitudes, 980 N in the (x) direction and 890 N in the
(v) direction. These impacts represent the simplest (linearly independent) combination
applied at a single axial location in the horizontal and vertical directions, The delivered
impact renders a force to rotor weight ratio of ~ 2.0 in time. Figure 26 shows the
frequency domain representation of the impact shown in Figure 4-2. The impact has a
frequency spectrum which is usually broader than the frequency range of physical
interest. Figure 26 shows a “zoom” of the excitation impact spectrum in the low
frequency range (0-230 Hz) and which remains with nearly constant amplitude. The
amplitude of the excitation is 3.8 N at 0 Hz, and 2.68 N at the cut-off frequency of 230
Hz. This amplitude represents the 70,7% of the amplitude at 0 Hz. Shorter impact times
(harder tips), raise the cut-off frequency above 230 Hz but require larger load magnitudes
to deliver similar force amplitudes in the frequency domain.

Table 6 presents the rotordynamic bearing force coefficients used to generate the
numerical system response (depicted below) for the current study. Notice that the
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coefficients are constant throughout the frequency range to better illustrate the goodness
of the identification procedure. The magnitude of the bearing coefficients represents
realistic values predicted for the tilting pad journal bearing in series with the squeeze film
damper described in Chapter 3.

Table 7 shows the resulting (synchronous) damped natural frequencies and damping
ratios of the rotor-bearing system as calculated from an eigenanalysis considering
constant bearing stiffness and damping force coefficients. Gyroscopic effects are
included in the analysis. Notice that the two rigid-body modes (cylindrical and conical) of
vibration fall within the rotor operating speed range. Also note that the conical motions
(second natural frequency) are more damped than the cylindrical modes.

Figure 27 shows the numerical responses (frequency response functions) at the
bearing locations and for the two impacts delivered in both directions. Note that impacts
in the (x) horizontal direction produce larger motions in this direction with vertical
motions only due to the cross-coupled forces. The same holds for the vertical direction
(v)- In this example, the impacts excite only one natural frequency (translation mode)
since the impacts are delivered at the rotor center of gravity. The difference in amplitude
between the peaks reflects that the two bearings in the drive and free ends have different
force coefficients (say due to uneven distribution of rotor load). This is usually the case in
real turbomachinery

The phase angles of the rotor response shown in Figure 28 are necessary for
parameter identification since the procedure uses always the complex magnitude of the
rotor response Fourter transform. Notice that the phase angle of rotor response is only
meaningful when referred to the phase angle of the excitation force (relative angle of
response). The phase angle of response in the orthogonal direction to the impact presents
large shifts even though the impact barely excites the conical mode in the main
directions. Thus, it is expected that the phase angle will have a strong influence in the
identification of cross coupled force coefficients.

Finally, note that the effect of rotor speed on the response is null since the model
example assumes a perfectly balanced rotor, i.e. the dynamic response at the synchronous
speed is solely determined by the value of the synchronous coefficients and the
magnitude of the impact force. In practice, both remnant unbalance and shaft run-out
have a strong influence on the dynamic response at the running speed, and the filter
described in Chapter 3 1s necessary for adequate identification.

Figure 29 shows the bearing reaction forces and moments acting on and about the
rotor center of gravity (CG) and calculated using Equation (4.23) for the impact in the x
direction. The net force transmitted through the bearings is the sum of the forces
depicted in Figure 29 plus the forces at the bearing locations created by the moments
applied to the rotor CG. Thus, the load transmitted through each bearing depends on the
location of the rotor CG within the bearing span. At low frequencies, the bearing
transmitted dynamic force balances the impact load (small inertial terms). Bearing forces
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peak at the natural frequency because the amplitudes of motion are largest, and then
decrease steadily towards zero at higher frequencies (smallest transmissibility).

Before carrying out the identification of bearing parameters, it is convenient to
calculate the condition number of the response matrix O presented in Equation (4.21).
The condition number (CN), defined as the product of the euclidian norm of the matrices
O and O, provides a measure of the sensitivity of the linear system of Equations
(Equations 26) to variations in the elements of the response matrix, say due to noise or
uncertainty in the measurements [40]. Condition numbers elose to 1 indicate that the
matrix 1 robust and easily invertible. On the other hand, CNs grow rapidly for ill-
conditioned matrices. The condition number gives also the ratio between the largest and
smallest singular values of matrix O _ If this ratio of singular values is so large that the
smallest value can be regarded as zero, then the rank of the matrix is smaller than the
dimension of its column space and thus the matrix is ill-conditioned and direct inversion
15 not possible.

Recall that Equation (26) is solved at each frequency considered, and thus a system
of equations results. The response matrix changes as a function of frequency and so does
the condition number. Figure 30 shows the condition number of the two systems of
Equations in (26) as a function of the frequency of excitation. The CN remains almost
constant through the frequency range, with a small peak at the resonance frequency,
indicating that the method is more sensitive to small changes of response at this
frequency. The value of the condition number remains around 10 for the rest of the
frequencies, but at this time it is still not possible to declare the robustness of the matrix.
A numerical example shown later allows a better appreciation on this result when the
predicted rotor response used in the identification is contaminated by random noise

Also, in order to better appreciate the advantages of the more elaborated
construction of matrices in Equations (26), consider the condition number of the response
matrix from Equation (16) for the same mechanical system. Figure 31 shows a
comparison between the condition numbers in such formulations, and clearly depicts that
the so-called “uni-directional” identification in Equation (26) is more robust than the
initial methodology. This fact alone should pay the additional effort, but considering that
the final programming is even simpler than required by the initial method, the second
method is clearly superior,

Figure 32 shows the identified force coefficients of the bearing elements at a
constant rotor speed of 1,000 rpm for the numerical example described above. All
coefficients are perfectly identified throughout the frequency range, with deviations from
the theoretical values due to numerical rounding. Excellent coefficient identification in
the low frequency range in Figure 32 is explained by noting that that the amplitudes of
response at low Irequencies in the main directions (Figure 27) are sufficiently large (as
opposed to the amplitudes of response at low speed for the case of unbalance excitations,
as shown later). Notice also that the amplitudes of vibration in the orthogonal direction to
the impacts are very small, and thus it is likely that these measurements will be affected
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by noise in real applications, resulting in poor identification of cross-coupled force
coefficients.

A second numerical example with the same test rotor but frequency-dependent
force coefficients aims to demonstrate the ability of the method to identify non-constant
force coefficients and also to show the effect of random noise from the measurements.
The frequency dependent force coefficients used to generate the predicted response
correspond to representative values of equivalent stiffness and damping coefficients for a
generic bearing, but different from the experimental support described in Chapter 3.
Table 8 lists the bearing coeflicients used for the current predictions of response.

Figure 33 depicts the identified and original bearing coefficients as function of the
frequency of excitation. Notice that the identification is also perfect in this case. with
minute differences only due to numerical rounding error. This example demonstrates the
ability of the method to identify bearing coefficients strongly dependent on the
frequency. The next example with the same bearing coefficients serves to test the
sensitivity of the identification to noise in the measurements of response.

Figure 34 shows the rotor response affected by (uniformly distributed) random
noise whose magnitude is 2 percent of the magnitude of the original vibration. Although
Figure 34 shows only the amplitude of response, the noise is added to the original signal
as a complex number and thus affects both amplitude and phase angle of the rotor
response. Figure 35 shows the identified bearing coefficients and the coefficients used to
generate the numerical response. Notice that the identified coefficients follow closely the
original coefficients, indicating that the identification is robust for the noise magnitudes
used in the example (2 percent of original signal in this case).

Finally, notice from Equations (28) that the rotor speed affects only the gyroscopic
moments. In practice, small variations in rotor speed between two consecutive impacts (x
and y directions) forming a complete experiment have negligible influence on the
measured response and parameter identification. Variations of speed during the data
acquisition are also negligible since this would require a large rotor (angular) acceleration
(a time record of - 0.3 seconds takes approximately 10 revolutions). Also in practice, the
synchronous component filtering contributes more to variations in the response than
actual changes in rotor speed

4.4 MEASUREMENTS OF TRANSIENT RESPONSE AND RESULTS OF BEARING
PARAMETER IDENTIFICATION

This section presents the measurements of applied force and rotor response, as well as
the identification of frequency-dependent stiffness and damping coefficients of the
combined [SFD-FPJB support described in Chapter 3. Identification of bearing
coefficients is performed at two rotor speeds, namely 2,000 and 4,000 rpm. Impacts are
delivered at the rotor middle disk and eddy current sensors at two axial locations measure



the rotor displacements. The identification Equations used in all tests are given by
Equation (24).

Notice that the test rotor is identical to the rotor used in the numerical experiment
presented earlier. Note also that orientation of the coordinate axes is determined by the
direction of rotation (around positive z direction). The final coordinate orientation
designates the free end bearing as location 1 and the drive end bearing as location 2.

The test procedure includes five repetitions of the impact excitation along each
direction (x,y, honizontal and vertical). An average process in the frequency domain is
performed to each group of measurements (x,y) after the runout filter is applied to each
recorded time response. The use of averaging assumes that the system response is linear
with respect to the applied load, an observation supported by the measurements. The
averaged frequency responses and forces are then used for identification of the bearing
coefficients at each frequency about the synchronous frequency of running speed.

Figure 36 shows typical impacts in the two orthogonal directions (x,y) in the time
domain performed on the rotor at 2,000 rpm. Notice that the fast acquisition rate
programmed is able to capture over 15 points of data during the impact, which renders a
remarkably good spectrum, the time resolution being 0.078 ms. Typical experimental
impact duration is about 1.2 ms, and the total time record taken is 032 sec, which
corresponds to 4096 samples.

Figure 37 shows the frequency spectrum (amplitude) of the impacts presented in
Figure 36. The highest frequency in the spectrum is 6,402 Hz, and the resolution is 3,12
Hz. Typical roll off lobes appear up to 3,000 Hz in the force spectrum, and then it
remains flat indicating the softness of the impact. However, the spectrum amplitude
remains essentially flat in the range between 0 to 200 Hz, spanning the range of
frequencies of interest. Keep in mind that the experiment consists of 10 impacts (5
impacts along each direction) that are averaged in the frequency domain, as shown in
Figure 38.These spectra are then used in the parameter identification. Notice that the
amplitude of the averaged impacts in Figure 38 is smaller than the amplitudes in Figure
4-14 due 1o the averaging, because there is large variability between the magnitude of the
impacts.

Figures 39 show time traces of the recorded rotor responses in the two axial planes
and at the two directions after filtering of the shaft runout for impacts in both directions
(x,y), as described in a previous section, Motions in the directions orthogonal to the
direction of impact are due only to the cross-coupled effects, which are known to be
small, Consequently, time traces along these directions present considerable amounts of
noise. The time traces in the main direction of impact show that the rotor vibration dies
out completely within the record time. Typical magnitudes of rotor motion (in time) after
the release of the load are in the order of 25 microns (~ 1 mil) O-pk for the first peak of
rotor vibration. The time decay of the peak amplitudes denotes viscous damping with
some amount of Coulomb damping, probably from the structural companents of the
bearing (i.e. S-shaped springs in the dampers, for example). Notice that the natural period



of motion of ~ 20 ms renders a ratio with respect to the impact duration in excess of 16
times; that is, the impact is considerably shorter than the first natural period of rotor
vibration,

The averaging process in the frequency domain of a series of five independent
impacts along each direction renders the response and load spectra to be used in the
identification procedure. Figure 40 shows the averaged spectra of rotor response at 2,000
and 4,000 rpm to the impact excitations. Notice that the synchronous peak 1s almost
pertectly filtered out in the direction of impact, but it is still present in the direction
orthogonal to the impact mainly due to the smallness of the response and the cross-
coupled coefficients, as discussed earlier.

Identification of the parameters is carried out in the frequency span between 0 and
200 Hz, but results are presented only for frequencies enclosing the synchronous and
natural frequencies (10 — 60 Hz), because these are the frequencies of most interest from
a practical point of view. Figure 41 shows the identified equivalent stiffness and damping
coefficients of the two bearings for the rotor spinning at 2,000 rpm (33.3 Hz). Stiffness
coefficients are very similar for the two bearings and in the two directions (x,y). The
vertical stiffness (y direction, K};) of the drive end bearing is slightly larger than the
vertical stiffness of the free end bearing throughout the frequency range, as a result of the
larger load supported by the bearing at the dnive end. Stiffness coefficients remain almost
constant up to a frequency of 40 Hz (~ 1.2 times the running speed frequency) and then
decrease sharply until 60 Hz, above the first system natural frequency. At this point, there
is a clear distinction between the stiffness of the drive end and free end bearings, the
drive end bearing presenting a larger stiffness (approximately 70 % larger than the free
end bearing). At this frequency of 60 Hz, the equivalent stiffness in the vertical and
horizontal directions are practically identical.

Figure 41 also shows the identified equivalent bearing damping coefficients in the
main directions (x,)). Experimental identification of damping coefficients at low
frequencies is not accurate due to the smallness of the damping forces developed (je(C
term in the Equations of motion). Damping coefficients about the synchronous frequency
do not present a definite trend, and are more sensitive to small variations in the response
than stiffness coefficients. The identified coefficients above 37 Hz take a definite trend
remaining almost constant until 33 Hz and then show a sharp increase, in particular the
damping coefficients of the free end bearing in the vertical direction (). In general,
bearing damping coefficients in the vertical direction are larger than damping coefficients
in the horizontal direction. This observation is consistent with the averaged amplitudes of
rotor response at the natural frequency (Figure 40).

San Andres and De Santiago [36] report system damping ratios (£ = C/2ma,)
estimated from measurements of the imbalance response of the same rotor-bearing
system at the first critical speed. The system damping ratios are equal to 0.141 in the
vertical direction and 0.173 in the horizontal direction. These values are in contrast with
the system damping ratios identified from the current impact tests (including damping
from the two bearings averaged in the range of frequencies tested) of 0.151 in the vertical



direction and 0.101 in the horizontal direction. Chapter 5 presents damping coefficients
estimated from imbalance response measurements that are in close agreement with the
damping coefficient reported before in [36]. Thus, it is apparent that the type of rotor
motion (steady state or transient vibration) largely influences the damping forces of the
bearing support.

The values of identified cross-coupled coefficients remain small for the entire range
of frequencies as shown in Figure 41. Specifically, cross-coupled damping coefficients
remain nearly zero with some perturbations at the running speed. Cross-coupled stiffness
coellicients remain bounded and their magnitude is about 10 to 20 % the magnitude of
the main stiffness coefficients. Furthermore, cross-coupled stiffness coefficients have the
same sign among them in the entire frequency range. The destabilizing effect appears
when the difference between the cross coupled coefficients (K., — K. is less than zero.
In the current case, the difference is small and the rotor bearing system remains stable for
the entire range of frequencies.

Predictions for the equivalent bearing support coefficients involve estimation of the
equivalent impedance from the damper and tilting pad bearing elements. The damper
structural stiffness and damping coefficients are assumed to remain constant in the range
of frequencies tested (see Table 9). Viscous damping coefficient calculations are based
on the solution of the Reynolds Equation for an isoviscous, incompressible and
1sothermal fluid film [41]. On the other hand, tilting pad bearing rotordynamic force
coefficients present dependence on the frequency of excitation, as shown in Table 9.
Appendix B shows the formulation for the equivalent impedance of the combined support
including the attachment mass, which in this case comprises the damper journal and
tilting pad bearing masses (~ 1.2 kg per bearing). The equivalent stiffness and damping
cocfficients of the combined support listed in Table 9 present only a modest dependency
on the frequency of rotor excitation. This effect on the equivalent stiffness is due to the
large amounts of predicted damping from the tilting pad bearing which increases the
equivalent stiffness of the series impedance as a linear function of the frequency.

Figure 42 shows a comparison between the predicted equivalent bearing force
coefficients and the experimentally estimated bearing parameters in a frequency range
enclosing the rotor speed and the first natural frequency, Notice the different scales used
in for the direct and cross-coupled stiffness coefficients, The experiments reveal that
predictions resemble very closely the stiffness coefficients and slightly over-predict
equivalent main damping coefficients. Cross coupled damping coefficients are also
closely predicted (nearly zero values), whereas cross coupled stiflness coeflicients are of
the same magnitude but of opposite sign as those derived experimentally.

The results obtained at the rotor speed of 2,000 rpm encourage the application of the
impact method at higher speeds. Figure 43 shows the identified equivalent bearing
coefficients at 4,000 rpm and compares them with predicted values. Notice that the
running speed frequency of 66 Hz (4,000 rpm) 15 located just above the first rotor natural
frequency (~ 60 Hz, average vertical and horizontal). Figure 43 confirms the excellent
results obtained by the identification method presented in this chapter.
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The sharp decrease in identified stiffness coefficients suggests that inertial effects
from other components not considered in the rotordynamic model are present in the
measured response. The identified stiffness presented in Figure 41 can be thought of as a
dynamic stiffness (Ka4.) given by:

K. =K-o'M (30)

avn app

where (K) is the bearing stiffness and (M) is an apparent mass from an unidentified
source, probably from the support or as a result of table resonances. In the current
experiments, the stiffness identified at low frequencies can be regarded as the true
beanng stiffness, and the stiffness identified at higher frequencies as the dynamic
stiffness, The apparent additional mass estimated from Equation (30) is 22.6 kg in the
horizontal direction and 24 0 kg in the vertical direction. This value is about 19 times
larger than the mass of the attachment between the damper and the hydrodynamic bearing
(i.e. damper journal and TPJB masses together, ~ 1.2 kg). Thus, the identified dynamic
stiffness calls for a more accurate model of the bearing support (table and other
components) that may be influencing the rotor response,

4.4.1 Effect of response averaging on parameter identification from impact response
measurenients

The purpose of this study is to confirm that increasing the number of impacts reduces
the variability of the identified parameters. It also aims to find (if that is the case) the
number of averages that leads to the smallest variability range. The issue anses from the
nature of the identification procedure, since it requires measurements of force and
displacements of hnearly independent impacts applied in two orthogonal directions (the
minimum requirement is along impact in one direction and another impact along the
orthogonal direction), If the rotor 1s impacted several times in both directions, there is an
increased number of possible combinations of paired responses for which the procedure
can identify the bearing coeflicients. For example, impact | in direction (x) can be
grouped with impact 3 in direction (), then impact 1 in direction (x) with impact 4 in
direction (y), and so on.

The first task is to group all recorded independent impacts in the two directions to
form impact pairs (x; 3}, -+ 5 The pairs formed this way are all independent
experiments themselves. There are currently 5 available impacts in each direction (x,
horizontal, y, vertical), rendering a total of 23 independent experiments (pairs). These
pairs of impacts form a pool of experimental data from which combinations can be used
for parameter identification alter being averaged. For example, the pair (x;, y;) can be
averaged with the pair (xz)4). For this study, only 16 pairs are considered (resulting from
4 impacts in the horizontal directions and 4 impacts in the vertical direction) to reduce the
number of possible combinations since taking all 25 combination is excessively time
consuming. For example, the averaging procedure can take sets of 2 pairs. There are a

total of 120 possible combinations of 2 pairs out from the original pool of 16 pairs. The
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number of possible combinations increases to 560 if taking sets of 3 pairs for averaging,
and continues growing for larger sets until the trend is reversed at the midpoint (sets of
8). Then, the number of possible combinations for averaging starts to decrease back to 16
combinations for sets of 15 pairs. There is only 1 combination if all 16 impact pairs are
taken in one set for averaging.

Since it is still not practical to perform the identification for all possible
combinations, a random sample of 16 sets is taken at each set size. For example, only 16
sets are used out of the 120 possible combinations of 2 pairs of impacts. Likewise, only
16 sets are used out of the 560 possible sets resulting of combining 3 pairs in one set
Hopefully, the random samples help to identify trends in the identified coefficients.

The identification procedure renders bearing coefficients as functions of the
frequency of excitation. Even though the impact may excite a broad spectrum, usually
there is a limited range of frequencies that are of interest (low frequencies, running speed
and first natural frequency of the rotor-bearing system). The range of identification
extends from ~ 20 Hz 1o 60 Hz for the current experiments at 2,000 rpm (33,3 Hz), and
the measured natural frequency is — 52 Hz. This section presents results of identification
at 25.0. 34 4 and 50.0 Hz.

Figure 44 shows the direct stiffness in the horizontal direction of bearing | (K;)
identified as a function of the number of pairs included in the averaging. The figure
includes the case in which all 16 pairs are used in the identification (single point to the
right of the horizontal scale). Figure 44 shows three graphs corresponding to the
identification frequencies (low, mid and high within the chosen range). Identification at
low frequencies makes evident the beneficial effect of increasing the number of pairs of
impacts in the averaging, In fact, Figure 44 shows that increasing the number of pairs in
the averaging beyond 9 pairs does little to improve the coefficient variability range. Thus,
three impacts in each direction may suffice for a satisfactory identification of bearing
coefficients.

Figure 44 also shows that the identified stiffness has larger variability at the
synchronous frequency (34.4 Hz) than at low frequencies due to spuricus rotor imbalance
effects. ldentification at higher frequencies shows that the scattering is almost
unperceivable and thus only a few impacts should be needed for identification. In
general, the value of stiffness rendered with the maximum available number of averages
agrees with the accumulated trend from smaller number of averages.

Figure 45 shows the identified direct damping coefficient (C.;) and cross-coupled
stiffness (K. ) 1dentified also as a function of the number of averages used in the
identification and at two excitation frequencies (low, 25 Hz, and mid ~ synchronous, 34
Hz). The bearing coefficients at the highest frequency considered (50 Hz) show a similar
trend to that of the main stiffness (K), i.e. almost no scattering with respect to the
number of averages used, thus not shown here for brevity.
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The damping coefficient (Cwy) shows large variability scattering at the two
frequencies, spread in a range of up to two times its mean value, However, the tendency
is clear. Increased number of averages does bring the identification process to converge
towards a mean value of damping coefficient. For the two frequencies shown, all 16
impacts are necessary to provide a reliable value of damping. The cross-coupled stiffness
coefficient (K,.;) also shown in Figure 45 has a similar trend to that of the direct damping
coefficient ((".ey), but with a less variability with respect to the number of averages. In
this case, 10 averages suffice to converge to a unique value.

4,4.2 Variabhility of identified parameters

The bearing parameters identified from impact excitations show variability depending
on the experimental pair of impacts considered. As mentioned above, there are onginally
25 independent experiments (pairs) available in the current study. Figures 46 show the
bearing coefficients identified using the 25 pairs and as a function of the excitation
frequency. Figure 46 includes vertical bars at each frequency point of identification
representing the 95% confidence interval estimated from the standard deviation and the
number of experiments considered.

Figure 46 (b) shows that maximum variability corresponds to the direct damping
coefficients as well as to the cross coupled force coeflicients in general, and close to the
rotor speed synchronous frequency. In some cases, the confidence interval is so broad
that coefficients might fall in a region of reversed sign. Notice that vanability of direct
damping coefficients at the natural frequency is small. This is particularly good because
this is the frequency at which adequate identification of damping is most needed.

In order to validate the identified average bearing parameters, the rigid rotor model of
Equation (6) is used to predict the rotor response at the locations of measurement (two
axial planes) under known experimental excitations. A correlation factor measures the
goodness of the predicted response when compared to the experimental records. The
experimental responses used for comparison are additional responses not included in the
averaged responses for bearing parameter identification, and thus constitute actual
independent experiments. Figure 47 shows the predicted and measured rotor response as
a result of experimental impacts applied in two orthogonal directions. Figure 47 also
includes predictions of response based on the analytically derived equivalent bearing
force coefficients given in Table 9. The predicted rotor displacements (from identified
parameters) in the directions of impact follow closely the experimental responses
(amplitude and phase, as shown in Figure 48), thus indicating that the identified
coefficients accurately represent the bearing support characteristics.

Table 10 shows the correlation factors found for the four responses (x;, x;, y; and y3)
in the main direction of impacts. Notice that all correlation factors are greater than 0.75.
Specifically, the predicted responses in the horizontal direction show correlation factors
above 0.90. Predicted rotor responses in the directions orthogonal to the impact have
correlation factors that are in general smaller than those responses predicted in the
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direction of impact. However, the amplitude of response is much smaller than in the main
directions, and the predicted responses are not at all too different from the measurements.
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CHAPTER 5

IDENTIFICATION OF SPEED-DEPENDENT DYNAMIC BEARING FORCE
COEFFICIENTS

5.1 INTRODUCTION

Rotordynamic force coefficients of fluid film bearings largely determine the dynamic
response of a rotor-bearing system to excitation forces applied upon the rotating structure
supported by the bearings, The bearing dynamic linear reaction forces result from
perturbations of the rotor journal about an equilibrium position in response to external
forces, such as rotor imbalance. The reaction fluid film forces are proportional to the
instantaneous journal displacements (elastic forces) and velocities of the journal center
(damping forces). For small motions of the rotor (journal) about a steady-state
equilibrium position, rotordynamic force coefficients are defined as functions of this
position within the bearing clearance. The equilibrium position is in turn a function of the
bearing geometry, the static load, the lubricant viscosity and the rotor speed. In actual
machinery, the equilibrium position of the bearing journal center changes as the rotor
accelerates to reach the operating speed. Thus, the effective rotordynamic force
cocfficients of the bearing change accordingly.

Modern predictive tools allow calculation of bearing force coefficients during the
design stage of high-speed turbomachinery. However, it is desirable to venfy the
predictions of dynamic force coefficients once the machine is running during the
commissioning period and performance tests. Often, a change in operating conditions
(say due to altered fluid properties, enlargement of bearing clearance and others)
determines a substantial change in the dynamic response of the rotor. It is therefore
necessary to have a useful identification procedure to verify the dynamic properties of
bearings after machine assembly or even after years of satisfactory operation [1].

This Chapter describes a method for identification of fluid film bearing speed
dependent force coefficients. The method is validated with measurements of the
imbalance response of two test rotors supported on different bearing configurations. The
first bearing design is the combined support Integral Squeeze Film Damper in series with
a Flexure Pivot Tilting Pad Bearing, as described in Chapter 3. The second bearing
design is a two-lobe, cylindrical fluid film bearing featured in a second test rig also
introduced in Chapter 3.

5.2 DESCRIPTION OF METHOD FOR IDENTIFICATION OF SPEED-DEPENDENT
BEARING FORCE COEFFICIENTS

Bearing parameter identification from imbalance response measurements resembles
closely the procedure developed earlier for identification from transient rotor responses



The Equations of motion of the rigid rotor are identical to those presented in Chapter 4,
(Equation 6). In this case, the excitation term is a stationary, periodic excitation from
rotor imbalance, with a circular frequency equal to the rotor speed. The amplitude of the
applied force is proportional to the square of the rotor speed, which means that the
excitation is very small at low speeds. There is inherently a phase angle of 90° between
the excitation applied along the (x) and (y) directions.

Figure 24 represents the experimental rotor-bearing system described in Section 3.4
of Chapter 3 (rotor supported on /SFD-FPJB bearings). The only difference with the
current analysis is that the planes where the impact excitation was applied now become
the planes where calibrated imbalance masses are attached. As described in Chapter 4,
the dynamics of the rotor supported on two anisotropic bearings are modeled as a four-
degree of freedom system as the rotor traverses the first and second critical speeds
corresponding to the cylindrical and conical modes of vibration, respectively. The
Equations of motion are:

Mi+Cq+02Gq+Kq=F, ¢ (31)

where M, C, and K are the (4x4) inertia, damping and stiffness matnices and G is the
gyroscopic moments matrix given by Equation (8). As before, {2 1s the rotor speed,
j=+—1.and tistime. F=F, e’ is the excitation force vector derived from the
imbalance masses attached at axial two planes on the rotor, and q is a vector containing
the response of the rotor at the bearing locations (/,2) and in two orthogonal directions (x,
V)ie.

Q=[x %, 5.0 1" (32)
Equation (31) represents a system of four Equations of motion, two of them
corresponding to conservation of linear momentum, and the other two relating to

conservation of angular momentum.

The generalized imbalance vector (F,) in Equation (31) 1s defined as:

Ji+ 7
| ML) g (33)
_.f,'dr +.f3d3
_-H.f:‘d: - 71.d;)
where the imbalance functions f; and /> are
f, =mre % and f, =m,re % (34)

with m1; and > as the imbalance masses attached at radii r; and > and at circumferential
locations ¢ and ¢, respectively, measured from the key-phasor mark on the rotor, and



positive in 4 direction opposite to its rotation. The key-phasor mark provides also a
reference for measurement of the phase angle of rotor response. In Equations (33) and
(34) the subindexes (/,2) represent different axial planes on the rotor. Notice that due to
the nature of the excitation vector, the applied force cannot be measured but only
estimated.

At steady state, the rotor response is of the form q=q, e’ with the components of
q, being complex numbers (amplitude and phase). Thus, Equation (3 1) becomes:

j2Cq,+Kq, =F, +[2°M- j2°Glq, (35)

The bearing support reaction forces in the left hand side of Equation (35) are
expressed as the product of a (4x16) response matrix QQ and a vector of system
parameters P (16x1), i.e. as in Equations (12) to (14). The response matrix Q is
composed of linear combinations of the response vector (q,) and the vector of parameters
which includes all bearing synchronous stiffness and damping force coefficients.
Equation (35) is rewritten as:

QP=F +|[2°M- j2°G]q, (36)

Separating real and imaginary parts of the complex Equation (36) renders an
undetermined system of 8§ (real) linear algebraic Equations to identify 16 rotordynamic
coefficients representing the two anisotropic bearing supports. A second set of
imbalances (set 5) generating linearly independent responses then completes the required
number of Equations to solve (36) to determine the vector of parameters P.

Once again, the use of bearing impedances (Z = K + jwC), where @ = £2,
considerably simplifies the programming effort and renders simpler identification
Equations. Introducing Equations (22) to (24), a pair of identification Equations in
complex form is derived from the balance of forces and moments:

Q' P*=[F, +2° M- jGlq,] (72)
Q' P =[F, +2° M - jGla,} (37b)
Equations (37) are analogous in form to Equations (25). Two linearly independent

tests (4,B) are still required to form the response matrices and perform the identification,
LB

P*=0" ‘Frx (38.a)
P*=Q" E/ (38b)
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and
' =[F, +2° M- jGlg, | (40a)

R'=[F+2'M-jGlq, | (40b)

The condition for linear independence of the row vectors in the response matrix
Q™ is obtained from the solution of Equation (35). For the response vector qo!

q,=H '(2)F, (41)
where

Hf2)=—Q2°M+ j2°G+ jQXC+K (42)

Equation (41) shows that, since the inverse of matrix H is a linear transformation, two
linearly independent (Li.) excitations F,, and F.p generate linearly independent responses
qua and qqg. The conditions for linearly independent excitations can be stated from the
definition of the excitation vector F,, Equation (43).

Ji+1s
F.,_' _j(fJ+,f=) (ek (33)
_fld.r +f3d3

2 .f(f.dr = fzdz.r}

The excitation in test B is linearly independent from that of test 4 by shifting the
location and/or magnitude of the imbalance masses (m, m>) at the two imbalance
locations and such that the resultant vector F.g is not a (complex) multiple of the onginal
vector F,4. Equations 43a and 43b below show an example of imbalance functions that
render linearly independent force vectors exciting the cylindrical and conical modes of
vibration, respectively:

fra=mre™® and f,, =mre™® (43a)

: e 43h
fig=mre” and f,, =myre’'*" Tl

Notice that excitations in only one imbalance plane could not render linearly
independent excitation vectors since the force vector Fop can always be expressed as a
multiple of F,4 in this case, Thus, two imbalance planes are mandatory for identification
of all sixteen bearing parameters. However, imbalance masses applied at one plane
different from the imbalance planes located at d; and o from the center of gravity can



always be resolved for the original imbalance planes at ¢, and . In this case, a second
response at a different imbalance plane, or a response to imbalance masses at planes o,
and - is needed to complete the information for identification

Lee and Hong [1] estimate speed-dependent synchronous bearing coefficients from
Equation (36) by separating the forward and backward whirl vibration response resultant
of the gyroscopic moments, but fail to provide experimental evidence on the robustness
of the identification method, The elaborated procedure is not necessary since the
measured vibration q, already contains the forward and backward whirl components.

Thus, filtered synchronous vibration data is perfectly suitable, making the identification
procedure easy to implement from running machine data in the field. Note that the
analysts shows that two imbalance runs (4 and B) are necessary in order to identify all
force coeflicients from two anisotropic bearings.

Incidentally, force coefficients from perfectly isotropic bearings will cause numerical
singularities during the inversion of the response matrices Q . The stated procedure is not

able to identify the force coefficients in this case. However, assuming identical bearings
on each end (for example, when the bearings support the same static load) or neglecting
cross-coupled force coefficients (if they are known to be small) reduces the number of
unknowns and simplifies the experimental requirements. Furthermore, these two cases
are of more practical interest than the case of isotropic bearings because most bearings
are anisotropic in practice (1.e. K =K, etc).

Tieu and Qiu [21] also identify sixteen synchronous coefficients of two different
bearings supporting a rigid rotor from two or more imbalance response measurements,
Tieu and Qiu utilize unfiltered responses and forward a numerical procedure to minimize
noise influence. The experimental results show good correlation with theoretical
predictions of force coefficients for a cylindrical journal bearing. The current
identification procedure, on the other hand, can use filtered synchronous responses, and is
therefore not aftected by (high frequency) noise from the measurements. Modern data
acquisition systems typically remove shatt run out from the measured signals using the
tachometer reference. Thus this false vibration synchronous magnitude is not likely to
perturb the method either.

Finally, if measurements of the rotor response are not taken at the bearing locations /,
and />, the transformation shown in Equation (29) also allows the use of imbalance
TeSPONSES X5, X2 at locations 5; and 52 away from the rotor center of gravity, as shown in
Figure 24,

5.3 NUMERICAL EXPERIMENTS AND ASSESSMENT OF METHOD
SENSITIVITY TO NOISE
To verify the method described above, numerical predictions for the imbalance

response of an example rotor allow estimation of synchronous bearing coefficients over a
range of operating speeds. For this numerical experiment, the rotor used is the same test
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rotor introduced in Chapter 3 (see Table 2 for details of mass, inertia and geometry
charactenstics). Table 11 summarizes the distribution of masses of two imbalance sets A
and £ used to generate dynamic responses. Note that the imbalance combinations are
linearly independent from each other as required by the identification procedure.

Table 6 shows (assumed) bearing synchronous stiffness and damping coefficients
that remain constant throughout the identification speed range. The magnitude of these
coefficients is identical to the magnitudes presented for the numerical experiment in
Chapter 4 in order to allow direct comparison of the described identification methods
Table 7 presents the resulting damped natural frequencies and damping ratios of the
rotor-bearing system from an eigenanalysis. Notice that the two rigid-body modes
(cylindrical and conical) of vibration lie within the rotor operating range.

Figure 49 shows numerical predictions of the rotor response (amphtude and phase) at
the bearing locations, Le. 5s;= Iy and 5,= /> using Equation {41). Note that the imbalance
distribution 4 excites the first mode of vibration (cylindrical), whereas the imbalance
distribution 5 excites both modes of vibration (eylindrical and conical). Thus, for the
imbalance response B, two phase shifts are clearly observed. Conical motion is evident
by examining the phase angle between x; and x; locations at 7,000 rpm which 1s ~ 180°.

The imbalance rotor responses 4 and 5 are supplied to the developed 1dentification
alzorithm (Equation 38). Figure 50 depicts the identified synchronous bearing force
coefficients. The identification procedure renders poor results at low speed ratios (@',
< 0.6, i.e speeds lower than 2,000 rpm for this example) mainly due to the smallness of
the predicted rotor response (see Figure 49). Amplitudes of vibration below 2,000 rpm
are less than 15 % (20 microns) of the maximum amplitude of vibration at the first
critical speed (~ 150 microns).

Below the system first critical speed (between 2,000 and 3,000 rpm) there 1s a region
in which the identification procedure renders improved results. The phase angle of the
response begins a rapid change though relatively small amplitudes or motion are
apparent, and which may contribute to the distortion of the identified cross-coupled
parameters, Past 3,000 rpm and up to 6,000 rpm, the identification is satisfactory in
estimating all sixteen parameters, It is then clear that the most suitable speed
identification lies between the critical speeds. Identification of parameters is distorted
above 6,000 rpm, mainly for the cross-coupled stiffness coefficients due to their small
magnitude compared with the direct stiffness coetficients.

The identification method of this section appears to be more sensitive than the
method for identification presented in Chapter 4, As mentioned earlier, the use of the
same system (rotor and constant bearing coefficients) for the numerical example allows
direct comparison of the identification methods, Figure 51 shows the condition number of

identification matrix ( Q*) composed by the response to imbalance and to impact
excitations. The frequency of excitation for the imbalance response corresponds to the
rotating speed. Notice that the condition number of the matrix ( Q™) for identification
from imbalance responses varies broadly, with largest values at low speeds. Identification
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of parameters is not satisfactory in this region of speeds, as shown in Figure 50 since the
response matrix is nearly ill-conditioned. The speed region of best identification of
parameters lies between the two critical speeds corresponding with the lowest values of
the condition number of the response matrix (~ at 5,500 rpm, CN —~ 100). Condition
numbers above 200 make the identification procedure fail in giving satisfactory results,

Figure 51 shows also that the matrix ( Q*) for the case of identification from
response to impacts i1s much more robust. The condition numbers are at least 10 times
smaller than the minimum condition numbers for the current identification method. As in
Chapter 4, a second imbalance response caleulation is aimed to verify the negative effect
of noise in the measurements by adding (uniformly distributed) random noise to the
predicted response. In this case, the rotor is supported on bearings with speed-dependent
force coeflicients (these coefficients are shown in a following figure for comparison with
the identified parameters). The bearing coefficients are arbitrary functions of speed that
resemble actual predictions of stiffness and damping coefficients. Figure 52 shows the
calculated responses with the same imbalance distribution presented above and with 2%
noise in amplitude and phase (only amplitudes are shown here for brevity). Notice that
this level of noise is identical to the level used in the previous numerical experiment
presented in Chapter 4.

Figure 53 shows the identified bearing coefficients in the principal directions as a
function of rotor speed as determined from imbalance responses including noise. The
identification procedure renders satisfactory values only in the range between 2,000 and
5,000 rpm. Above this speed, the identified coefficients show scatter without a definite
trend. ldentification of cross-coupled coefficients (not shown) is quite poor over the
entire range of speeds.

The numerical experiment presented above confirms that the identification method is
sensitive to noise and extraneous effects that affect the ideal behavior of the rotor
However, the next section shows that, under adequate assumptions, identification of
speed-dependent parameters 1s possible for a imited number of conditions,

5.4 MEASUREMENTS OF IMBALANCE RESPONSE AND RESULTS OF BEARING
PARAMETER IDENTIFICATION

This section describes the experimental identification of bearing parameters from the
measured imbalance response of the test rotors described in Chapter 3. The combined
support /8FD-FPJB featured in the first test rig has also speed-dependent force
coefficients due to the tilting pad bearing. Table 12 shows predicted equivalent bearing
coefficients as a function of the rotor speed. Equivalent bearing coefficients change more
as a function of rotor speed than as a function of the frequency of excitation (see Table
8). Furthermore, dynamic force coefficients of the two-lobe bearings featured in the
second test rig presented in Chapter 3 are solely a function of the rotating speed. Thus, it
is important to forward a practical method of identification by proposing adequate
assumptions to circumvent the limitations presented in the previous section,
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5.4.1 Identification of speed-dependent bearing coefficients without cross-coupling

Many small turbomachines operating at moderate speeds feature rigid uid film
bearings operating below the threshold speed of instability, determined by the cross-
coupled coeflicients developed in the lubricant film. In many cases, the cross-coupled
coefficients are small over a broad range of speeds. At times, these machines require
softer supports for reduced load transmissibility at the running speed or to better control
the amplitudes of response when traversing the critical speeds. Retrofitting of these
machines with tilting pad bearings is not justified in this case, but the use of squeeze film
dampers is still appealing for control of vibration and transmitted forces.

The test rig described in Chapter 3 is modified with an ISFD-FPJB bearing on one
end (drive) and a cylindrical fluid film bearing in series with a cylindrical squeeze film
damper on the opposite end (free)’. Recall that this type of damper is the most popular
design in use to date. The original objective of the experiments was to verify the rotor
performance on the combined supports operating with a bubbly mixture of air and
lubricant [42]. The recorded measurements of rotor vibration are used in this section for
bearing parameter identification.

Figure 54 shows the test rig featuring the new support on its free end. The rotor
properties remain unchanged as well as the lubricant operating conditions (i.e. no air is
purposely added to the lubricant for the case of parameter identification shown here).
Table 13 shows the characteristics of the new bearing support installed in the free end of
the rotor including the cylindrical bearing and damper. The design of the cylindrical
bearing produces fluid film stiffness coefficients that are similar to the coefficients from
the tilting pad bearing, so that the critical speeds are expected not to be affected by the
new support. Equivalent cross-coupled force coefficients are also small for the speed
range of identification.

As demonstrated by the identification of frequency-dependent force coeflicients in
Chapter 4, equivalent cross-coupled force coefficients of the /SFD-FP.JRB support are
about one order of magnitude smaller than the force coefficients in the principal
directions. Furthermore, measurements of rotor response to imbalance with the modified
series support show no trace of subsynchronous rotor vibration. Thus, a reasonable
assumption in this case is that the cross-coupled forces are small, and the identification
procedure thus ignores the cross-coupled coefficients to provide satisfactory
identification of coefficients along the principal directions.

The identification procedure requires only small changes for the case of negligible
cross-coupling force coefficients. The mathematical development is identical to the one

described by Equations (31) to (37). However, the identification matrix ( Q%) is now a

? The rationale for the modification obeys an unfortumate accident which destroved the babbitt liner in one
of the TPIBs. Repairs took several weeks.
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square (2x2) matrix since the motions in the horizontal direction are completely
decoupled from the motions in the vertical direction. The simpler identification matrices
are:

Q:__ % %, |
- -Lx, L x| (44a)
or=| 71 % (44b)
_"FI Xy == '!r:J Y1

Equations (37) are still used for identification of parameters. The new force vectors
and vector of identified impedances are:

T FI ] ¥ F? s
F, = F, . , F;'= F, (45)
Z 1 | Z o1
P_-‘ =l T P_-p - ¥ it
\»Z.LL'E L ' |VZ'_|.-_1.'3 ] {4ﬁ}

and the respense vector q, includes only the motions in the desired identification

direction:
- x} ¥ v!':l'
q, = i e T 47
o) ] @

Notice thal only one imbalance response is required for the identification since the
number of parameters is reduced by half.

Figure 55 shows the synchronous test rotor responses at the bearing locations due to
the imbalance condition described 1n Table 14. Figure 54 corresponds to responses
compensated for the slow roll and remnant imbalance vectors, as described in Section
3.5. Note that the amplitudes of motion at the critical speed at location 2 (drive end
bearing) are larger than the amplitudes at location 1. Figure 55 shows only the phase
angles of response in the horizontal direction, with a clear shift occurring around 2,500
rpm.

Figure 56 shows the estimated amplitudes of the dynamic forces and moments
applied to the rotor by the imbalance (Equations 45). Notice that these forces are
comparable in magnitude with the impact forces delivered in the previous experiments
with impulse excitations at the frequency equal to the system natural frequency (see
Figure 29). At higher frequencies, the forces developed by the imbalance are much larger
than those from impact excitations.
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Figure 57 shows the condition number of the reduced identification matrices (with
experimental responses) as given by Equations (49), Notice that the magnitude of the
condition number as a function of the rotor speed is dramatically smaller than that of the
full-formulation described in Section 5-3. Thus, identification of bearing parameters in
this simplified case is more tolerant to noise

Figure 58 shows the identified (synchronous) bearing force coefficients as a function
of the rotor speed. Equivalent stiffness coefficients remain almost constant for speeds up
to 3,000 rpm, and then show a sharp decrease, very similar to the trend presented by
frequency-dependent force coefficients identified above 40 Hz (2,400 cpm, see Figure
45). Notice that the magnitudes of stiffness at location 1 (free end) are slightly lower than
the magnitudes at location 2 (drive end), probably due to the difference of the SFD elastic
support used. Most importantly, note that the free end bearing stiffness is reduced more
sharply than the stiffness of the drive end bearing. Tt appears then that the table dynamics
affects more the free end bearing,

Identified synchronous damping coefficients remain constant for the entire range of
identification speeds. Also, damping coefficients at location 1 (free end) are larger than
the damping coefficients at location 2 (drive end). This is a result of the cylindrical
damper that provides larger damping forces to the free end bearing, as evidenced by the
smaller magnitude of response at this location, see Figure 55.

The predicted rotor response with the identified parameters is identical to the
measured rotor response because the parameters are identified at discrete speeds. On the
other hand, equivalent bearing coefficients seem to have a small dependency on the rotor
speed for the range of identification speeds. Thus, 1t is desirable to compare the values of
the identified coefficients using the method presented here with coefficients identified
using a simple least squares error minimization procedure for identification of constant
coefficients over a range of frequencies.

The proposed identification using least squares also considers that the system cross-
coupled forces are small and thus neglects cross-coupled force coefTicients. The least
squares estimation results of stacking all experimental responses at different rotor speeds
to form an over-determined system of Equations (from Equations 44) and then solve it
using the pseudo inverse of the response matrix. Fritzen [12] introduces a refinement to
the least squares method that reduces the bias error in the measurements. The method i3
known as the Instrumental Vanable Filter (IVF). The operations performed during the
pseudo-inverse on the response matrix and that are affected by the bias error are corrected
by a noise-free auxiliary model, noticeable improving the results.

Table 15 shows the results of the identification from the least squares error
minimization and the instrumental variable filter. The values represent the equivalent
bearing parameters over the speed range from 1,500 to 3,050 rpm. Note that the
magnitudes of stiffness resemble the values obtained for the speed-dependent equivalent
bearing coeflicients shown in Figure 58 Magnitudes of direct damping coefficients in the
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vertical direction are similar to the identified values from the speed-dependent
identification method However, damping coefficients identified in the horizontal
direction are substantially smaller than the values previously identified. These damping
values are quite sensitive to the range of identification speeds used.

Predictions of rotor response from the identified coefficients presented in Table 15
aid to assess the reliability of the identification procedure. Figure 59 depicts the predicted
synchronous rotor response amplitude at the drive end in the horizontal direction (xs)
using the coefficients identified from the least square method. Note that the difference is
large between the predicted and the experimental response. Figure 60 shows the predicted
rotor response (magnitude and phase) at the same location (x-) using the bearing
coefficients identified with the Instrumental Variable Filter. Note that the predicted
response follows closely the test measurements, showing an appreciable improvement
from the least squares method. Thus, the equivalent coefficients identified with the TVF
scheme render more representative bearing characteristics. Nonetheless, the bearing
synchronous force coefficients obtained with Equations (44) are the values of the bearing
parameters that exactly produce the measured rotor response,

5.4.2 Identification of speed-dependent bearing coefficients for the case of identical
bearing supports.

The AMOCO test rig described in Chapter 3 has identical, two-lobed fluid film
bearings that support a symmetric rotor. It is thus reasonable (o expect that the bearings
have similar dynamic coefTicients since both of them carry similar static loads and should
operate at similar static journal eccentricities.

Assuming that the bearings have identical dynamic force coefficients also reduces the
number of unknown impedances from eight to just four. The identification matrix in this
case is given by:

e XX Y+, :
Q _|:— Lx+l,x, =1y +l, _p:J (48a)
o P i S R (48b)
I =%, ey =1 3

and the corresponding vectors of parameters are:

x Zﬂ ¥ ZJT
P= 7z | Pr= 4 (49)

L »

Equations (37) are used again to identify the bearing parameters, with the vectors of
response given by Equation (47). Note that only one imbalance response is required for
identification of all coefficients because the identification matrices (Equations 48) are
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square, and the row vectors are linearly independent. Even for the case of a symmetric
rotor (/; = [> = ), the response matrix in the horizontal (x) direction is:

0* _[ X X, ¥ +y:
(=%, +x,) 1=y, +¥,) GR)

Mote that:
(X, +X, )#(-x, +x,) (51)

and thus the rows of the matrix in Equation (50) are always linearly independent and the
matrix is invertible for proper identification.

Table 16 shows predictions of the bearing force coefficients based on an isoviscous,
isothermal fluid model [41]. As mentioned earlier, close examination of the bearing
surfaces reveals that the bearings have uneven wear around the inner diameter from
previous experiments in which the bearings operated with pressurized air as the working
fluid. Wear makes it difficult to precisely determine the original preload of the bearing
lobes. A small nominal value of 0.05 dimensionless preload is used for the predictions of
dynamic force coeflicients presented in Figure 16.

Note that the predicted direct stiffness coefficients in directions (x) and (y) are
different, The magnitude of the stifthess in the vertical () direction is about twice the
magnitude of the stiffness in the (x) direction. Increased stiffness of the fluid film in the
direction of the lobe pad is typical of preloaded bearings and usually aims to increase the
threshold speed of instability. Cross-coupled stiffness coefficients are of opposite sign in
almost all the operating speed range. Table 16 shows that the bearing damping force
coefficients are in general strong functions of the running speed. Note that the magnitude
of the cross-coupled damping coefficients is of the same order of magnitude as the direct
damping coefficients in the (x) direction.

The eigenanalysis of the rotor-bearing system from a finite-element model indicates
that the rotor does not cross a natural frequency in the speed range to 4,000 rpm.
However, note that the rotor shaft is very slender as compared to the rotor span (ratio of
bearing span to rotor shaft diameter is ~ 21). The calculated shaft lateral stiffness (K,) is
only 2.5 MN/m, rendering a pin-pin natural frequency of 4,575 ¢pm. Figure 61 shows the

= K +&
ratio of bearing stiffness to shafl stiffness K=————" [37] as a function of rotor speed.
&

The values of the stiffness ratio indicate that the shaft is considerably less rigid than the
predicted lubricant film stiffness ( K=1.4 ). Thus, the current identification procedure is

reliable only for speeds below the pin-pin natural frequency. Identification of bearing
coefficients is dependable as long as the magnitude of the rotor motions are large enough
to allow for accurate measurement of the phase angle. The current study shows results of
the parameter identification from 1,000 to 3,000 rpm (25% to 75% of the first natural
frequency).
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Figure 62 shows the test synchronous (slow roll and baseline compensated)
imbalance response at the bearing locations resulting from the imbalance masses attached
at the rotor disk locations. See Table 17 for a summary of the imbalance conditions. Note
that the measured rotor responses are at different axial planes from the bearing planes and
at different radial planes, thus a suitable coordinate transformation is required from the
measurements to obtain the responses presented in Figure 62. Note that the largest values
of rotor dynamic response correspond to more than 50% of the bearing total clearance as
the rotor approaches the critical speed. The experimental responses show different
amplitudes of vibration at the two bearing locations as a result of the uneven imbalance
distribution. In fact, amplitudes of motion at Jocation 1 (drive end) are larger than the
amplitudes of motion at location 2 (free end) because the drive end disk carries the
imbalance mass.

Figure 63 shows the identified bearing coefficients using Equations (37) and response
matrices from Equation (49). The direct stiffness coefficients remain almost constant
throughout the speed range, with vertical stiffnesses (K,) being almost twice the values
of the horizontal stiffnesses (K). At low speeds damping coefficients are larger in the
horizontal direction () than in the vertical direction ((,,), approaching similar values at
higher speeds (~ 3,000 rpm)

Cross coupled stiffness coefficients are nearly constant for the speed range of
identification and much smaller in magnitude than the direct stiffness coefficients. Note
that the cross-coupled stiffness coefficients are of opposite sign, revealing the follower
force created by the fluid film in the rigid (2-lobe) bearings. Cross coupled damping
cocfficients are also small and of opposite sign, and almost null at 2,000 rpm. These
results indicate the possible contribution of the shaft flexibility on the dynamic response.

The 1dentification procedure thus renders the equivalent stiffness and damping force
coefficients of the journal bearing in series with the shaft stiffness. Considering the
flexibility of the shaft, the equivalent impedances of the rotor-bearing system are the
entries of the impedance matrix H,,, where:

H =H -H (H +H,)'H, (52)

and

=

[k, 0 | Ka+in2C, K, +j2C,
' ﬁ -K-‘ L ] lK?J-‘.\.- ‘E'jﬂc‘_\:r KJJ-‘ +II2{F1}J {53)

Figure 64 shows comparisons of the identified bearing coefficients and the predicted
coefficients considering shaft flexibility. The shaft flexibility has an important effect on
the equivalent force coefficients rendering values which are very close to the identified
coefficients. The identification procedure is unable to estimate the bearing force
coefficients due to the flexibility of the shaft, but renders accurate values of the
equivalent impedance in this case. In-situ identification of bearing coefficients would
then be difficult to assess unless the equations of motion include a more elaborated rotor
model.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

This report details the procedures (along with experimental validation) for
identification of rotordynamic force coefficients of a series bearing support (/SFD-FP.IB)
as function of the frequency of excitation or as function of the rotor speed. Bearing
parameters as functions of the frequency of excitation are useful for stability analyses and
transient response calculations. On the other hand, speed-dependent bearing force
coefficients are necessary for predictions of rotor response to imbalance.

Appropriate experimental procedures are forwarded for identification of the bearing
force coefficients based on the configuration of the available test rigs. The identification
methods have the potential for application in the ficld with the intent of verifying
predictions of bearing dynamic force coefficients. The methods are based on
measurements of the rotor response to transient (impact) excitations and on
measurements of the rotor response to imbalance. Transient responses allow
identification of frequency-dependent bearing force coefficients, whereas imbalance
response measurements allow identification of speed-dependent bearing parameters. It is
important to note that the use of two axial planes for rotor excitation allows identification
of all bearing coefficients from two bearings supporting a rotor.

Identification from impact excitations of the /SFD-FP.JB series support indicates that
the equivalent stiffness and damping force coefficients are not strong functions of the
[requency of excitation, but rather remain nearly constant in the frequency range of
identification (20 to 60 Hz). An inertial effect attributed to the support causes a reduction
in the direct dynamic stiffness coefficients at frequencies higher than the first rotor-
bearing system natural frequency (52-56 Hz). In general, predicted bearing coefficients
show good agreement with the experimentally derived coefficients within the frequency
range of identification.

Numerical experiments demonstrate that the identification method based on
measurements of the rotor transient response is less sensitive to noise than the
identification from rotor imbalance responses. In general, identification of bearing
parameters from imbalance responses is least sensitive to noise at the rotor critical speeds
because the amplitudes of rotor motion are largest at these speeds and the signal to noise
ratio is @ maximumn.

The use of tilting pad bearings (confirmed by predictions of the bearing coefficients)
justifies assuming that cross-coupled forces of the series support are small. Experimental
identification of frequency-dependent direct force coefficients confirms the predictions
and strengthens the argument favoring a reduction in the number of unknowns. The
assumption reduces the number of unknowns by effectively decoupling the rotor motions
in the vertical and horizontal planes. The identification procedure is more robust than the
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full formulation and renders satisfactory values of the bearing dynamic force coefficients
as functions of the rotor speed.

ldentification from measurements of the rotor imbalance response renders
experimentally derived parameters of the series support that agree well with predictions.
In general, equivalent stiffness and damping force coeflicients remain almost constant for
the range of speeds tested (1,000 to 4,000 rpm). The experimentally derived dynamic
support stiffness also shows an important reduction as in the case of identification from
impact excitations at similar frequencies (above the first critical speed, ~3,000 rpm).

A second validation of the procedure developed for identification of speed-dependent
bearing parameters is performed on a test rig featuring two-lobe fluid film journal
bearings. In this case, the experimental arrangement justifies assuming two identical
bearings on each end of the rotor and a subsequent reduction in the total number of
identified parameters. The identification from imbalance response measurements is
fargely influenced in this case by the flexibility of the shaft, as confirmed by predictions
of the equivalent bearing-rotor impedances that agree well with the identified parameters.

One of the original objectives of the research project is to confirm the benefits of the
combined /SFD-FPJB support and to assess its dynamic properties. The measurements of
rotor response to impacts and to imbalance forces confirm that the bearing support is
effective in controlling the rotor amplitudes of motion, The experimentally derived
equivalent force coefficients also validate the computational tools currently available for
prediction of the bearing parameters.

A second objective of the experimental program is to forward identification methods
that have the potential for in-situ implementation. The identification procedures described
in Chapters 4 and 5 are suitable for use in the field, although special mechanical
arrangements must be devised in one case, namely identification from transient
responses. This is due to the difficulty to access the rotor shaft for delivering the needed
load while the rotor spins. On the other hand, using imbalances to generate rotor response
requires accurate measurement of the phase angle, which is difficult at low speeds.
Furthermore, this last procedure is inherently more sensitive to noise than the
identification from transient responses.

The 1dentification procedures developed are limited to the case of nearly rigid rotors,
Many turbomachines in the field have flexible rotors that operate super-critically for
increased power to weight ratios. Thus, it is necessary to extend the procedures for
identification of bearing force coefficients supporting flexible rotors. The major change
with respect to the presented methods is in the inertia matrices of Equation (15) that must
include the effect of the shaft flexibility. Yang and Chaung [42] utilize the inertia
matrices from a finite element model to estimate the contributions of the discrete masses
on the bearing supports. Modern rotordynamic predictive codes based on finite elements
represent an option for quick shaft modeling and may provide the required inertia and
elastic properties.
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The identification method based on transient excitations of the rotor is more robust
than the identification method from imbalance response measurements. However, the
obvious difficulty of directly exciting the shaft while spinning calls for an alternative
procedure that takes advantage of the robustness of the method to noise. A viable
alternative is to impact the machine casing instead of the rotating structure. Relative rotor
motions with respect to the bearing housing as well and absolute support motions
(accelerations) provide the necessary information for bearing parameter identification.
However, an appropriate model of the support structure is necessary in this case. Feng
and Hahn [43] have developed several experimental methods for modeling of
turbomachinery foundations that might be useful for bearing parameter identification.
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Table 1. Integral squeeze film damper and flexure pivot tilting pad bearing main
dimensions and operating conditions.

Squeeze film damper:

Damper land radius (/) 48.26 mm 1,900 in
Land radial clearance (¢;) 0.229 mm (1.00%9 in
(after static deflection under rotor weight)

Damper axial length (L) 23 .00 mm 0.9101in
Land arc extent (in circumferential direction, nom.) 52°

Flexure pivot tilting pad bearing: 4 pads (70%)

Bearing nomunal diameter:  30.15 mm 1.187 in
Bearing axial length: (L) 22.9 mm 0,902 in

Pad radial clearance: (c;) 0.127 mm + 0.005 mm 0.0050 in + 0.00013 in
Pad preload: 0.405 (r;) 0.0508 mm 2 mils

Pivot offset: 0.50

Bearing radial clearance: (¢p) 0.076 mm 3 mils

Pad rotational stiffness: 40 N-m/rad 354 |b-in/rad

Clearance on back of pads:  0.178 mm (typ) 0.007 in (typ)

Average inlet lubricant viscosity (u) 15.76 cP at 24.4° C (76° F)
Operating speed range: 0-10,000 rpm

Static load between pads
Drive end bearing

Free end bearing

2473 N
198.2 N

55.53 b (51.90 psi - specific load)
44.50 Ib (41.56 psi - specific load)

Table 2, Summary of rotor geometry characteristics and inertia properties of test
rig for identification of equivalent bearing parameters.

[ nits IS0 Ernglish
Rotor mass 417 ke 91.81b
Rotor total mass (including half of flexible coupling) (m) 43.3kg 99.81b
Rotor total transverse moment of inertia (/) 0.704 kg-m’ 2406 Ib-in”
Rotor total polar inertia (/p) 0.299 kg-m® 1022 Ib-in’
T n
Shaft diameter 76.2 3.00
Shaft diameter at bearing locations 29.99 1181
Total length 673.1 26.50
Bearing span 406.4 16.0
Rotor eg location from left end 285.0 1.2
Distances from cg to bearing locations (/), 1) (h189 0217 | 744 854
Distances from cg to planes of impact excitation (d,dz) 0 0 0 0
Distances from cg o location of proximity probes (s5y,52) 0119 0.l46 | 469 3575




Table 3. Instrumentation for impact response measurements,

Measured magnitude Instrument

Force, (x) horizontal
Force, (y) vertical
Displacement (x;),
Free end horizontal
Displacement (x3),
Dirive end horizonial
Displacement (y;),
Free end vertical

Dynamic load cell
Dynamic load cell
Proximity probe

Proximity probe

Proximity probe

Gain

8.07 mV/micron
(204.5 mV/mil)
7.91 mV/micron
(200.2 mV/mil)
7.64 mV/micron
(193.5 mV/mil)

11.4 mV/N (50.73 mV/Ib)
12.7 mV/N (56.65 mV/Ib)

8.11 mV/micron
(205.3 mV/mil)

Displacement (y2),
Drive end vertical

Proximity probe

Table 4. Summary of test rotor geometry characteristics and inertia properties for
unbalance response measurements.

{inits 150 English
Fotor mass 1.8k 26.01b
Rotor total transverse moment of inertia (/7) 0.234 kg-m’ 800 1b-in’
Rotor total polar inertia (/) S0k || 02 Ibnint
10 il
Shaft diameter 254 1.00
Shafl diameter at bearing locations 254 1.00
Total length 640.0 2520
Bearing span 532.0 20.94
Rotor cg location from left end 3420 13.46
Distances from cg to bearing locations (/;,/7) 263 268 | 104 106
Distances from cg to planes of unbalance excitation (d;,d>) 137 143 | 539 563
Radii of unbalance locations (r,72) 700 700 | 276 2.6
Distances from cg to location of proximity probes (s;,53) o2 ElE 11:9° 124

Table 5. Two-lobe bearing main dimensions and operating conditions.

Bearing nominal diameter (1) 25.4 mm 1.000 in
Bearing axial length (L) 28.6 mm 1.126 in
Bearing radial clearance (c») 0.089 mm 3.5 mils

Estimated pad preload (r) 0.05 (dimensionless)

15.76 cP
0-4,000 rpm

Average inlet lubricant viscosity () at 24.4° C (76° F)
Operating speed range:
Static load between pads
Drive end bearing

Free end beanng

579N
3519 N

13.01b (11.55 psi - specific load)
13.01b (11.55 psi - specific load)




Table 6. Bearing parameters used to generate (synchronous) imbalance response
(constant over the speed range) and response to ideal impacts (constant over a
frequency range).

Bearing 1 = Bearing 2

Stiffness coefficients (N/m)

Damping coefficients (N-s/m)

Ke=3.0x10° Coe = 2,000
K,=35x10° )y =2,200
Ky=50x10° Cy=250
K.=30x10" €= 800

Table 7. Calculated damped natural frequencies and damping ratios of test rotor-
bearing system with constant stiffness and damping coefficients (gyroscopic effects

Mode of vibration:

I{E}']inﬂri;:-;a_]]

included).

iy =578 Hz, 61.3 Hz (3467, 3676 cpm)

& =0.114, 0.131

I@nicd]l

ar = 833 Hz (4997 cpm, backwards)
@; = 123 Hz (7360 cpm, forward)

&= 0.201
&=0.199

Table 8. Frequency-dependent bearing coefficients used for numerical example,

B | Ko | X | X | K | B ] GG |
Hz | N/m I N-s/m |
18 2.946 3.257 0,049 {.029 2.036 2.240 02549 0815
38 2.88% 3006 0048 (028 2.077 2.285 0.270 0831
58 2831 2775 0.047 0.027 2119 2331 0.281 0,848
T8 2775 2.562 0.046 0026 2.162 2.378 0.292 .8635
98 2720 2365 0.045 0.025 2206 2427 {1.304 ().882
118 2.666 2183 0.044 0.024 2250 2476 0.317 (.900
138 2.613 2015 (.044 0.023 2.296 2.528 {3249 0918
158 2.562 1 2al) 0.043 0022 2.342 rS5TT .343 (.937
178 2511 1.717 (.042 0021 2.3910) 2.629 0.357 (.956
194 2461 1.585 0.041 0.020 2438 2.682 0.371 (.975

Coefficients shown are for bearing 1. Values of coefficients for bearing 2 are 80% of 1the values for bearing

B¢



Table 9. Predicted tilting pad bearing force coefficients and equivalent bearing
coefficients of series support FPJB-ISFD as functions of the excitation frequency

Tilting pad bearing coefficients (average of drive and free ends)

2,000 rpm (33.3Hz)

Frequency | K, | Ko | Ky [ K Ca | G [ G [ Cu
(Hz) MN/m KN-s/m
166 181 179 750 574 426 430 141  17.1
B3 175 BNl 78 559 MmE 43§53 197
33 162 161 657 523 459 462 164 186

Squeeze film damper force coefficients

Structural stiffness (average x and y directions): 3.4 MN/m (experimentally validated)

sm,

Predicted damping coefficients (0.3 orbit eccentricity, circular centered orbit): 950 N-

Equivalent bearing coefficients of filting pad bearing and squeeze film damper in series

Freueney | K. | Ky | Ko | K o | Gy [T | Gy
|. (Hz) | MN/m KN-s/m
166 281 280 -0.16 -020 1730 1757 8046 3093
333 280 279 016 018 1675 1712 1027 268
533 276 276  -014 -0.14 1553 1560 1192 203

Mass of attachment between the series impedances (including damper jbumaj and tilting pad bearing

masses): 1.2 kg per bearing.

Table 10. Correlation factors between predicted and measured responses for two
impacts delivered in the horizontal (x) and vertical (y) directions.

Frequency range used for estimation of correlation factor; 2-200 Hz
Rotor response predicted using identified parameters and experimental forces

Impact in horizontal direction (x)
Location of Correlation factor r*

Impact in vertical direction ()

Location of

Correlation factor 1~

response response
X; 0.96 T 0.609
x> 0.93 o 0.678
¥y 0.145 Vi 0.758
i 0.134 Vs 0.891
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Table 11. Unbalance mass distribution for numerical example of rotor dynamic

response.
Location Left end Right end
Unbalance A 7.9 prat 6° 6.6 grat 6°

Unbalance B 80grat-8° 6.5 grat 180°
Left end disk: radius r; = 0.114 m, distance from rotor CG d, = 0.067 m.
Right end disk: radius »; = (1093 m, distance from rotor CG d = 0,102 m,
Positive angles pn rotor are measured opposite to direction of rotation énd from rotating reference (i.e,

keyway in rotor or reflective pick-up mark).

TEST A
Left end disk Ripht cnd disk
Reference Loention of Reference . lincation of
niark on IUM_ imbalance, & mark on relor & ibalante. &
T " T
L]
\\¥ Dhrection of IHrection of
rotation rotation
TEST B Right end disk

Teft emd disk
Relerence M
Reference Location of Loeation of
; mark on relor t n A
mirk on rm‘_lg;/r imbalance, -8° - imbulance, &
[ ) ?
l\\‘ Direction of / / ?Der.:rinn of
rotation / rotation
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Table 12. Predicted equivalent bearing coefficients of ISFD-FPIB support as a

lilting pad bearing synchronous (Ix) coefficients (average of drive and free ends)

function of the running speed.

Speed e | % | & | K Cer || O SR
(rpm) MN/m kN-s/m

1,000 28.41 2B 53 12.50 10.71 119 118 538 58.6
2,000 19:45 19,58 7.624 6,050 482 47.9 16.0 18.7
3,000 16.10 16.23 6.030 44499 297 29.5 8.09 .89
4,000 14.07 14.20 5.075 3.548 21.1 20.9 4.90 6.28
5,000 12,80 12,95 4517 2,968 16.3 16.2 342 4.54
6,000 11.92 12.09 4164 2:572 13.4 13.3 2.65 3.60
7.000 11.26 11.47 3.933 2.284 11.5 11.4 220 3,13
8,000 10.76 11.01 3783 2.069 101 10.0 1.91 2.65
8,000 10.44 10.73 3707 1.903 9.07 808 1.73 239
10,000 9.99 10.32 3 580 1.727 814 §.07 1.54 2.16

Squeeze film damper force coefficients

Structural stiffness (average x and y directions): 3.4 MN/m (experimentally validated)
Predicted damping coefficients (0.3 orbit eccentricity, circular centered orbit): 950 N-

s/m.

Lquivalent bearing coefficients of tilting pad bearing and squeeze film damper in series

Speed KJ.": | Kw r K__Jr | ji::I" {-1’1’ | C'- {:-"}' C"E-
(rpm) MN/m - kN-s/m N-s/m

1.000 3013 3.013 -0.152 -0.139 2.00 1.99 349 187
2,000 2.874 2.876 -0, 158  -0.142 1.63 1.61 228 91.6
3,000 2765 2.766 -0.155 -0.136 141 1.40 169 54.4
4 000 2.652 2.654 -0.149 -0.127 127 1.26 126 26.7
5,000 2.537 2.539 0142 -0.117 1.16 1.13 935 T.73
6,000 2.413 2416 -0.134 -0.108 1.07 1.07 67.5 -6.03
7,000 2.2749 2283 -0.127  -0.099 1.01 1.00 46.3 -18.5
5.000 2.132 2.137 0118 -0.087 (.95 .95 281 =227
o.000 1.973 1.979 0. 108 -0.075 0.91 0.90 14.3 -27.3
10,000 1.792 1.799 0,097 -0.063 .87 0.87 2.59 -30.1
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Table 13. Bearing characteristics and main dimensions of support consisting of a

rigid fluid film bearing and a cylindrical squeeze film damper.

S__r_;_ueeze film damper:

Damper journal diameter (. 95.0 mm
Land radial clearance  (cy) 0.229 mm
(after static deflection under Totor weight)

Damper axial length (L) 23.00 mm
Land extent (in circumferential direction, nom. )

Fluid film bearing

360°

3.740 in
0.009 in

0.910 in

Bearing tvpe:

Matenal; Bronze

Beanng nominal diameter: 30.15 mm
Bearing axial length: (L) 28.0 mm
Beanng radial clearance: (¢,) 0,051 mm
Average mlet lubnicant viscosity (i) 15.76 cP
Operating speed range: 0-6.000 rpm
Static carrving load: 1982 N

Full eylindrical with upper feeding hole at axial midplane

1187 in
[.142 1m
2 mils

at 24.4°C (767 F)

4451b (32.8 psi - speciﬁ: load)

Table 14. Unbalance distribution of test rotor for experimental identification of
series-support equivalent synchronous force coefficients.

Drive end disk

Free end disk

Unbalance

Drive end disk: radivs #- = 0.114 m, distance from rotor CG & = 0.067 m.
Free end disk; radius /; = 00435 m, distance from rotor CG 4, = 0.102 m.

3.2 grat 30°

3.3 grat 30°

FPuositive angles on rotor are measwred opposite to direction of rotation and from rotating reference (e

keyway in rotor or reflective pick-up mark),

Table 15. Summary of identification of equivalent bearing force coefficients in the
principal directions from least squares and instrumental variable filter over a range

of speeds.
I'J'IEE'LT'! od Kﬂ'f Koz KJ}'I’ K}Ji’ CII.'I CHE E})'.‘ 'E-.,v;u'." ‘
MN/m N-s/m |
LS 1.38 3.89 2.21 341 1130 514 2620 1630
IVF 1.46 3.73 2.02 345 937 546 3100 1287
SDav 1.89 2:37 222 224 3940 2228 2747 1795

Range of speeds for identification; 1,500 10 3030 rpm
L&: Least squares error minimization
IVF: Instrumental Variable Filter

SDav: Average speed dependent force coefficients identificd in the given mnge of speeds,
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Table 16. Predicted bearing coefficients of two-lobe bearing as a function of the
running speed.

Speed e | s o0 K, C. (o & &
Tpm N/m M-/

400 1.11 -0.47 -3.02 5.55 17.05 | 31,18 | =31.13 | 131.14
1,000 1.10 0.03 -2.44 3y 1022 | -11.69 | -11.68 | 44.68
1,500 1,12 0.26 232 2.74 7.98 -7.31 -7.30 | 2896
2,000 1.14 0.47 2126 2.38 6.77 5.15 e IS
2.500 1107 0.64 a7 2.24 6.07 -3.90 -3.89 17.54
2,750 1.18 0.73 -2.28 217 58] 3.45 343 16.12 |
3000 | 119 | 082 | -229 | 211 | 561 | -3.06 | -3.05 | 1497
3,250 1.20 0.91 2233 2.12 5.48 273 | 272 | 1427
3,500 1.21 1.00 3237 2.13 537 -2.45 -2.43 13.66
3,750 1.23 1.09 | -241 | 214 | 5.28 -2.20 218 13.14
4,000 1,24 1.19 -2.45 2.15 5.20 -1.98 | -1.97 | 12,68
4250 1.25 1.28 -249 | 216 5.13 L -1.78 12.28
4,500 1.26 1.37 -2.53 2.17 5.06 -1.62 | -1.60 1192
4,750 1.27 1.47 T 2.19 5.00 -1.47 -1.45 11.61
5,000 1.28 1.56 -2.63 N3 404 -1.30 -128 | 1139

Bearing radial clearance: 8% microns
Dimensionless preload: (.03

Table 17. Unhbalance distribution of test rotor for parameter identification of two-

Drive end disk: radius #; = 0.070 m, distance from rotor CG o, =0.139 m.
Free end disk: radius - = 0,070 m, distance from rotor CG b =0.1411m,

Drive end disk

lobe bearing force coefficients.

Free end disk

Unbalance

10.6 grat 0°

0 gr at 0°

Posttive angles on rotor are measured opposite to dircetion of rotation and from rotating reference (Le.
keyway in rotor or reflective pick-up mark),
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Figure 2. AMOCO test rig for imbalance response measurements
of rotor mounted on hydrodynamic bearings.
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APPENDIX A.
Data acquisition program (zonic 7000 series) for impact response measurements

1.000 ! itest2 BAT
2.000 ! Batch file to perform impact tests on NSF-SFD Rig

3.000!

4.000 ! Last Modified by fernando romero  3/2/200]
5.000 ! choclof@tamu.edu

5.000 !

7.000 | #*** Initialize acquisition parameters ****
8.000!

9.000 tpage lelear display

9.100 gut " "

Qll50ut""

9130 out " "

9140 out " "

10.000 11=0 Iset test counter to zero
11.000 f1=5000 l(sampling freq)/2.56
12.000 fav,all auto Iset FSV for all channels to automatic
13.000 blocksize, 4096 Iset sampling block size
14,000 jactivate, 1:6 lactivate channels 1 thru 6
15.000 ifre,i,f1 Iset sampling frequency
16.000 iacc,trnig Iset acquis. mode to trigger

17.000 tcond, 1, +, 5 Itrigger cond. on ch.1 positive slope and 5% of fsv 17.000 iselect,1:6
18.000 1select 1:6

19000 cc.sel.de Iset de coupling for 1 thru 6

20.000 tdelay,-500

21.000 ! CHANNEL 1 Lead Cell Vertical

22 000 fsv,1,10 Ifull scale voltage for channel 1 set to 5 Volts.
23.000 label. 1, Load Idata label

24 000 units, 1, EU, Ibs lunit definition

25.000 sens, 1, 20 |Proximitor sensitivity 50 mV/lb -= 20 [b/Volts
26.000 !

27.000 ICHANNEL 2:5 Proximitor 1

28.000 label, 2, DispDrvY IDisplacement on the drive end Y= vertical
29.000 label, 3. DispDrvX |Displacement on the drive end X= horiz.
30.000 label, 4, DispFreeY IDisplacement on the freeend Y

31.000 label, 5, DispFreeX Displacemetn on the free end X

32.000 iselect 2:5 Iselect channel list for use in next commands
33.000 units, sel, EU, mil lunit definition

34.000 sens, 2, 4935 IProximitor sensitivity .200 V/mil -> 5 mil/Volts.

34 010 sens, 3, 4935
34.020 sens, 4, 5.027
34 030 sens, 5, 5.027

35.000!

36,000 |\CHANNEL 6 Reference Signal
37.000 label, 6, RefSgn Idata label
38.000 lunits, 6, EU,

39.000 lsens, 6, 2 Iref signal
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40,000
41.000!

42.000 window,none Iset no windowing

43.000 !

44.000 input s9 "Enter first five characters for data files:"

45.000 tpage
46 000 out "Hit mel!l "

47.000 timel 2.3 4.5 6acqd] tacquire 1 block of data

47.001 out " "

47 005 out "We have saved"il," tests so far"
47006 out " "

47.010 out "PLease make a choice”
AR 210 61| R —— "
47.030 ot " "

47.040 out " (R) Repeat this test,"
47.045 out " (S) Save the data for this test.”
47.050 put " (E) Exit this program."
47 100 input =2

47.1101f 82 = r jump 45

48.000 |

49,000 if s2 = s jump 50

49.0101f s2 = e jump 70

50.000 tpage

51.000 put "Saving the data files for test #",11+1
51.100 iner 11

52.000 510="load.prn”

53.000 s11="drvy.prn"

54 000 s12="drvx.prn"

55.000 s13="freey.prn"

56.000 s14="freex.prn"

57.000 s15="refsgn.prm"

58.000 s10=89+i1+s10

59.000 sl 1=385+il+sl11

60.000 s12=89+i1+s12

61.000 s13=s9+i1+s13

62.000 s14=s0+11+s14

63.000 s15=39+11+s15

64,000 savfunct s10 d1 ascii
65,000 savfunct s11 d2 ascii
66.000 savfunct s12 d3 ascii
67.000 savtunct s13 d4 ascii
68000 savfunct s14 d5 ascii
69.000 savfunct s15 d6 ascii
69.002out""

69.100 out "Make another choice:"
69.110 out *-—————— ;
69.111 out" "

69 120 out " {R) Run more tests."
69.125 out " (E) Exit."
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69.130 input s3

69.1351f s3 =r jump 45

70.000 tpage

71.000 out "Thank you for running tests with me, it was fun!"
72.000 end

120



Appendix B. Equivalent impedance of series support squeeze film damper and flexure pivot

tilting pad bearing.

The series support ISFD-FP.JB has equivalent stiffness and damping force coefficients that

are dependent on the running speed and on the frequency of excitation. Furthermore, the

attachment mass between the two fluid films corresponding to the damper journal and flexure

pivot bearing masses (m) introduces a reduction in the equivalent dynamic stiffness at high

frequencies. Figure Bl shows a diagram of a peint mass rotor supported on two fluid films in

series, as well as the coordinate system.

The equations of motion of the point mass rotor and the attachment mass are:
MX, +K(X;-X,)+C(X,-X, )=F
M, X, +K X, +C,X,-K(X;-X,)-C(X,~-X,)=0

where:

m K. 0] G x| X
M, = K= s il X = ; Xijy=
' Il m S KLV, <P £ 1R 4 = [ | 0 ¥,

F o |
= o g-r‘-'"’:l F =cte, 0=
[— iF, } ‘ H

Assume a harmonic solution of the form:

and

i S

Xi=yse™ and X, =3¢

and define the bearing and damper impedance functions as:
Z.=K+jwC
Z,=(K,-o'M, )+jeC,
Combining equations (B.1) and (B.2), the equivalent bearing impedance is given by:
Z, =[ZH ~Zy(Zy+2p)" ZEJ

Z., is a 2x2 square matrix whose entries are the equivalent bearing impedances:

(B.1)

(B.3a)

(B.3b)

(B.3c)

(B.4)

(B.5a)

(B.5¢)

(B.7)
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Figure B1. Representation of a point mass rotor supported on a series combination of a
fluid film bearing (eight rotordynamic force coefficients) and a squeeze film damper
(four dynamic force coefficients). Attachment mass included.



