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FLOW ANALYSIS OF SQUEEZE FILM DAMPERS OPERATING WITH BUBBLY LUBRICANTS
L. TAaD, S. DiaZ, L. SAN ANDRES AND K.E. RATAGOPAL

EXECUTIVE SUMMARY

Rotor-bearing systems supported in squeeze film dampers (SFDs) show large
amplitude vibratory motions when traversing critical speeds. At these operating
conditions air is drawn into the damper thin film clearance creating a bubbly mixture with
the lubricant and producing SFD forces not readily predictable with currently available
computational analysis. Measured film pressures and estimated damper forces provide
fundamental empirical evidence for validation of a model for squeeze film bubbly flows.
This year, a flow model based on the Continuwm Theory of Mixiures describes the
average motion of the squeeze film bubbly fluid using transport equations for each
constituent. Empirical information [rom prior experimental results is used to calibrate the
effective viscosity of the bubbly fluid. Computed predictions for peak-peak dynamic
pressures and fluid film forces agree reasonably well with test results from a SFD
operating with a controlled air in oil mixture. The novel bubbly flow model provides a
computational tool for the improved design of squeeze film dampers with actual
operating conditions.

Further experimental measurements of squeeze film pressures, forces and flow
visualizations of the bubbly flow field in a 5FD should be conducted to verify or modify
some of the model assumptions. The test program should also aim to characterize the
force performance of SFDs at high frequencies and large orbital journal motions.
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weight function for bubbly lubricant effective viscosity.

SFD nominal clearance.

constant.

rate of deformation tensor.

divergence operator.

Journal orbit radiug or eceentricity.

journal eccentricity components in X and Y directions.

radial and tangential force per unit length acting at axial location z.
SF[ radial and tangential forces.

¢ + e cosB, film thickness.

identity tensor,

SFI journal length.

pressure of bubbly lubricant.

journal radius.

specific gas constant.

time,

temperature of bubbly lubricant.
fluid velocity components in fixed coordinate system.
moving coordinate system.

fixed coordinate system.
dimensionless axial coordinate.
volume fraction of air,

volume fraction of air at inlet of SFD.

efc, dimensionless orbit radius.
circumferential coordinates (moving and fixed).

normalized circumferential coordinate.
fluid effective viscosity,

mass density.

SLrEss tensor.

whirl lrequency.

gradient operation.

refers to the exit plane of SFD.

refers to gas effective properties.

refers 1o the gas (air) material or reference properties.
refer to grid position in 8 and Z directions,

refers to lubricant effective properties.

refers to the lubricant material or reference properties.
refers to the radial direction.

refers to the tangent direction.




INTRODUCTION

Thin film bearings vsing lubricants and process liquids reduce [riction and wear,
provide load capacity and add damping to attenuate vibrations. Journal bearings represent
the vast majority of applications where the mechanical surfaces shear the fluid causing it
to tflow and to produce the physical-wedge effect. In zones of local converging film
thickness, the hydrodynamic pressure rises to a peak and then decreases to ambient values
at the side and trailing edges of the thin film. In zones where the film thickness locally
increases, the fluid pressure may drop to ambient or to its vapor pressure leading to the
release of dissolved gases within the lubricant or lubricant wvaporization. This
phenomenon of film rupture, characteristic of steadily loaded bearings, 15 universally
known as lubricant cavitation, vaporous or gaseous, and its effects on the performance
and stability of steadily loaded bearings are reasonably well understood (Dowson, et al.,
1974; Brewe, et al., 1990},

Often fluid film bearings, and most notably squeeze film dampers (SFDs), must
support large dynamic loads, transient or periodic, which cause the fluid to go through
sudden flow reversals. The tluid film pressure may fall repeatedly to ambient or to the
lubricant vapor pressure if the bearing is fully submerged in a lubricant bath. However in
open-ended bearings, the lubricant not only releases its gaseous content bul the dynamic
journal motion draws air into the film. Large amplitude journal motions at high
frequencies lead to the generation of a bubbly liquid that affects the bearing dynamic
forced performance. The air. entrapped within the film as bubbles, persists in the fluid
film even in the zones of high dynamic pressures. Foamy oil at the damper outlet
evidences this pervasive operating condition. Zeidan, et al. (1996) review the state of the
art in SFDs and remark about the importance of the air entrainment phenomenon since it
reduces considerably the dynamic fluid film bearing forces and the overall damping
capability of SFDs. To date, however, no accurate models exist to address the effects of
air ingestion on dynamically loaded journal bearings and SFDs. The relevant
experimental measurements conducted at the TAMU Rotordynamics Laboratory could
aid in validating predictive analysis (Diaz and San Andrés, 1997).

EXPERIMENTAL EVIDENCE FOR FLUID CAVITATION IN SQUEEZE FILM DAMPERS
There are two regimes of dynamic fluid cavitation in a SFD. The appearance of each
regime depends on the damper type (sealed or open to ambient). level of supply pressure,
whirl frequency, and magnitude of dynamic load producing small or large journal
excursions within the film clearance.
Lubricant vapor cavitation appears in
dampers with tight end seals that prevent the
entrainment of external gaseous media and in
operation with large supply pressures. In this
last case, the through oil flow also prevents the
ingestion of air. Furthermore, the lubricant
. : must be relatively free of dissolved gases such
Eui*:-fap Y A as air, a condition not readily found in practice.
"o iz oo tisec] Figure 1 depicts a typical measured dynamic
film pressure versus time in a SFD operating

pressuns

Figure 1. Dynamic film pressures (bars) and local
film nan fmm ¥ 104 In a SFN with vannr cavitation




with oil vapor cavitation. The damper test rig is described later in this report. The test
corresponds to a fully flooded condition at 1.45 bar of pressure supply, a through flow of
0.12 liters/min and 27°C film temperature. The local dynamic film gap is shown as a
dashed line. The experiment illustrates the variation of pressure and gap for five periods
of journal motion. The whirl frequency and centered journal orbital amplitude equal 75
Hz and 0.180 mm, respectively. The flat zone in the dynamic pressure corresponds to
nearly zero absolute pressure. Note that the lubricant vapor cavity appears only during
that portion of the journal motion cycle where the film gap increases. The vapor bubble
collapses immediately as the local pressure raises above the oil vapor pressure. Nearly
identical squeeze film pressures are reproduced for each period of journal motion. In
general, correlations of measured pressures and vapor cavitation extent with predictions
based on traditional film rupture models are satisfactory.
Air in oil (bubbly) fluids appear in vented
dampers operating at high frequencies and
with low levels of external pressurization. A
suction pressure draws air into the thin film at
locations where the local film gap increases.
The cyclic fluid motion leads to air
entrapment with bubbles remaining in the
zones of dynamic pressure generation above
ambient. The bubbles may shrink, break up
Figure 2. Dynamic film pressures (bars) and local  1Nt0 smaller bubbles, or diffuse within the
film gap {(mm x 10) in @ SFD with air entrainment.  Jubricant, Figure 2 depicts the typical dynamic
film pressures versus time in a damper open to
ambient conditions. The operating conditions are identical as those given for the
measurements depicted in Figure |, except that the damper is not submerged in oil. The
size and concentration of the ingested bubbles depend on the journal whirl frequency and
amplitude. Operation at increasingly higher frequencies leads to finer more concentrated
bubble distributions and the formation of a two-component foamy fluid. The dynamic
pressures shown in Figure 2 reveal important differences when compared to those
pressures induced by lubricant vapor cavitation (See Figure 1.) In the case of air
ingestion, the squeeze film pressures differ markedly in each period of journal motion
with peak pressures showing large variations. The pressure flat zone typically denoted as
gaseous cavitation is nearly at ambient pressure. The generation of subambient film
pressures is also unique at the times when the journal moves from minimum to maximum
film thickness.

Childs (1993) notes that, because of cavitation phenomena, correlation belween
theory and an experiment is less compelling for dampers than journal bearings. The
authors believe that the vast majority of SFDs inevitably operate with bubbly lubricants
considering the low levels of pressure supply, flow rates and high operating frequencies.
Of course, mixed operation regimes can also occur in practice. For instance, tightly sealed
dampers may show both vapor and air entrainment type cavitation where gas bubbles may
coexist around a large lubricant vapor bubble.
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MEASUREMENTS OF FILM PRESSURES IN A BUBBLY FLUID SFD

The research at the Rotordynamics Laboratory aims to quantify the effects of
controlled air in oil mixtures in the generation of dynamic film pressures in a SFD test
rig. The experiments emulate air entrainment in an open end damper operating with a
centered whirl orbit of nominal amplitude equal to 50% of the film clearance. Diaz and
San Andrés (1997, 1998a.b) describe in full the test rig, experimental procedure and
uncertainty, measured squeeze film pressure fields and estimated damper forces.
Figure 3 depicts the damper test section,

Zo Y e vy flow loop, measuring instruments and relevant
e nomenclature. The damper journal diameter and

i 22 PP| w axial length equal to 1294 mm and 31.1 mm,
s _-121 u_“m respectively. The journal and its ball bearing are
T A0 mounted eccentrically on a rigid shaft. Four

: PT SCRN|  dnensione anti-rotation pins prevent the journal rotation. A
N7 Z;= 167 mm variable speed DC motor and belt transmission
-1/ : E]:;?ﬂ i drive the shaft supported on two precision ball
Celblindiiit bearings. At a pressurized condition of 7.0 bar

FER the nominal radial clearance and orbit radius are

equal to 0.343 mm and 0.180 mm, respectively.
The left end of the damper is tightly sealed with

an O-ring, while its right end opens to an exit
plenum at a uniform pressure. The lubricant
enters the damper through two holes at the top
(90°) and bottom (270") of the damper left end.
Experiments are performed with an ISO VG
68 pure lubricant of density and viscosity equal
to 0.87 grlem’® and 775 cp at 28 °C,
respectively. The lubricant is delivered to the
test section via a gear pump and mixed with
compressed air in a sparger installed well
: upstream of the damper inlet ports, see Figure
e Fn\;{m g}@ 3b. The air in oil mixture void or volume

O Sump. H fraction (VF) is determined directly from
- tlapacarnit Bt e measurements of the air mass flow rate and
71 Eemparsure Sansaueat i i lubricant flow rate. Thermocouples detect the

TR lubricant inlet and outlet, air supply and film

(b) Schematic of flow loop and instrumentation  temperatures. A photoelectric tachometer senses

Fig. 3 Squeeze film damper test rig the shalt speed and two eddy current transducers

record the journal motion. Six piezoelectric

pressure sensors (PT) are flush mounted around the damper at two axial planes (Z; and
Z3) as depicted in Figure 3a,b.

Fourteen mixture compositions, with air volume fractions (VF) spanning from pure
oil (VEF=() to all air (VF=1) have been tested. The air and lubricant supply pressures are
kept constant at 6.8 bar to insure a uniform mixing and to avoid lubricant vaporization.
The feed temperature is al room conditions (25 °C) while the exit plenum pressure



Prassurn |2 barid]

Prassurn |2 barkdv]

remains at 1.8 bar. A data acquisition system records the journal displacements and film
pressures at two shaft speeds, 1,000 rpm (16.67 Hz) and 500 rpm (8.33 Hz). A 500
samples per second rate allows acquisition of 34 periods of journal motion at 16.67 Hz
and 17 periods at 8.33 Hz.

. Vien =z HE'{?;L_1 Figure 4 compiles the
N - Ao »—i 1 squeeze film pressures versus
time at different
circumferential positions
(Z3,6). The vertical axis
represents the pressure, the
horizontal axis depicts the
time, and the in-plane axis
denotes the mixture air volume
fraction (VF) wvarying from
2 _ ¥ Zero to one, Le. the full range
= yeis 2 from pure oil to all air. The

L. film dynamic pressures show
Figure 4. Development of the instantaneous pressure field vandtions from oneperied of

and uniform pressure zone with the mixture volume journal motion to the next
fraction (VF) at different circumferential locations for a along with the appearance of

whirlfrequancyof.6.33 e random pressure spikes. These

temporal  fluctuations  are

nearly imperceptible for mixtures with compositions close to the pure oil condition

(VF=0), though they increase dramatically as the air VF increases. independently of the

measurement location. The sharp pressure fluctuations seem to be related to the
coalescence of bubbles and/or bubbles passing in front of the pressure sensors.

A time ensemble averaging procedure results in smooth pressure fields where the high
frequency "noise" is filtered. The scheme lakes the entire pressure field and divides it into
fields with a time period equal to that of the journal motion. Each field becomes an
independent measurement and the time average of the whole ensemble is computed. The
ensemble dynamic pressure reveals the features common to all the measured periods of
the pressure field and describes the evolution of a uniform pressure zone also known as a
paseous cavitation region. Note the great similarity of the bubbly lubricant pressure
profiles for large air volume fractions with those given for the air entrainment condition
shown in Figure 2.

Figure 5 condenses information about the changes in peak-to-peak (p-p) film
pressures as a function of the air volume fraction at the circumferential locations of
measurement. The vertical bars represent the highest and lowest temporal values ever
reached by the p-p pressures. In all tests, the mixtures with a very small amount of air
(VE~0) produce a sharp reduction of the p-p pressures. Further increments of the air VF
(from 0.02 to 0.85) cause a quasi-linear reduction on the pressures. Above a VF of 0.85,
the p-p pressure drops faster, achieving a nil value for pure air. The magnitude of the
temporal pressure fluctuations (vertical bars) also changes with the mixture composition.
These fluctuations are just 2% for the nearly pure oil condition, increasing to about
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Figure 5. Peak-to-peak film pressures vs air VF at different
circumferential locations of measurement (8.33 Hz)
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Figure 5. Dynamic film forces vs. air VF at different circumferential
locations of measurement (B.33 Hz)

+45% at mixture volume

fractions n the
neighborhood of 0.85.
Above this wvalue, the

variations drop to about
+15% for all air.

A SFD describing
circular centered orhits
and with a stationary
pressure field generates
invariant forces in a radial
and tangential coordinate
system rotating at the shaft
speed. A tangential force
(-fy) is distinctive of an
ideal viscous damper since
it directly opposes any
forward whirl motion.
Radial forces (f;) could be
centering  denoting a
stiffness or  outwards
implying a virtual mass
effect.

Figure 6 shows the
estimated test radial (-f;)
and tangential (-f;) forces

as a function of the
mixture volume fraction
(VE). The  ensemble-

averaged forces show
excellent correlation with
the forces at the different
angular  locations  of
pre.ssure measurements.

The estimates of (-f;) lay all within a narrow band around this ensemble average. The
dispersion of the radial force is somewhat larger for VF around 0.85. The damping force
(-f;) presents a nearly linear variation with the air volume fraction, evidencing a reduction
in the mixture effective viscosity and the overall damping capability of the SFD. The
centering force () is not affected by the mixture composition, except at the ]ﬂl‘gﬂ‘it air

volume fractions where it rapidly drops to a null value (VF > 0.85). However,

a closer

scrutiny reveals that the radial force increases rapidly from the pure oil condition to
mixtures with small amounts of air (VF < (.02). The radial force appears hydrostatic and
related to the level of supply pressure to the test damper section.




The experimental pressure fields show fundamental differences with those arising
from lubricant vapor cavitation. The tests quantify for the first time the paramount effect
of the bubbly lubricant in the reduction of the dynamic force capacity of the test damper.
The pervasive phenomenon of air ingestion and entrapment lacks proper physical
understanding and sound analytical modeling, although relevant practice demonstrates
that it greatly affects the dynamic force capability of fluid film bearing support elements.
Current models for the rupture of thin films are strictly applicable to steadily loaded fluid
film bearings and their extension to transient or periodic heavily loaded conditions has
been successful only for bearings operating fully flooded within a lubricant bath.
Prevailing analyses fail to reproduce the dynamic pressure field and forced response of
vented (open ended) SFDs where the thin film flow field evolves into a foam-like fluid.

A NOVEL MODEL FOR SFDS OPERATING WITH BUBBLY LUBRICANTS
A squeeze film damper operating with a bubbly lubricant is characterized by a large
number of bubbles well dispersed throughout the fluid film. The shapes and sizes of the
bubbles may appear random and are certainly motion-dependent. Breakup and
coalescence of bubbles may also occur. These features of the bubbly flow make
impractical a Lagrangian formulation attempting to track the motion of each individual
bubble. Alternately a continuum-like model for the bubbly flow within the thin film lands
of a SFD is proposed. This model considers continuous fields of motion for both the oil
and the bubbles (Bowen, 1976; Rajagopal and Tao, 1995). Note that the bubbles may be
large relative to the film clearance, yet relatively small when compared to the
circumference and length of a typical damper configuration. Thus, a continuum maodel to
obtain the dynamic pressure distribution in a SFD appears appropriate.

Consider the physical lubricant as an incompressible Newtonian fluid with mass
density p,, and dynamic viscosity W, . The air (ideal gas) is regarded as a compressible
Newtonian fluid with dynamic viscosity p_, and its thermodynamic pressure

characterized by the equation of state for a perfect gas. Further, the bubbly flow in the
thin film lands of a SFD is assumed as isothermal and where the velocities of the
lubricant and the bubbles are identical. Some experimental observations by Diaz and San
Andrés (1997) appear to support this assumption which facilitates greatly the analysis.

The conservation of mass for each of the components, lubricant and air, and the
balance of linear momentum for the bubbly lubricant leads to the following equations of
motion (Bowen, 1976; Rajagopal and Tao, 1995):

ﬂ-%—div(pLu}:D, (1)
ot
9Bs | divlp,u)=0, @)
at
p(a—u+u-'\?'u]=divu7, p=p, +pP;- (3
dt ¥

The smooth fields u and o represent the velocity and the stress tensor of the bubbly
lubricant, o the gas volume fraction, and p, and p, correspond to the effective mass

densities for the lubricant and gas components, respectively. The effective density of the

10




lubricant (p;) is defined as the mass of lubricant per unit volume of mixture, and related
to its material density and the gas volume fraction by,

Substitution of equation (4) into (1) yields

%—(:—div{[i—u)llzﬂ, (5)

The objective of the analysis is to obtain an appropriate constitutive structure for the
bubbly lubricant stress tensor (&) in terms of the material properties and the motion, ie.,
¢, p, and u. Following well known structures for Newtonian fluids,

6 =—PI+2uD, nsé[vuﬂvu}’] (6)
with
P= ﬂ (7
o
w=alo)y,, +op., . ale)=0, lima(o)=1, lima(e)=0. (8)

where R is the specific gas constant for air and T the absolute temperature of the bubbly
oil. The expression for pressure P, eqn. (7), is obtained under the premise that the effect
of surface tension is negligible so that the lubricant and the bubbles have identical
pressures. The physical mass density of gas can be estimated through (p_/« ); and the

pressure of the gas is calculated from the equation of state for a perfect gas. The effective
viscosity L is taken as a function of the gas volume fraction (o) with p, and p,, asits

extremes in the case of pure gas or pure oil, respectively. Physically the effective
viscosity (W) should decrease as the gas volume fraction () increases, and so the
functional form a(ct) is also a decreasing function. The expression for a(c) (or p) has to
be determined trom rheological measurements which are neither readily available nor
easily performed. Undaunted by this complexity, the present model attempts to calibrate
the viscosity function a(ct) by performing a curve fitting of computed pressures derived
from the model to some of the lest pressure measurements available (Diaz and San
Andrés, 1997). The reasons for this procedure are:

(i) L is not a material property unlike the viscosity p,, for the pure lubricant. The

relation for the stress tensor @, egn. (6), is meaningful only in a statistical sense
with the uncertainty resulting from the relatively large size of the bubbles, and [

is a statistically averaged quantity with significant deviations due to the large
bubble size and their random motion;



(if)  The effect of the bubble size on the effective viscosity (1) makes this parameter

dependent on the domain geometry and the flow conditions of the SFD since the
latter controls the bubble size. Therefore, the damper can be thought as playing
the role of a viscometer.

Figure 6 shows the typical
geometry of a SFD describing
circular centered orbits of journal
amplitude (e) at whirl frequency ()
within a thin radial clearance (c¢). The
fixed coordinate system (x'.}f'.z')
and moving coordinate system
(:{,}f,z) are attached to the bearing

with x =x"—wRt (San Andrés and
Vance, 1986). The circumferential
coordinates 8" and Oare defined by
x"=RB" and x=R0, respectively.
Let u = (o u,.u,) be the
components of the fluid velocity in
the moving coordinate system where
the flow appears stationary to an
observer rotating with the whirl
frequency ( w). The film thickness (h)

Figure 6: SFD geometry and coordinate in the rotating coordinate system is
systems for circular centered journal orbits. given by:

h=¢ +ecosh, (9

The equations for conservation of mass for the gas and lubricant and the momentum
transport for the bubbly oil are given in the rotating coordinate frame as,
1 d

d d

P ] Gy U =U! 10
1 d d d

=, 1)+ =, u)+—{p, u.)=10, 11
= (p.u J+ay(mu )+ az{p u,) (11)

|:Ur;| E}Uu aU‘J au“i| :_La_P +£i(£hw

L B + -
PR30 Wy "“z| Ra RB\R 08
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+ay[“’[1{ 30 "y H—FBE{M(R vl s ]] e




wdu, | du,  du, P _ o du,
— -+ el o Gl 12 ot .
p[R Jg dy Vil az} dy  dy [H ay )

1 8 1d d o0
g2 ) Ldny |\ Bus 9 l1::fu,__r w || (13)
Radd| | R SEI dy dz| | dy oz
U.Bau..- aur auz E}P _} . au_;
Sy, =t | = 2|
p|:R | dy p E}z} Az E}z[u dz J
+li W iﬂ.t_auf‘ g J %.{..h i (14)
RdB| |R dB oz ay dy oz
Along with the following boundary conditions:
(i) Non-slip condition at the bearing and journal surfaces, i.e.,
u=(-wR,00) aty=0, (15)
u:(—mR.G}csinE.[}), at y=h=c+ecos; {16)
(i1} Periodicity of the tlow field in the circumferential direction (8 ),
(cx,pc_?uj(ﬂ o 2Tt,y,z}= (D'.,pa.u‘,(ﬂ,y.z); (17)
(iit)  For a symmetric SFD with both ends open to ambient conditions,
a_(i:dpnz{}__ at z =0, by symmetry, (18)
dz oz
and
t=a,: P=P,, atz= %L, at the exit ends, (1%

where ¢, and P, denote the exit gas volume fraction and pressure at the damper sides.

At present, these values are extracted from the detailed experiments of Diaz and San
Andrés (1997). Note that in actuality the discharge gas volume fraction is determined by
the damper operating conditions, which include the orbit radius and whirl frequency.

Non-dimensional variables are introduced as,

g i §:i1 7 = E:E ﬁ;i
'ETE c c Ky
RT —- P .
Bo=fen B~ agele oo B Sl 0n)




The model follows the assumptions of classical lubrication theory, i.c. it considers the
effects of fluid inertia to be negligible, and furthermore, the smallness of the clearance Lo
radius ratio, ¢/R << 1, leads to a pressure ficld invariant across the film thickness (h). The
classical model then regards the flow motion as a quasi-static equilibrium of pressure
forces and the cross-film shear forces induced by the whirling motion. Note that this is
essentially the standard procedure used to derive the classical Reynolds equation, see
Appendix A for further details. The governing equations for the squeeze film bubbly flow
based on the assumptions described above are:

(.7, P)=(c. 7., P)6,Z), (21)
d Rd .
_E S & e =E_:’1 22
aﬂ3(pfu)+ Pou )+ 5 (eu) (22)
d d R d
— (- )+—= (-5 )+ =—((1-a)5.)=0, 23
(- 0Ju)s 2 (-om)+ T~ (1-a)a) @)
9 ﬁﬂﬂ.}:..f'_‘_ B fEi (24)
dayl" dy , op,(R )
i ’__[E.'_uwz Fu E i_a_f1 {?_5}
y{ 9y, op, LR/ oz
along with
u=(-100) aty=0, (26)
W=(-1esin00) aty=h=l+ecosh, e=>, (27)
C
(0. p N6 +2m2)= (0.7, X6.Z), (28)
XA b, da=b, (29)
dz dz
=0y, P=1, atZz=1. (30)

Direct integration of the momentum equations (24) and (25) and application of the non-
slip boundary conditions, equations (26-27), leads to

"1 9P ﬂ
=i~ 1= o [EJ_B _{E"?}'I' (1)

20, \ R | T d6 ?




B p, R "1 0P i
= —| = | =——7¥lh 32
u 200, L{ ] ,_a_}' }*) (32)

Here 1, represents the circumferential fluid velocity in the fixed coordinate system. Note
that the bubbly fluid velocities are a result of hydrodynamic pressure gradients, i.e. a pure

Poiseuille type flow. Further, integration of the mass conservation egns. (22) and (23)
across the film, ¥ -direction, and applying egns. (26) and (27) yields,

35 Pel 87 o L Pelwa7 |- B, (3)
%[(I = Ui)iﬁad?]+ %:%[{I - ﬂ‘.}:[ﬁ, dy]=%({1 —oh), (34)

Substitution of the fluid velocities, eqns. (31) and (32) with 0 used instead of B, in the
mass conservation equations (33) and (34) gives,

e (B # )

=2 bri-o] (35)

This equation can be cast in the familiar form of a Reynolds equation as follows,

1 a(ph aP] d (ph’ apw (ph)
R* 06| 12p 08 3z 12 dz | 90" ‘

}IT

oL
Equations (33) and (34) represent the conservation of mass for the gas and lubricant
components of the bubbly lubricant, respectively. Note that the current model precludes
lubricant vapor cavitation or the release of dissolved gases. From equations (33) and (34)
it is easily inferred that

where from equations (4) and (7), p, =(1-0t)pis. L= a((i]um—l-(z;iu.k cand P= S

d d o ﬁ
h——+ [{,dy dy— | /2 |=0, 36
[ g a2 J By
ie.. 'ﬁu:(T(l—ﬂt]— L (1—a). (37)
_Ein

or written, with the aid of equations (4) and (20), in the form of
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&= P LB : {38}

P pr.nEHT ! —

which implies that the ratio between the (effective) mass density of air and the (effective)
mass density of oil remains invariant throughout the bubbly flow. This equation just
represents the conservation of mass principle and provides a direct relationship between

the gas volume fraction and the bubbly fluid pressure. i.e. substitution of egns. (7) and
(20) above render,

2 [aﬁ (- m)i} ; (39)
Cliy n

Combining eqn. (39) with eqgns. (8) and (20) vields

o= C_. Eza(ﬂ:}-&-@m. (40)
C+P (198

Equation (35) then provides the governing equation for the mean pressure field P in the
two-dimensional domain @,E)E [DJ % |ELI] along with the following boundary
conditions from equations (28) to (30),

F0.2)=F(.7). E%E(E,Ei %%Eﬁfi : (41)
- . _
—Pi8.= =0, P0.1)=1.
= H?L. (6.1)=1 (42)

NUMERICAL ALGORITHM OF SOLUTION
A finite difference procedure is used for discretization of the governing eqn. (35) on

the finite region depicted in Figure 7. The J=N
dimensionless flow domain
= £ s : Li+1
@,z)e [{},I]x[[}.l] is divided into a sequence
Eidisaate sl et et A=l+1/2,]
of discrete gnd points CI&;}‘L{{ " B=1141/2
e | Krl had] o2
(6.z),=(6,7, ). 1=12. . M: T=12,..N, KXl Al p=tr1n
(43) D
I1-1
Equation (35) is integrated on the square J=[I ] : =

shaded area around the pressure node (I,1).
The first order partial derivatives are  Figure 7: Discretization of flow domain for
discretized with the well known central numerical procedure

difference formulae to obtain equations for
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; =) __ E . E- s
- [ETER ] Eim ?I—J [_ "M'; PI.J-1 + %PI.I—! ]
7 - Zr—l z = [.E £ -
; i (44)

where

= (43)
L Py

i
6. +8 P. 4P _ P _+P
El:n:.] :E[ LIE - d - I.Jq ) Jr EEJiHI =E[ 1+L1£ } {4'5]

(=R, =5 b el i 22|

- (47)
The boundary condition, eqn. (41), results for 1 =2,,,,,N—1,in
1. B - i=f s ol el WS
BB D=t i S0 o (48)
' T BB A=l T B =TT

Application of the symmetry and exit boundary conditions for the gas volume fraction
for I=1,....M, leads to

Oy, =0, Oy =0da- [49]
The numerical solution for the grip pressures P, on {l,...M}x{l...,N} proceeds

ileratively using eqn. (44) together with eqns. (48) and (49). The iterative scheme is
described as follows:




(a) Guess an initial pressure field at the first iteration, B to P, (I=1....M

J=1,..,N—1), for example, take B!/ =1 (or o' =1, )

(b) For a fixed [Tf] in {2,..,M—1}x {2...N -1}, determine P., from equation (44) by

calculating all the terms based on P}, except the quantity P.; Then, calculate P,

P, and P,, from equations (48) and (49). This procedure results in P .
(I=lL...M;J=1..,N-1);

(¢) Check the difference between the current and prior fields, P,,

B, -Po)VP, (I=1..M; I=1..N-1). If the difference is larger than a

specified tolerance then consider P,

and P\, according to

—(0}

. as an initial field p,,. and repeat steps (a) thru
(c) until a specified criteria is satisfied. An under relaxation scheme could be
implemented to smooth out convergence.

Fluid film forces are calculated by integration of the calculated pressure field around
the journal force. Radial and tangential forces (per unit length) at an axial location (z) are

given by,
f} = f” PICUSH}ME , (51)

fr ; 15in€

while the SFD radial and tangential forces are given by,

{E} = jf"P{C?SE}Rdm;z. (52)

F, sin

A computational Fortran program has been developed based on the above point-by-
point iteration scheme. The parameter values used in the validation of the program are
listed in Table 1 and denote the geometrical characteristics and operating conditions of
the SFD tested by Diaz and San Andrés (1997). The values for the exit gas volume
fraction (¢, ), discharge pressure (P, ), film temperature (T) and journal orbit radius (e)
have been obtained directly from the experimental measurements. These values are
presented in Table 2 for each test condition at a whirl frequency of 8.166 Hz (0=52.35
rad/s) .

Table 1: Test squeeze film damper parameters

R =287 N-m/kg K, ©=52.35 rad/s (500 ripm), p_, =1.837x107 kg/m-sec,
i, =1.3337x107 exp(4699/T) kg/m -sec ~ 96 centipoise,
¢=343%10"m, R=647x10"m, L=3.11x10"m.

based om SFL west configuration of Diae and Son Andrés (1957)



Table 2: Bubbly flow test conditions

Testcase # g ol Py(bar) T(K) e,x10°(m) eyx10°(m)

2 0.114 0.023 1.612 297.59 B 1.51
3 0278 0.067 1.646 297.59 L7 1.49
4 046  0.141  1.715 298.15 LA 1.48
5 0.622 0247 1.749 298.15 L.78 1.49
6 0.749 0376 1.783 208.15 1.78 L48
7 0.823 0486 1817 298.15 1.78 1.46
8 0.874 0591 1.851 298.71 1.79 1458
9 0919 0.706 1.885 298.71 1.79 .46
10 0941 0.773 1.885 298.71 1.78 1.46
11 0.854 0823 1.953 29926 1.78 1.44
12 0963 0.838 2.021 299.26 1.78 1.45
13 0.987 0.95  2.089 299.26 1.83 1.41

oy represents the supply or feed gas volume fraction. An average valuc of journal eccentricity,
E= (E:,: + e,,)f? .15 used for the numerical predictions,

Several formulas for the viscosity relationship, a(et), under the constraint of equation
(8), have been tried to predict the dynamic film pressure field P and the peak-to-peak
pressure at the axial position z,=16.6mmwhere measurements are available. Initial
numerical computations reveal that an effective viscosity given by the linear relationship,
a(o.)=1-0., do not yield results compatible with the experimental measurements. After
several trials 1t 1s found that the relationship,

alo)=(1—a' )" (50)

renders numerical results which provide a better correlation with the peak-to-peak
pressure measurements. The reason may be due to that this relation is relatively
insensitive to the volume fraction of air (of) when this is small, and so is the effective
viscosity |1, as it is clearly depicted in Figure & for the two correlations a(&}: | —a and

alo)=(1-0at)".

a=(i-a)"

0.8
o 06
s 04
0.2
o4 2 : 1L
0 02 0.4 0.6 0.8 1

o

Figure 8: Relationships for the effective fluid viscosity versus the gas volume fraction ().



The convergence criterion used in the numerical calculation is set to
= =Y = L - 2 r
(p, —PU WP, <10, The number of grid points M and N may vary and the grids used

distribute non-uniformly with finer partitions in the regions around §=0.5 (0=m) and
z=1 since the test measurements and the preliminary computational show that the
pressure changes rather rapidly in these regions. Values of M = N = 76 have been chosen
to balance the conflicting demands of accuracy and computing time. In addition, further
computations demonstrate that a finer mesh with M = N =151 increases the computing
time tremendously, though it may increase the accuracy of the numerical solution to
several percent. For instance, for test case #4, see Table 2, M =N =76 leads to peak-to-
peak pressures at 7, =5.6mm and z, =16.7mm equal to 2.88 and 2.18 bar, respectively,
and with a computing time of 14 minutes in a Pentium PC. However, the finer grid
M =N =151, renders peak-to-peak pressures equal to 2.79 and 2.11 bar at the expense of
a computing time equal to 150 minutes.

NUMERICAL PREDICTIONS AND COMPARISON TO EXPERIMENTAL RESULTS

Diaz and San Andrés (1997) report an experimental investigation aimed to measure
the dynamic force performance of an oil lubricated SFD operating with air ingestion.
Tests are conducted in a constrained circular orbit, open end SFD supplied with a
controlled bubbly mixture of air and oil (see Figure 3). Detailed measurements of the
dynamic squeeze [ilm pressures and journal motion, film temperatures, electrical power,
air and lubricant flow rates are performed at two whirl frequencies (8.33 and 16.67 Hz) as
the air volume content in the bubbly lubricant increases from 0% to 100%. The analysis
of period-averaged dynamic film pressures from many cycles of journal motion reveals a
zone of uniform low pressure (gaseous cavirarion) with a magnitude equal to the damper
discharge pressure, independently of the air content. The uniform pressure zone extends
as the air volume fraction increases and develops around the position of local maximum
film thickness. The damper forces, peak-to-peak film pressures and drive power decrease
as the air content in the bubbly fluid raises, thus evidencing a notable reduction in the
damping capability of the SFD.

Numerical predictions for the pressure field and fluid film torces for the test SFD are
presented in Figures 9 through 14. Figure 9 shows the pressure distribution of the bubbly
lubricant at z, =16.7mm versus the circumferential coordinate 8 ' and corresponding to
the different test conditions listed in Table 2. The calculated hydrodynamic pressure
fields decrease as the air volume fraction (g, ) increases. The test results also evidence
this result. However, the characteristic zone of wuniform pressure appearing in the
measurements of the bubbly fluid pressures is not replicated by the predictions (sce
Figure 4 for the experimental results). The model predictions show the film pressures to
vary gradually without dramatic changes or variations.

Figure 10 provides a comparison of the predicted and test-averaged peak-ro-peak (p-
p) pressures versus the inlet gas volume fraction at the axial locations of measurement,
z=35.6mm and z-=16.7mm. The predicted p-p pressures drop in a more linear form

' Note that the dynamic pressure fields shown in Figure 4 depict the pressure versus time at a fixed angular
location. The relationship between both coordinate systems is given by 0=0. -wi, where 8. is the fixed
angular position.
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Figure 10: Predicted and test peak-to-peak
squeeze film pressures for test SFD versus air
volume fraction at axial locations of
measurements. Tests at at «=8.33 Hz.

Figure 9: Calculated SFD pressure fields at axial
location y, = 16.7mm. Effect of gas volume fraction.

and more rapidly than the experimental measurements, The large difference, nearly 1 bar,
between the underpredictions and the measurements denotes that low values of the air
volume fraction (¢¢) do not have a pronounced effect on the generation of squeeze film
pressures. Recall, however, that the measured pressures have a large first-order
uncertainly in the p-p values since these show significant variations every period of
journal motion. The (arithmetic) average of journal orbit radius used in the predictions
may also be a source for the discrepancies noted.

The pressure measurements allow the estimation of radial and tangential forces (per
unit length) at the two axial locations 7z, =5.6mm and z, =16.7mm. The tests confirm
that the period averaged pressure field is synchronous with the journal whirl frequency
and thus generates invariant forces in a rotating (r.t) coordinate system. Figures 11 and 12
show, the experimental and predicted tangential (f, ) and radial (f, ) forces per unit length
acting on the journal surface. The tangential force (f, ) decreases as the volume fraction
of air increases consistent with the experiments. The correlation of predicted and test
results is better than for the peak pressures. The radial foree (f, ) differs largely from the
experimental forces though it has the right order of magnitude. Recall that the radial force
in the measurements is due also to a hydrostatic effect due to the pressure supply
conditions. This important condition. not accounted for in the model, may explain the
large differences with the predicted results.

Figures 13 and 14 show the predicted SFD radial force (F, ) and tangential force (F, )
versus the air volume content. These forces are the result of the integration of the whole
pressure field over the journal surface. The tangential force, also known as the damping
force, decreases as the air content increases denoting a degradation of the SFD force
performance. The force reduction rate is more pronounced for the very small (ce—0) and
very large (o—1) air volume fractions. The radial force increases sharply for small

21




Al z,=5.6mm

3.00E+04 2.00E:04 -
Altheo.) & {exp.)
Al 2, =5.6mm: At z,=16.7mm:
Al(iHen), & % 50E04 (theo.) mlexp.)
2.00E+04
- (exp.)
E Al zs=167Tmm: E
= . = 04
= {theo,). = {exp.) = HRos
- 5
1.00E+04 |
5.00E+03 4
D.00E+00 0.00&+00 ; : T : T
i] 0.2 0.4 0B 0.8 1 0] 0.2 0.4 0.6 0.8 1

0y

Figure 11: Predicted and test SFD tangential film Figure 12: Predicted and test radial SFD film forces

forces versus air volume fraction at axial versus air volume fraction at axial locations of
locations of measurements. Operation at ©«=8.33 measurements. Operation at «=8.33 Hz.
Hz.
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Figure 13. Predicted SFD tangential force versus air Figure 14: Predicted SFD radial film force
volume fraction for operation at «=8.33 Hz versus air volume fraction for operation at
u=8.33 Hz

contents of air, peaks at about 209 of air volume fraction, and then decreases rapidly.
Recall that for the pure lubricant case. (=0), only tangential (damping) forces should
appear in a SFD without lubricant vaporization or no release of dissolved gases.

RECOMMENDATIONS FOR FURTHER WORK

A continuum based model for the mean motion of a bubbly fluid in a §FD has been
developed. The model assumes an isothermal process for an incompressible lubricant and
an ideal gas moving with identical speeds. Furthermore, the pressure of the lubricant and
gas are considered identical in the absence of surface tension effects. The analysis leads to
a Reynolds-like thin film lubrication equation for the prediction of the pressure field in
the flow region. The air volume fraction and bubbly fluid pressure are related by an



algebraic equation that denotes invariant mass fractions for the gas and lubricant in the

flow region. The pressure field is uniquely determined by the air volume fraction at the

discharge sides of the damper.

In general, the predicted results for forces agree favorably with the measurements and
demonstrate the dramatic reduction in damping (tangential) force as the amount of air in
the bubbly lubricant increases. Most notably. a centering radial force providing a stiffness
like effect. appears as a consequence of the air entrained within the bubbly lubricant. The
discrepancies found may be due to the relation for effective viscosity used in the model,
i.e. u:(l—cf'}”z Hir It is unknown if this relationship is applicable to other SFD
configurations or for other operating conditions.

Suggested recommendations for further work include:

a) To optimize the relation for the effective viscosity of the bubbly lubricant and based
on more detailed comparisons between predicted pressures and available measured
pressures. It is important to study the physical significance of this relationship and its
applicability to actual damper applications. The effects of surface tension in the
bubbles should also be researched with some detail.

b) A more detailed model of the squeeze flow of a bubbly lubricant in thin film regions
should include the phenomenon of lubricant cavitation, i.e. oil vaporization or release
of dissolved gases. This study requires of a more general formulation where the gas
and lubricant (liquid and vapor) mass fractions vary within the flow region.
Experimental measurements indicate that for larger whirl frequencies both air
entrainment and lubricant vaporization coexist.

¢) A physical model that provides a sound relationship for the air volume fraction
ingested within the SFD is needed to advance the model and provide a computational
predictive tool of practical value. Note that in an actual SFD application the amount
of air ingested and entrapped within the damper must depend on the film clearance,
the journal whirl frequency and the level of external pressurization to the damper.

d) The current numerical procedure for solution of the governing equation should be
enhanced to a block or line-selver to reduce substantially the computing time and to
provide a predictive tool of practical use.

e) Further experimental measurements of squeeze film pressures, forces and flow
visualizations of the bubbly flow field in a SFD should be conducted to verify or
modity some of the model assumptions. The test program should also aim to
characterize the force performance of SFDs at high frequencies and large orbital
journal motions.
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APPENDIX A
DETAILS OF FLOW ANALYSIS

eglecting the fluid inertia terms and substituting the dimensionless quantities defined
in eqns. (20) into eqns. (10-14), renders the following dimensionless equations

d d

géir:cﬁ..ﬁ ry(” s = a_.(F’.;uJ 0, (A1)
;;B{(l—a)auja-%((l—a}g,.}+zg{(1—a}l—l,)=ﬂ, (A.2)
RYOJ (0% |, 0 ( dm), (0,
[c]ﬁ[“aﬁ]“a [” ae}’ew( aﬂJ
RI(-3m) (RY (3% )_ P 0P
+Laz[”re]+[l,]af[”az o, 3" )
o (_di, dl_{(cY di, J Ty
s =l ==l =
“ag{” oy }+BH[H[[RJ 36 oy }
R o du. R dm P, dP .
_— —— || = —, Ad
+L&}Ep{a?+l,{ﬁ]j| Wy, , dy Gt

% P
P Lo pa“']= Be B k)

dy\ "oz " LEE| " 6Z , ;9
The order of magnitude of 6, ¥, Z. p,, o, H and R/L is one (unit value). Based on
(A.1), (A2) and the flow conditions prevailing in a typical SFD, it is customary to
assume that §,, W, and 7, are also of order of magnitude one. Thus, the terms not

related to (R/c) on the left-hand side of (A.3). (A.4) and (A.5) can be neglected since
R/c >>1, and then egns. (A.3), (A.4) and (A.5) reduce to

- 0 P

RY (25 p w6
c ) dy| oy , op, a8

aP =], (AT

[E] __[ a_ﬁ} _Py dP (A.8)
c dy | ou, E:‘z




The size of the bubbles is large relative to the radial clearance of the damper, which

implies that the gas volume fraction () is independent of the cross-film coordinate y (or
y)and sois p, from eqns. (A7) and (7).
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