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EXECUTIVE SUMMARY'
A Computational Model for Tilting Pad Journal Bearings with Pad Flexibility

Yinkun Li and Luis San Andrés

Tilting pad journal bearings (TPJBs) supporting rotors for high performance
turbomachinery have undergone steady design improvements to satisfy more stringent
operating conditions that include large specific loads due to smaller footprints, and high
surface speeds that produce larger drag power losses and lubricant temperature rise.
Simultaneously, predictive models continuously evolve to include minute details on
bearing geometry, pads and pivots’ configurations, oil delivery systems, etc.

This report introduces a fluid film flow model including both pad and pivot flexibility
to predict the static and dynamic force performance of typical TPJBs. This performance
encompasses journal eccentricity, drag power loss, lubricant temperature rise, fluid film
thickness, fluid film pressure, bearing complex stiffnesses, static stiffnesses, damping
coefficients and virtual mass coefficients. A finite element (FE) pad structural model
(with/without the Babbitt layer) is coupled to a thin film flow model to determine the
mechanical deformation of the pad upper surface.

Recently, Gaines and Childs [2, 3] conducted experiments with three TPJB sets, each
having three pads, over a range of load and rotational speed conditions. To quantify the
effect of pad flexibility on the bearings’ dynamic performance, the pad thickness varies
from thin to thick, /=8.5 mm, 10 mm and 11.5mm. The test data shows that pad flexibility
reduces the journal eccentricity and the dynamic force coefficients. The current model
with both pad and pivot flexibility delivers predictions correlating favorably with the test
data, in particular the bearing stiffnesses, yet it overestimates the bearing damping
coefficients.

Predictions for bearing models available in the archival literature show that the

maximum pad surface deformation occurs on the loaded pad at both its leading and trailing

! Portion for this thesis taken from Ref. [1]
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edges; i.e. under mechanical pressure a pad opens. The deformation at the pad mid-plane
(Z=0) is slightly larger than that at the pad side edges (Z==!/> L). Contrary to the effect of
pivot flexibility that leads to an increase in journal eccentricity, pad flexibility tends to
reduce the journal eccentricity, similar as in tests reported by Gaines [2,3]. A soft pad
(elastic) decreases significantly the bearing stiffnesses and the damping coefficients by up
to 20%.

A parametric study follows to quantify the influence of pad thickness on the
rotordynamic force coefficients of two sample TPJBs: one with three pads of increasing

preload, (7, =0, 0.25 and 0.5), and another one with four pads of null preload (7, =0). The

bearing pads are either rigid or flexible by varying their thickness. For design
considerations, dimensionless static and dynamic characteristics of the bearings are
presented versus the Sommerfeld number (5).

An appendix introduces a one-dimensional beam equation to approximate the pad
deformation accounting for the Babbitt layer. Based on this equation, a dimensionless pad
flexibility parameter is defined. Pad flexibility shows a more pronounced effect on the
journal eccentricity and the force coefficients of a TPJB with null pad preload than for
bearings with large pad preloads (0.25 and 0.5), in particular for operation with a small
load or at a high surface speed (5>0.8). With the same pad preload, pad flexibility affects
more the dynamic force coefficients for a load on pad (LOP) bearing than those for a load

between pad (LBP) bearing.



NOMENCLATURE

A Cross-sectional area of a pad [m?]

Cs Bearing radial clearance [m]

Cp Pad radial clearance [m]

Cxx, Cry Bearing damping force coefficients [N-s/m], c=CQCp/W
Cv Oil specific heat

D Bearing diameter [m]

E Material elastic modulus [N/m?]

Eeq Equivalent elastic modulus of composite material [N/m?]
e Journal eccentricity [m]

eb Unbalance eccentricity [m] in Ref. [19]

F Fluid film reaction force [N]

h Fluid film thickness [m]

hx,hy,hs,hehy Perturbed film thickness components due to pad motions
1 L#3/12. Pad area moment of inertia [m*]

Kxx, Kyy Bearing stiffness force coefficients [N/m], k==KCr/W

L Bearing length [m]

My Bending moment [N-m]

Mep

Bending moment at the pad’s neutral axis defined in Ref. [22]

Mxx, Myy Bearing virtual mass force coefficients [kg] m=MQ>C,/W



N Rotor rotational speed [rev/s], N=€/60

Nrode Number of nodes
Npad Number of pads
P Pressure field acting on the pad surface [Pa]

Px,Py,Ps,P:,Py Perturbed pressure fields due to pad motions [Pa/m]

Py Drag power loss [kw]

P Uniform pressure applied on a pad [Pa]
Os Supply oil flow rate [LPM]

R, R Bearing radius [m]

Ra Distance from a pivot to pad center [m]
Req, Rn Neutral axis of arc pad, single and two materials [m]
Ry Pad radius [m]

r (R+f)/R. Ratio of pad inner & outer radii
p Pad dimensional preload [m], r7=Cp-Cs
Ry Journal radius [m]

S Sommerfeld number, S=uNDL(R/Cp)*/W
T Fluid film temperature [°C]

T'Babbirt Babbitt temperature [°C]

Thrack Temperature at the back of the pad [°C]
T'in Supply oil temperature [°C]

Torque Bearing drag torque [N.m]

t Pad thickness [m]
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Pad surface nodal displacement [m]

Deformation at pad edges [m]

Nodal displacements [m]

Static load applied on the bearing [N]

K+ioC. Complex dynamic stiffness coefficients [N/m]

Fluid film complex dynamic stiffness coefficients [N/m, Nm/rad]

ap=X,Y,0,(n

Pad tilt angle [rad]

Perturbation in parameter o

External dynamic force [N]

Pad transvers displacement [m]

Pad arc length [rad]

Pivot angular position starting from - X axis [rad]
Arc length from pad pivot to pad trailing edge [rad]
Inlet heat carry over coefficient

Oil viscosity [Pa.s]

Pad radial displacement [m]

Oil density [kg/m?]

Journal rotational speed [rpm]

Element domain

Excitation frequency [rad/s]
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Coordinate Systems

XY) Journal center global coordinate
&) Pad pivot local coordinate

(r,0,2) Cylindrical coordinate of the pad finite element model
Matrices

A Matrix contacting element surfaces
F Reduced external force vector

F Load vector

f Vector of forces on each node

K Pad stiffness matrix

K Reduced stiffness matrix

L Lower triangular matrix of K,=LLT
P Pressure filed

q Pivot displacement vector

S Surface traction vector

u Nodal displacement vector

u Reduced pad displacement vector
Superscripts

e Element domain

G Global matrix

K k" pad



Subscripts

0

P

o, fp,0
Acronyms
DOF

FE

LOP

LBP

TPJB

Static equilibrium position
Pad upper surface

XY06,&n

Degree of freedom
Finite element
Load on pad

Load between pad

Tilting pad journal bearing

X
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INTRODUCTION

Stable performance of tilting pad journal bearings (TPJBs) in high performance
rotating machinery (e.g. compressors and turbines) enables their wide application.
Different from fixed geometry fluid film bearings (e.g., fixed-arc bearings and plain
journal bearings), TPJBs have a number of arcuate pads distributed circumferentially
around the bearing. Each pad can tilt about its pivot to generate a convergent fluid film on
the pad surface. A pad cannot support a tilting moment, except for a pad with a flexure
pivot [4]. However, the additional degrees of freedom (DOFs) from the bearing pads’
motion, i.e., pad tilt motion, pad and pivot elastic deformations, bring more difficulty in
predicting the static and dynamic forced performance of TPJBs [5, 6].

Lund [7] first introduces the pad assembly method to predict dynamic force
coefficients of TPJBs by regarding the pads and their pivots as rigid. Predictions show
reasonable agreement with the measurements in Ref. [8] for moderate loads. However,
under heavy loads (W/(LD))> 2.0 MPa) and at low rotor speeds (€2<7000 rpm), predicted
TPJB stiffness and damping coefficients show poor correlation with test data in Refs. [9-
12].

Refs. [13-24] introduce various physical models and emphasize the importance of
including both pad surface flexibility and pivot flexibility to accurately predict the static
and dynamic forced performance of heavily loaded TPJBs. An early approach uses a beam
equation to estimate pad surface elastic deflections [13-15]. Earles et al. [17, 18] develop
a two-dimensional (2D) finite element (FE) pad model to estimate pad flexibility, but
neglect pad deflections along the pad axial length. Later, Desbordes ef al. [19] noticed
that, when a rotor is operating with large unbalance displacements (es/Cy=4.17 with es is
the unbalance eccentricity and C, is the pad clearance), the axial variation of the film
thickness due to mechanical deformations is not negligible. Thus, the authors introduce a
three-dimensional (3D) FE structural model to fully account for pad elastic deflections

[19, 23, 24].



This work extends an existing predictive fluid film flow model, developed by San
Andrés and Tao [25, 26], to account for pad flexibility, to obtain better predictions of both

the static and dynamic forced performance characteristics of TPJBs.



TASKS

The predictive model is validated by comparing predictions against published test data
in Ref. [2, 27]. By varying the pad flexibility, a parametric study on a typical TPJB
evaluates the influence of pad flexibility on the performance of TPJBs.

(1) Build a FE structural model for prediction of pad surface elastic deformations. This

procedure can be done using a commercial software to obtain the pad stiffness
matrix K¢ . The stiffness matrix will be reduced to a reduced form K, with only

a number of active degrees of freedom (DOFs) that representing nodal
displacements on the pad upper surface.

(2) Solve the Reynolds equation for fluid film lubrication and obtain the
hydrodynamic pressure field by using a FE method [31].

(3) Obtain the pad deflection from the determined fluid film pressure and the reduced
stiffness matrix.

(4) Update the fluid film thickness with the pad deflection to solve again the Reynolds
equation.

(5) Iterate steps (2) to (4) until the convergence on the fluid film pressure field and
temperature is obtained.

(6) Calculate the dynamic force coefficients of the TPJBs by applying a perturbation
method of the journal center displacements.

(7) Validate the predictions calculated in the TPJB code with published data in the
literature.

(8) Develop simplified formulas to quickly estimate pad flexibility.



LITERATURE REVIEW

Tilting pad journal bearings (TPJBs) offer significant advantages over fixed geometry
fluid film bearings because they offer stable performance in high rotor speed applications.
However, experiments in Refs. [9-12] show that in actuality the damping offered by TPJBs
is lower than predicted. Discrepancies between predictions and measurements, in
particular at heavy loads and low rotor speeds, are attributed to the predictive model not
accounting for pad and pivot flexibility [16, 22, 25]. This literature review focuses on the
role of pad flexibility on the performance of TPJBs, especially on the dynamic forced
performance of TPJBs.

Lund [7] introduced a landmark model to calculate the stiffness and damping
coefficients of TPJBs with rigid pads and rigid pivots. Based on precursor analyses for
fixed pad bearings [28, 29], using a procedure known as the “Pad Assembly Method,”
Lund first derives the stiffness and damping coefficients for a pad; next, the dynamic force
coefficients of each pad are assembled to obtain the dynamic force coefficients of the
whole bearing. Lund assumes the excitation frequency (w) coincides with the journal
rotational speed (). The dynamic coefficients for a whole bearing are reduced
synchronously (w=C) to render 2x2 matrices of stiffness and damping coefficients. The
four stiffness and four damping coefficients are widely used in predictive linear rotor-
bearing system analyses.

Lund [7] obtained predictions for a six-pad TPJB and a four-pad TPJB. Both TPJBs
have centrally pivoted pads with L/D=0.75. The six-pad TPJB has pads with an arc-length
of 50° while the four-pad TPJB has pads with an arc-length of 80°. Predictions for the
dynamic force coefficients show reasonable correlation with test data in Ref. [8]. Lund [7]

presents the dynamic force coefficients of the TPJBs versus Sommerfeld number (
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). For the four-pad TPJB, predicted direct stiffness coefficients are

P

slightly overestimated at a low Sommerfeld number (5<0.3), but are underestimated at a



high Sommerfeld number (5>0.4). The predicted direct damping coefficients are larger
than test data among the whole range of the Sommerfeld number (0.1<5<2.2).

Taking pivot and pad flexibility into account leads to extra degrees of freedom (DOFs)
for the motion of a pad. Accounting for pivot flexibility only, each pad has three DOFs:
pad tilt motion (J) about its pivot, pad lateral displacements along the radial (&) and
transverse (77) directions, see Figure 1. Considering the journal center displacements along
both horizontal (X) and vertical () directions (see Figure 1), a TPJB has a total of (3Npua
+2) DOFs. Thus, the complete stiffness (K) and damping (C) matrices of a TPJB contain
(3Npaa +2)? coefficients.

Including pad surface mechanical deformation adds additional DOFs. In the 1980s and
early 1990s, a commonly adopted method to predict pad deformation was using one-
dimensional (1D) beam equation [13, 14, 15]. Later, the FE method became popular to

estimate pad mechanical deformation [16-20, 23].

Fluid film

Q, Journal
rotation speed

n, Pad transvers
motion

&, Pad radial motion

o, Pad tilt angle

Fig. 1 An ideal four-pad TPJB with pad tilt motion (&) about its pivot, and pad
lateral displacements along the radial (§) and transverse (n) directions.

In 1978, Nilsson [13] studied the influence of pad flexibility on the dynamic forced
performance of TPJBs. He assumes that the pad is clamped at the pivot and the mechanical
deformation of the pad can be estimated using the theory of a curved beam. Nilsson shows,

in dimensionless form, single pad force coefficients for arc lengths equal to 60°, 90° and



120° and as functions of journal eccentricity. The pivot offset is 0.6 with a bearing slender
ratio L/D=1. For a given static load, pad flexibility causes small changes in journal
eccentricity and bearing stiffness coefficients. However, the influence of pad flexibility
on the bearing damping coefficients is significant, especially for higher eccentricity. The
long pad has a more pronounced effect on damping coefficients. At highest eccentricity
(e/Cs=0.9), the direct damping coefficient along the load direction decreases by 50% for
a 60° arc pad, and by 58% for a 120° arc pad. When reducing the eccentricity to a lower
value (e/Cs=0.5), the direct damping coefficient along the load direction decreases by 6%
for a 60° arc pad and by 21% for a 120° arc pad.

Later, Ettles [14] also predicts a reduction in bearing dynamic force coefficients due
to pad flexibility. Ettles [ 14] accounts for pad deflections due to both the film pressure and
thermally induced stresses by using a one-dimensional (1D) beam equation. Rather than
using a superposition technique, Ettles considers simultaneously all the pads in a bearing.
Operation under turbulent flow regime is included using Constantinescu’s model [30].
Synchronous speed (0=Q) reduced force coefficients (including pad mass) are compared
to published test data for a four-pad, load-between-pad (LBP) TPJB with L/D=0.5. Ettles
predicts direct stiffness and damping coefficients larger, but not more than 10%, than those
in published experiments. To further show the effect of pad flexibility, Ettles contrasts
the dynamic force coefficients of TPJBs with rigid pads against those with flexible pads,
including pad deformation due to both shear and thermal bending. The comparison reveals
a reduction of damping due to pad flexibility, aggravates as the load increases: about 13%
at the lowest load (W/(LD)=307 kPa), and about 44% at the largest load (W/(LD)=5,020
kPa). However, the effect of pad flexibility on bearing stiffness coefficients is smaller.
Pad flexibility causes a 16% drop in stiffness coefficients at the largest load
(WI(LD)=5,020 kPa) but a 2% increase in stiffness coefficients at the lowest load
(WI(LD)=307 kPa). In addition, pad flexibility has negligible effect on the journal
eccentricity and maximum fluid film temperature.

Lund and Pederson [15] extend the early work in Ref. [7] and present an approximate

method to account for pad flexibility and pivot flexibility in the calculation of frequency



reduced dynamic force coefficients of a TPJB. The authors treat the pad as an elastic beam
and regard its deformation as an increase in pad clearance. The authors model pivot
flexibility as a spring in series with the fluid film. The fluid film hydrodynamic pressure
is determined from Reynolds equation for an isoviscous lubricant. Lund and Pederson
introduce a nonsynchronous speed method, where the excitation frequency is not the same
as the journal rotational speed (w#Q), to reduce the bearing dynamic coefficients into 4
stiffness and 4 damping coefficients. However, the results presented are only for
synchronous speed reduced force coefficients of a single pad. The 60° pad, pivoted with
0.6 offset, has a slenderness ratio L/D=1. The authors notice that the reduction in damping
caused by pad flexibility is most prominent. Similar to Nilsson [13], Lund and Pederson
show predicted damping coefficients for pads with different pad flexibility. The authors
also indicate that the more flexible a pad is, the more reduction happens in the damping
coefficients. Besides, the authors also note a slight reduction in bearing load carrying
capacity and bearing stiffness when pad flexibility is included in a predictive model.

Brugier and Pascal [16] investigate the influence of pad elastic deflections on both the
static and dynamic forced characteristics of a large size, three-pad TPJB. Different from
earlier analyses [13,14,15], Brugier and Pascal [16] build a three-dimensional (3D) finite
element (FE) pad model to predict the mechanical deformation of the pads due to both the
hydrodynamic pressure field and thermally induced stresses. The average deflections
along the pad axial length of the most heavily loaded pads, as well as the respective pivot
deformation, are taken into account. The authors conduct a study on TPJBs with the same
geometry but different load configurations, i.e., load-on-pad (LOP) and load-between-pad
(LBP). The pivot offset of the loaded pads is 0.55. The diameter of the large TPJB is 0.75
m with L/D=0.75. The journal rotational speed is 1,500 rpm, and the specific load
(W/(LD)) varies from 1,190 kPa to 4,761 kPa. Though the pad is thick (#D=0.21), the long
arc length of the pad (104°) makes it flexible.

Predictions in Ref. [16] show that the mechanical and thermally induced deflections
of both a pad and a pivot cause only a small decrease in the maximum temperature and on

the minimum film thickness of a loaded pad. However, both the pad and the pivot



flexibility reduce significantly the bearing dynamic force coefficients, as detailed in Table
1. For TPJBs, operating under the same load, both pad and pivot flexibility influences
more the dynamic performance of a LOP TPJB than that of a LBP TPJB. Generally, the
effect of pad and pivot flexibility on the bearing dynamic force coefficients increases as
the load increases. However, the reduction in direct damping coefficients along the load
direction (Cyr) does not change with an increase in load. Similar to Ettles [14], Brugier
and Pascal [16] also predict an increase in direct stiffness coefficients at low loads due to

both pad and pivot flexibility.

Table 1 Percentage reduction? in direct dynamic force coefficients due to both pad
and pivot flexibility at two loads, Ref. [16].

Load Unit load Reduction in direct Reduction in direct
configuration | [kPa] stiffness coefficients damping coefficients
AKxx AKyy ACxx ACyy
2,381 3% 0% 21% 12%
LBP
4,524 11% 17% 28% 12%
1,190 -15% 0% 16% 11%
LOP
4,761 31% 30% 44% 11%

As the relevant literature in Ref. [13-16] reveals, though pad flexibility affects little
the bearing static load performance, it significantly drops the damping coefficients, in
particular for operation under a large load. As either the load or the pad flexibility
increases, their effect change more severely the dynamic force coefficients. Thus, accurate
predictions of bearing dynamic force coefficients need to take pad flexibility into account.

Neglecting the variation of the pad mechanical deformation along the axial direction,
Earles et al. [17] use two-dimensional (2D), plane strain FE to evaluate pad flexibility
effects in TPJB forced performance. The predictive model assumes a laminar, isoviscous,

and incompressible lubricant without thermal effects. The pad upper surface includes Nnode

2 Percentage reduction in dynamic force coefficients is obtained with respect to the predicted coefficients
for TPJBs with both rigid pad and pivot.



nodes. Each node has two DOFs: displacements along the radial and transverse directions.
The assembled global stiffness matrix of a pad contains all 2Nnede DOFs. By assuming the
pad keeps its original curvature, the 2Nuoqse DOFs are reduced to one single DOF, which is
reflected as change in pad radius. Frequency-reduced dynamic force coefficients for a
single pad correlate well, within 5% difference, with those obtained by Lund and Pedersen
[9].

In Ref. [18], Earles et al. utilize the “Pad Assembly Method” to obtain the dynamic
force coefficients of a TPJB. The pivot flexibility is modeled using Hertzian contact
theory. Consequently, the stiffness and damping matrices contain each (3Npaat2)?
coefficients. The authors then conduct a stability analysis of the complete rotor bearing
system with the dynamic force coefficients calculated for the bearing. Using synchronous-
speed-reduced bearing dynamic coefficients, pad flexibility decreases by 6% the predicted
instability onset speed (IOS) of a particular rotor-bearing system.

Refs [13-18] do not consider elastic deflections along the width of a pad. Desbordes
et al. [20] evaluate the predictions using two-dimensional (2D) and three-dimensional
(3D) FE structural pad models. The authors note that pad deflections along the axial
direction are not negligible in a heavily loaded TPJB. The authors also introduce a method
to constrain the pad (see Figure 5 later). The pad elastic model deliver a linear algebraic
system governed by Kp up=F , where Kp is a pad stiffness matrix, uy is a vector of nodal
radial displacements over the pad inner surface, and F is the load vector applied on the
pad. The three-pad TPJB has a diameter of 0.12 m with L/D=0.6, and the pivot offset is
0.56. The specific load (W/(LD)) applied on the bearing is 3,492 kPa and the shaft speed
is 3000 rpm (surface speed equals 18.85 m/s). The fluid film thickness and hydrodynamic
pressure obtained with a 3D FE pad model and a 2D FE pad model [19] are compared
against each other. Both the 2D and 3D FE pad models predict the same minimum film
thickness and maximum pressure for operation with an unbalance eccentricity (e») smaller
than 200 um. However, when the rotor unbalance (e») increases, the discrepancy in results

obtained from the two pad, 2D and 3D, FE models becomes evident. When e»=500 pm,



10

the film thickness at the edges of the loaded pad is only half of the magnitude at its
midplane.

Wilkes [22] conducts both measurements and predictions for a LOP, 5-pad TPJB with
50% pad pivot offset. The diameter of the TPJB is 101.59 mm with L/D = 0.55. Figure 2
shows the pad and its pivot insert. The gap between the pivot and the pad leads to two
different bending regions of the pad; i.e. before the pad contacts with the sides of the pivot
insert, and after the pad contacts with the pivot insert. Wilkes measures the pad strain
versus applied moment curvature and validates a FE pad model against measurements.
Wilkes plots the pad bending stiffness versus the applied bending moment curves and
obtains the bending stiffness for the pad in the test bearing. Wilkes uses the bending
stiffness to predict pad flexibility and regards the pad deformation as the change in pad

clearance.

Mept ™~ Pad ; Mepz

g L
Ee

) Pivot insert : Contact

(a) (b)

Fig. 2 Schematic view of a typical tilting pad with pivot insert. Bending moment
M:p2>M.p1. (a) before the pad contacting with the pivot insert, and (b) after the pad
contacting with the pivot insert [22].

Wilkes [22] notes the importance of pad flexibility in predicting TPJB dynamic
coefficients. Wilkes compares measurements against the predicted results obtained from
a model with and without the consideration of both pad and pivot flexibility. The
comparisons show that pivot flexibility affects more the predictions of direct stiffness and
damping coefficients than pad flexibility, especially at high loads. Pad and pivot flexibility
have a large effect on reducing the bearing damping coefficients. At a rotor speed of
10,200 rpm (surface speed QR/60=54.2 m/s) with a unit load (W/(LD)) of 783 kPa,
predictions including pivot flexibility but neglecting pad flexibility overestimate the direct

stiffness coefficients by up to 8% and overestimate the direct damping coefficients by up
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to 42%. At the same rotor speed with a larger unit load (©2=10,200 rpm, W/(LD)= 3,134
kPa), predictions including pivot flexibility but neglecting pad flexibility overestimate the
direct stiffness coefficients by up to 41% and overestimate the direct damping coefficients
by up to 57%. Thus, predictions show that pad flexibility has a more pronounced effect
under large loads for this bearing. In addition, Wilkes indicates that since pad flexibility
increases with the arc length of a pad, it may play a more important role in TPJBs of large
arc size or fewer pads. Notably, Wilkes measures the bearing clearance right after the
operation and notes that hot bearing clearance can be up to 30% smaller than the bearing
clearance at room temperature.

Hagemann et al. [23] conduct both measurements and predictions of the static
performance of a large turbine TPJB operating under a LBP load configuration. The 5-pad
TPJB has a diameter of 500 mm with L/D = 0.7 and the pad pivot offset is 60%. The
preload of the TPJB is 0.23 and the unit load (W/(LD)) on the TPJB varies from 1,000
kPa to 2,503 kPa. The rotational speed ranges from 500 rpm to 3,000 rpm. The theoretical
analysis considers a 3D viscosity and pressure distribution due to the variable temperature
in all three (circumferential, axial and radial) directions of the film. The authors use two
different methods, by regarding the pad as 1D beam and 3D FE model, to determine the
thermo-mechanical deflection of the pad. The deflection of the pad is considered as the
change in film thickness. Similar to Desbordes ef al. [20], Hagemann ef al. also notice the
variation of pad deformations along the bearing width. For a unit load of 2,503 kPa and a
rotor speed of 3000 rpm, the film thickness measured at the bearing mid-plane (z=L/2) is
about 70 pm (23% of the bearing clearance) larger than that measured at the edges (z=0
and z=L). Comparisons between measurements and predictions using the two methods
(i.e., 3D FE pad and 1D beam equation) demonstrate the necessity to consider the 3D
deflections of a pad. Predictions using 3D FE structural model correlate best with the test
data.

Kukla et al. [24] extend their work and present measured dynamic force coefficients
of a five-pad TPJB with the same geometry as described in Ref. [23]. However, their

predictions for dynamic force coefficients do not account for pad flexibility.
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Recently, Gaines and Childs [2, 3] tested three TPJB sets under a LBP configuration
over a range of loads (172 kPa<W/(LD)<1,724 kPa) and rotational speed conditions (6
krpm<Q<12 krpm). Each bearing has three pads of unequal thickness (7=8.5 mm, 10 mm,
and 11.5mm) to quantify the effect of pad flexibility on the bearings’ force coefficients.
As pad flexibility increases, the measured journal eccentricity decreases. However, pad
flexibility shows little effect on the measured pad sub-surface temperature (~5 mm below)
recorded at 75% of the pad arc length. Increasing pad flexibility increases the measured
direct stiffnesses by up to 12% at a low load (W/(LD)=172 kPa), but decreases the
measured direct stiffnesses by up to 3% at the largest applied load (W/(LD)= 1,724 kPa).
Pad flexibility shows a more pronounced effect on the bearing damping coefficients, as it
reduces their magnitude by up to 20% at 12krpm and by up to 15% at 6krpm.

Based on the body of literature reviewed, pad flexibility affects little the static forced
performance of TPJBs. However, for TPJBs operating under a heavy load (W/(LD)>2.0
MPa), pad (and/or pivot) flexibility can produce a significantly reduction in the dynamic

force coefficients, in particular bearing damping coefficients.
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THE FLUID FLOW MODEL FOR AN OIL LUBRICATED FLUID FILM BEARING

San Andrés [31] introduces an analysis for static and dynamic load in TPJBs and
including pivot flexibility. This section extends the analysis for TPJBs with pad flexibility.
Figure 3 shows a schematic view of an idealized TPJB comprised of a rotating journal and
a number of arcuate pads tilting about respective pivots. A film of lubricant fills the
clearance between the pads and journal. The origin of the (X, Y) inertial coordinate system
locates at the bearing center, whereas various local coordinates (& #7) system are affixed
to (undeformed) each pivot. The figure intends to portray a pad on its assembled
configuration and also as loaded during operation.

An external load (W) applies on the journal spinning with rotational speed (Q2). The
load forces the journal displacement to eccentricity (ex,ey) away from the bearing center.
The applied load is reacted by the generated fluid film hydrodynamic pressure (P) acting
on each pad. The pressure field on the pad surface also generates a moment that tilts the
pad about its pivot with rotation d, and displaces the pad pivot to v and #pi. The pressure
field also deforms elastically the pad; in particular, the deformation field at the pad surface

is denoted by up.
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Fig. 3 Schematic view of an idealized TPJB. Film thickness (h), pad deflection (up),
pad rotation (&) and pivot deflections (§,n) greatly exaggerated.

San Andrés and Tao [25] state the governing equations and method to solve for the
pressure field (P) and temperature field (7) in a laminar-flow TPJB lubricated with a fluid
of viscosity (¢) and density (p). An extended Reynolds equation with temporal fluid inertia
effects governs the generation of hydrodynamic pressure (P¥) in the k" pad with film
thickness A*,

3 \3 k)2
1 i{(h) 8P"}+5{(h) apk}ﬁh"+98h"+p(h) L

R? 00 |12uy, 00 | 0z |12, 0z | o 2060 124, of = 70

(1)

where (z,0) are the axial and circumferential coordinates on the plane of the bearing. The

film thickness 4* is
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W =u} +C,+ey cosO+e,sin0+(E5, —r, )cos(0 -0 ) +(nl, —R,5 )sin (6 -6} )
()
where (ex, ev) are the journal center displacements, », = C, —C, is the pad preload, and
Cp and Cp are the pad machined radial clearance and bearing assembly clearance,
respectively. Above R, =R,+¢ is the sum of the pad machined radius and pad
thickness at the pivot position. Note that the pad surface deflection field (uﬁj > 0)

increases the film thickness.
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DETERMINATION OF PAD SURFACE ELASTIC DEFLECTION

A structural FE analysis predicts the displacements of the A" pad upper surface caused
by the fluid film pressure field (P). Figure 4 depicts a typical pad assembling a number of
brick-like finite elements. The equation for the deflection field (u€) relative to the pivot
due to an applied load (F€) is

Ku® =F° +8°¢ 3)

where K€ is a global stiffness matrix and S¢ is a vector of surface tractions.

TN xial
aya iy Y xiar
llln..ﬂ‘l“\‘\‘\‘\‘\}{\\\\ Direction Z

Radial "/I[
slirection 7 ,;I;Z'lll,',"llnm\\\\\\\\\\ /

Circumferential
Direction 6

Fig. 4 Typical FE model and mesh for a bearing pad

Desbordes et al. [20] introduce appropriate boundary conditions for an ideal tilting
pad, i.e., one with infinite pivot stiffness. Figure 5 depicts in graphical form the lines where
boundary conditions are specified. The solid line denotes the pivot (line contact) and all
FE nodes are constrained to a null displacement; wu,=us=u.=0, along the radial,
circumferential, and axial directions. The two dashed lines parallel to the line contact
denote nodes with no radial displacement, ©,=0 only relative to the pivot displacement.

On these lines, the nodes can take circumferential (transverse) and axial displacements.

Lines with
u~0
Pivot line of contact,

U, =Ug=u,=0

Fig. 5 Boundary conditions on pad as modeled in Ref. [20].u,, ue, u;, are the nodal
displacements along the radial angular and xial directions, respectively.
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With the boundary conditions assigned, the global system of equations reduces to

KSuC = F°¢

(4)
where K€is a reduced (non-singular) stiffness matrix, andu® and F¢are the vectors of
global displacements and forces. The external load generated by the film pressure acts on
the (upper) surface of the pad. Thus, further manipulation to reduce Eq. (4) uses a static
condensation or Guyan reduction procedure. Write the vectors of displacements and

generalized force in terms of active and inactive degrees of freedom, i.e.,

W = [‘_‘P}; FC - {“P)} 5)
u 0

where up denotes the vector of radial displacements on the pad upper surface which are
active DOFs, and wis the vector of displacements of other nodes, f(P)=(AP) is the vector
of nodal forces generated by the pressure field P with A as a square matrix containing

element surfaces. The reduced global stiffness matrix K¢ can be partitioned as

__p} (6)

=t = (7)

From Eq. (7), u = -I_(m,'ll_(sup and displacements on the pad surface are obtained from
K, u, =f(P) (8)

— — — -1 . o, . . . .
where K, = (Kp -K, [Kna] Ks) is a positive definite symmetric matrix, easily decomposed

into its lower and upper triangular forms, K, = LL'. Hence, Eq. (8) is rewritten as
L(L"u,)=1(P) )
Letu, =L'u, ; a backward substitution procedure solves firstLu, = f(P) to giveu; ; and

next, a forward substitution procedure solvesL'u, =u_ to determine uy, i.e., the vector of

radial displacement at the pad surface. The vector u, is used to update the film thickness
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(h), Eq. (2), for solution of the Reynolds Eq. (1) to find the pressure field (P). Note that
the FE structural pad model and its end result, the L matrix, needs to be performed only
once, preferably outside of the main computational program.

A pivot with known load-dependent nonlinear stiffness is easily considered as a series

element with the pad structural stiffness,
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PERTURBATION ANALYSIS?®

Accounting for pivot flexibility, Tao [26] presents the analysis for evaluation of
dynamic force coefficients in TPJBs. The current work will introduces a modified

perturbation analysis accounting for pad flexibility.

At a constant shaft speed (€2), the static load W, = (WX0 Wy, ) T displaces the journal
to it equilibrium positione, = (e X, €y, ) T with the generated fluid film pressure (Ps") acting

on each pad surface. The k™ pad reaches its equilibrium position (5;‘0 , élfl.v(] , 771’;% ) Tand the

deflection of the pad upper surface isu; .

An external dynamic force, AW=(AWx, AWy)' &' with excitation frequency (w) acts
on the journal and causes the journal center to displace to Ae=(Aex, Aer)' ¢ away from
e, i.e., ep=ept Ae ¢’ [31]. The journal motion leads to changes in the pad pivot

displacements and the pad surface deformation as

T T T . "
(5:;(996:7([\)’77;1/) :(5;17(095:;([\)0’77;%) +(A5§’A§ZV’A77£N) e”’) (loa)
uf,:u}k,o —I—Au]/iem”,k:l,...,Npad (10b)

On the k™ pad, the changes in journal center position and pad displacements cause a change

in the film thickness as

h* =hi + AR e, k=1,..,N, (11a)

pa
where
AR ={h" Aey + W Ney + RIAE), +hAnp, + h5AS), + Auy ) (11b)
withhy =cos @, hy =sin@ ,hf =cos(0—6), b, =sin(6—6,), hy=—R,h' [31]. The
fluid film pressure on a pad is

P =P+ AP, k=1,..,N,, (12a)

pa

3 Portion of this section copied from Ref. [26] and lubrication note [31].
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where the change in fluid film pressure caused by the perturbations in displacements is

AP* ={P¢Ae, + P/ Ae, + P'AE +PFAn,, + PiAS)} (12b)

piv
Let g(P")= [K’; ]_1 f(P") . Hence, the pad deformations caused by the equilibrium pressure
field (PJ‘) and the perturbed pressure field (AP¥) are
uh,, Aub =g(P), g(APY)— [K:[ AP, [KET A AP (13)

Substituting Eq. (12b) into Eq. (13) yields the change in pad surface deformation as
Auy =u'Ne, +uiAe, —i—u(’;Aéﬁ +u§A§" +”7kA77fm (14)

piv ]
Thus,
AR = (hy +uy)Aey +(hy +uy)Ae, +(hi +uf)AE),

(15)
+(hy +up)An, +(hy +uy)AS)

piv
That is, the film thickness changes due to physical displacements of the journal and pad
as well as due to the deformation induced by a change or perturbation in pressure.

Define the following linear operators,

z(*)=i_h—3@}+i{ hy a(*)}a( a 6(*)] (16)

ROO| 121 ROG | 0z| 124 oz 124,
o5 ) ] , )
w(0)=| 220D o)L ) | -9| oy an
| 2 o0 124, 12u,,
Substitution of #* and P¥ into the extended Reynolds Eq. (1) gives:
Q 0Oh
(P)=——2 18
(R) > 20 (18)
and 14 {Pf} =R {hﬁ + uf;} C=X.Y.5,Em (19)

Note that the first-order or perturbed pressure fields due to a pad rotation and pivot
radial and transverse displacements are a linear combination of Px and Py [31], i.e.,
ng — _RJP”k
Pf =Pgcosb, +P)sinb, ,k=1,.,N,, (20)

kK k ik k k
P’ =-P;sind, + P, cost,
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Since the pad deformations are a linear function of the applied pressure, i.e., u’ = g(PF)

with ¢ =XY, 6,7, then

Kk _ k
us =—R,u,

Kk _ .k k k ik _

u; =uy cosb, +uysinb, , k=L.,N , (21)
k_ ks pk k k

u, =—uy sin6, +u, cosd,

The analysis above reveals that the perturbed pressure fields due to pad rotation or pivot
transverse displacements can be readily gathered from the fields determined for changes

in the journal eccentricity (Aex, Aey). Furthermore, the changes in pad deformation also

follow immediately after the perturbed displacements (uf( ,u’;) are found. The process is
computationally fast and efficient. The only caveat is that Eq. (19) is solved iteratively,
as uﬁ = g(PCf) XY -

In the procedure to calculate a perturbed pressure field, Eq. (19) is to be solved

iteratively.

(a) Set ug=0. Determine the P vector from / (ng ) =N (hk ) :

(b) Calculate u* =g(P").
(c) Solveﬁ(PUk ) =R (hﬁ - uﬁ) :
The procedure (b)-(c) is repeated until obtaining a Ps vector that does not change from

the prior iteration. Integration of the perturbed pressure fields, renders 25 fluid film

dynamic complex stiffness coefficients ( Z%, ) [31]

L2 6
Zt, = j jP;thJdekdz 5 (22)

~L/2 gf
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Reduced frequency force coefficients for lateral displacements, Zus=(Kupticw Cap) a.p=x.,
are extracted from the complete sets of 25 Z’s by assuming all pads move with the same

frequency w. For details on the reduction process, see Refs. [25,26,31].
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COMPARISON OF PREDICTIONS WITH PUBLISHED RESULTS FOR TEST

TPJBS

There are two relevant publications of importance to the current work, Refs.[2,27],.
The current predictive model delivers predictions for comparison against the data in these
references. Gaines [2] reports test data for three TPJB sets, each having three pads of
unequal thickness, to quantify the effect of pad flexibility on the bearings’ force
coefficients over a range of applied load (LBP) and rotational speed conditions. Branagan
[27] reports predictions for several bearings, one being a four-pad TPJB with a LBP
configuration. The predictions account for both pad thermal bending and pad mechanical
bending over a range of loads with operation at a constant shaft rotational speed.

Predicted TPJBs forced performance characteristics of interest include the static
journal eccentricity, fluid film temperature, fluid film pressure, pad surface deformation
and dynamic force coefficients, e.g. stiffness, damping, and virtual mass coefficients.
Assessing the correlation between current predictions and the data in Refs. [2,27] aids to
validate the predictive model. Predictions with and without pad flexibility will evidence

quantitatively the effect of pad flexibility.
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Example 1-Predicted Forced Performance for a Three-Pad LBP TPJB |[2]

Gaines [2] presents test data for three TPJBs, each configuration having three pads and
operating under the same conditions. The pad thickness varies in each bearing
configuration. This section presents comparison of the predicted and measured [2] static
and dynamic forced performance characteristics of Gaines’ test bearings, and investigates
the effect of pad flexibility on bearing behavior. Table 2 lists the geometry of the TPJBs,
lubricant properties and operation conditions, and Figure 6 depicts the load configuration
of a test TPJB.

Table 2 Geometry, lubrication properties and operating conditions of three TPJBs
tested in Ref. [2]

Number of pads, Npad 3

Configuration LBP

Rotor diameter, D 101.6 mm

Pad axial length, L 61 mm

Pad arc angle, Or 90°

Pivot offset 50%

Nominal preload, 7, 0.25

Pad thickness, ¢ 8.5mm 10 mm 11.5mm
Cold bearing clearance, Cs 69 um 70 um 70 um
Cold pad clearance, Cpr 92 um 93 um 93 um
Lubricant type ISO VG 46

Supply lubricant temperature 49 °C

Supply lubricant pressure 2.2 bar

Lubricant density 854 kg/m’

Viscosity at 49 °C*,uo 0.0269 Pa's

Viscosity temperature coefficient, a 0.0319 1/°C

Specific heat capacity at 70 °C 1830 J/(kg'K)

Specific load, W/(LD) 172 kPa -1724 kPa
Journal speed,Q 6,000-12,000 rpm
Surface speed, QR 32-64 m/s

4 The lubricant used in test cell is ISO VG46. The oil viscosity is measured using a viscometer.
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Fluid film
Pad 3
/Joumal
¢ w
0 =-15 X
11
Pad 1 _/ Pad 2

r, =0.25, C_,=70 um, Pivot offset=0.5,
Pad arc length =90°C

Fig. 6 Load configuration and angular disposition of each pad as per test TPJBs in
Ref. [2].

As shown in Figure 7, the pad thickness varies from 8.5 mm to 11.5 mm, thus
modifying the pad flexibility. Table 3 lists the thickness, mass and material properties of
the three pads. The arc length and inner radius of the three pads are identical. Note that
each pad includes a 1.5 mm thick Babbitt layer.

S Pad thickness

-~

= RS ~ : : - -
- ,| Thin Pad - :f“’ | Medium thickness Pad | Thick Pad 2
i o — — — 1 P ol

= - -

Fig. 7 Photograph of three pads with 1.5 mm thick Babbitt layer and metal thickness
noted. As per Ref.[2].
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Table 3 Thickness®, mass and material properties of pads in Ref. [2]

Pad Pad | Pad moment Elastic Poisson’s
thickness | mass® of inertia | modulus’ [GPa] raio [-]
[mm] [kg] [kg:'cm?] | Metal | Babbitt | Metal | Babbitt
Thin pad 8.5 0.42 3.57
Medium 10 | 048 4.20 200 | 50 | 029 | 033
thickness pad
Thick pad 11.5 0.54 4.86

Gaines [2] measures the force performance of three tilting pad journal bearings
(TPJBs), all having similar geometry and configuration but differing in pad thickness. To
measure the pivot stiffness of a single pad, a bearing is assembled in the LOP orientation
(see Figure 8). A hydraulic cylinder and spring pull on the bearing casing and displace it
against a rigid rotor (journal). The applied load on the shaft is through contact pressure
over the whole pad arc extent.

Eddy current sensors (rotor-stator probes), at both the drive end and the non-drive end
of the bearing, record the relative displacements between the stator-bearing assembly and
the journal or shaft [2]. The recorded displacements represent the pad and pivot elastic
deflection. The data below represents the average of the displacements measured at both

ends (drive and non-drive).

5 Pad thickness includes 1.5 mm Babbitt layer.
¢ Pad mass of each pad is measured value, and the pad moment of inertia is estimated from Solidworks©.
7 Metal and Babbitt material properties are from Ref. [33].
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Pivot

Housing

Rotor-stator
probes

Fig. 8 lllustration of three pad TPJB and set up for measurement of pivot stiffness

Table 4 lists the pivot stiffness reported by Gaines [2] for the three pads differing in
thickness. The pads have the same pivot type; and hence, their pivot stiffness must be

(nearly) the same. However, note the pivot stiffnesses are markedly different.

Table 4 Measured pivot stiffness for each pad configuration as reported by

Gaines [2]
Pivot stiffness [MN/m]
Thin pad (=8.5 mm) 505
Medium thickness pad (=10 mm) 664
Thick (#=11.5 mm) 751

Figure 9 shows the applied load versus measured deflection curves obtained from the
data delivered by Gaines [2]. Note there is a nonlinear relationship between load and pivot

deflection; first a soft region with very low stiffness®, followed by an elastic region with a

8 Not due to Babbitt deformation as FE structural model predictions show.
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hardening stiffness for loads from 2 kN to 4 kN. In addition, the test data shows
mechanical hysteresis.

For the medium thickness pad (=10 mm) and the thickest pad (=11.5 mm), the slopes
of the load vs. (average) deflection curves are 664 MN/m and 751 MN/m, respectively, in
the load range 2 kN to 4 kN. These magnitudes are similar as those reported by Gaines
[2]. For the thin pad (=8.5 mm), the slope of the load vs. deflection curve is about 1,000
MN/m, almost twice as large as that selected by Gaines [2].

5000

—Thin
4750 +

4500 | ——medium THIN PAD /7
4250 . ——thick Slope:1000 MN/m ,//

4000 L \ Z, /

3750 | | , /
3500 - | :

THICK PAD /

3250 1 ! 'Slope;751 MN/m 1

3000 -

2790 4 ‘ ' MEDIUM

2500 Thickness PAD
2250 1 | Slope: 664 MN/m

2000 .
1750 /, /

o e —— —

1000 ~
750 / y

\
500 V. /
250 -

0

0 1 2 3 4 5 6 7 8 9 10 11
Deflection (pm)

Load (N)

Fig. 9 Pivot load versus measured deflection for pads with thickness: thin
(=8.5mm), medium (=10mm), and thick (=11.5mm). Data from Gaines [2].

Figure 10 shows the applied load versus (measured) average’ displacement curves and
trend lines with a power curve fit. Selecting the average displacements from the load and

unload processes removes the hysteresis effect.

% Average from the load and unload cases.
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Fig. 10 Pivot load versus average deflection for pads with thickness: thin
(=8.5mm), medium (=10mm), and thick (=11.5mm).

Figure 11 depicts the slope of the curves in Figure 10, i.e. the pivot stiffness as a

function of the deflection. Note the derived pivot stiffness increases with the pivot

displacement. Interestingly, the pivot stiffness for the thin pad (8.5 mm) is larger than

those for the thick pad (/=11.5 mm) and medium thickness pad (/=10 mm).
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Fig. 11 Derived pivot stiffness versus average deflection for pads with thickness:
thin (£8.5mm), medium (=10mm), and thick (=11.5mm).
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Table 5 lists an average pivot stiffness derived from the data in Figure 11. The data for
displacements from 2 pm to 10 um are used to obtain the average stiffness. The thin pad
(=8.5mm) has the largest average pivot stiffness. This is unusual, though congruent with

the test data displayed in Fig. 10 [2].

Table 5 Average pivot stiffness among the pivot deflection range (2 pm ~10 pm)

Pivot stiffness [MN/m] | Average pivot stiffness [MN/m]
Gaines reported [2] From curve fits —Fig. 11
Thin pad (#=8.5 mm) 505 934
Medium thickness pad (/=10 mm) 664 675
Thick (=11.5 mm) 751 775

Presently, a pivot stiffness for the thin pad (=8.5 mm) is estimated as follows. The
ratio of pad thicknesses equals

tmedium =£=1‘176, tﬂ’i:%:l.ls (23)
t

thin : medium

For the thick pad, take Kpiinich= 775 MN/m; and assuming a pivot stiffness that is
proportional to the pad thickness; then,

K. K.
K o piv(thick) _ 674MN/m. K .. = piv(medium) _ 573 MN/m 24
piv(medium) 1 . 150 ’ piv(thin) 1 ) 1 76 ( )

Table 6 lists the derived pivot stiffness for each pad used in the following predictions.

Table 6 Derived pivot stiffness for each pad configuration reported by Gaines [2]
Pivot stiffness [MN/m]

Thin pad (=8.5 mm) 573

Medium thickness pad (=10 mm) 675

Thick (=11.5 mm) 775
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Table 7 lists the maximum deformation occurring at a pad edge obtained by ANSYS®
and Solidworks®. The load applied on the pad model is a uniform pressure of 689.4 kPa
(100 psi). The deformations predicted by ANSYS® and Solidworks® correlate well with
each other. As listed in Table 3, the elastic modulus of Babbitt is Y4 that of steel. For two
pad models having the same pad thickness, the one composed of both Babbitt and steel is
softer than the one solely made of steel. Hence, the FE structural model used to estimate

pad elastic deformations includes the Babbitt layer.

Table 7 Maximum deformation of pad edge (inner surface) due to uniform contact
pressure (0.7 MPa). Predictions using commercial FE software (ANSYS® and
Solidworks®).

Thin pad: 8.5 mm

Metal + Babbitt (ANSYS®), =7 13.4 pm
All metal (ANSYS®), =8.5 mm 9.6 um
All metal (Solidworks®), /=8.5 mm 10.3 um
Medium thickness pad: 10 mm
Metal + Babbitt(ANSYS®), =8.5 8.4 um
All metal (ANSYS®), =10 mm 6.3 um
All metal (Solidworks®), =10 mm 7.1 pm
Thick pad: 11.5 mm
Metal + Babbitt (ANSYS®), =10 6.1 pm
All metal (ANSYS®), =11.5 mm 4.8 um
All metal (Solidworks®), r=11.5 mm 4.4 um

This section shows predictions for the three sets TPJBs, each set with a different pad
thickness (7=8.5 mm, 10 mm and 11.5 mm). As in the tests, the predictions are obtained
for rotor speeds equal to 6 krpm and 12 krpm, and for unit loads (W/(LD)) from 172 kPa
to 1,724 kPa. Predictions follow with and without the consideration of pad flexibility. Note
that all the predictions include the pivot stiffnesses listed in Table 6.

The current predictive model includes both the shaft and pad thermal expansion due
to a rise in film temperature. The shaft and pads, both made of steel, have a thermal

expansion coefficient of 1.2x107 1/°C [34]. The predictive model assumes that the lubricant
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carries away all the heat generated in the bearing, i.e., an adiabatic heat flow condition.
According to Tao [26], the inlet thermal mixing coefficient (1) varies for differing rotor
speed; a larger A should be used for a high rotor speed (£2>10 krpm). Thus, at Q=6 krpm,
/=0.8; while at Q=12 krpm, 1=0.98.

Figure 12(a) shows a comparison between the predicted and measured journal
eccentricity ratio (ey/Cp) along the load direction (Y) for operation at 6 krpm and 12 krpm.
The predictions include curves accounting for pad flexibility and without it. At both
operational speeds (=6 krpm, 12 krpm), the predictions with pad flexibility correlate
better with the test data as the applied load increases. Predictions solely considering pivot
flexibility deliver a larger static eccentricity (ev). Pad flexibility tends to reduce the
predicted journal eccentricity, in particular for operation at the high rotor speed (Q2=12
krpm). Figure 12(b) depicts the predicted maximum pad deformation (u#max/Cp) increasing
linearly with the unit load (W/(LD)). umax/Cp is slightly larger at a larger journal speed
(Q=12 krpm). At Q=12 krpm and W/(LD)=1,724 kPa, the maximum deformation for the
thin pad is 25% of the pad clearance. Note that at W/(LD)=0 kPa, uma>0 since the bearing

pads, each having a preload 7, =0.25, generate a significant pressure field that deforms the

pad surface.
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Fig. 12 (a) Journal eccentricity (ey/Cp) along the load direction and (b) predicted
pad maximum deformation (umax/Cp) versus unit load W/(LD). Journal speed Q=6
krpm and 12 krpm. Predictions (with and without pad flexibility) and test data from
Gaines [2]. Results shown for thin, medium and thick pads.



34

Figure 13 shows the predicted pad surface deformation due to the action of the
hydrodynamic fluid film pressure. The maximum pad surface deformation!® locates at
both the trailing edge and the leading edge of a pad. Note that at W/(LD)=1,724 kPa and
with shaft speed Q= 12 krpm, the upper pad (#3) has no deformation as it is unloaded. The
deformation along the axial direction is not uniform. For example, along the pad leading
edge, the deformation at the pad mid-plane (Z = 0) is up to 12% larger than that at the pad
side edges (Z=+'/2 L).

Figure 14 depicts the predicted and measured maximum temperature rise (A7max/Tin)
versus unit load for operation at two journal speeds. In the tests [2], a pad sub-surface (~5
mm below) temperature is recorded at 75% of the pad arc length. Predictions account for
the heat transfer conducted through a pad and the heat convection in the back of a pad.
The predictions show the bulk fluid film temperature in pad 2. Generally, the maximum
temperatures are underestimated, in particular at the high speed and largest load; Q=12

krpm, W/ALD)=1,724 kPa.

10 Relative to the pivot radial displacement.



Pad 1

Pad 2

Pad deformation (um)
=
|

location

]
"1,
“““w/’/””l’
W,
IHHH
SNt
P ///,f’f,.v” /"
i,

Bpiv2=150°

35

-15 45 105
Bpi1=30°

165 225

Angle (deg)

285

(a) Thin pad, =8.5 mm

Pad 1

Pad 2

Pad deformation (um)
3
1

location

Bpiv2=150°

-15 45 105
9piv1 =30°

165 225

Angle (deg)

285

(b) Medium thick pad, =10 mm

25 — Pad 1

Pad 2

Pad deformation (um)

0.5
0
L
345 05
0.5
0
L
345 05
0.5
Opiva=270° o

-15 45 105
Bpiv1=30°

165 225

Angle (deg)

285

(c) Thick pad, =11.5 mm

345

Fig. 13 Pad surface deformation. W/(LD)=1,724 kPa, Q= 12 krpm. Hot pad clearance
for the TPJB with thin pad sets, medium thick pad sets, and thick pad sets: C,=
83.5 uym, 82.9 ym and 81.4 ym. Results shown for thin, medium and thick pads.
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Fig. 14 Predicted and measured maximum temperature versus unit load. Q=6 krpm
and 12 krpm; W/LD)=172 kPa to 1,724 kPa. Predictions from current model. Test
data from Gaines [2].

Note that the maximum temperatures are underestimated, in particular at the high
speed and large load (Q=12 krpm, W/ALD) =1,724 kPa). Table 8 lists the measured and
predicted flow rate and the oil temperature change, i.e. (Tou-Tin)'' and (Tmax -Tin)'2. The
significant differences in temperatures are due to the test bearing being supplied with a
fixed flow rate, irrespective of the load and journal speed condition. The current model
cannot account for this circumstance. For tests with a shaft speed of 6 krpm, the actual
supplied flow rate (31 LPM) is greater than the one predicted (17 LPM) while the recorded

peak pad surface temperatures are much higher.

1 T, is the outlet oil temperature and 73,=49°C is the supply oil temperature. (Tour-Tin) ~Puw/(p-Cy-QO),
where P,, is the power loss, Q is the flow rate, C, is the specific heat, and p is the lubricant density.
12 Tax 18 the maximum pad subsurface temperature measured at 75% of the pad arc length.
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Table 8 Measured and predicted flow rate, measured outlet and peak temperature
for the TPJBs with thin and thick pads (8.5 mm, 11.5 mm) operating at 6 krpm and
12 krpm.

Speed Unit Flow rate Tour-Tin Measured
Pad type Load o T'max -Tin
(rpm) (kPa) (LPM) °O) °C)
Predicted | Measured | Predicted | Measured

172 17.7 31.2 20.0 3.6 22.9
345 17.7 31.3 20.1 3.6 24.2
6,000 | 689 17.7 31.2 20.6 3.8 27.6
1034 | 17.8 31.2 21.7 4.1 31.0
Thin pad 1724 17.6 31..1 26.3 4.2 37.3
(tr:ri)s 172 35.6 31.5 26.9 12.2 40.0
345 35.6 31.6 27.0 12.2 41.8
12,000 | 689 35.6 31.3 27.5 12.6 459
1034 354 31.2 28.4 12.6 50.0
1724 33.6 31.2 314 12.9 57.9
172 15.8 31.7 25.4 3.5 19.5
345 15.8 31.6 25.5 34 21.2
6,000 | 689 15.8 314 26.4 3.5 254
1034 15.8 31.5 28.2 39 304
Thick pad 1724 | 157 31.2 33.8 3.8 38.2
(’; 3)5 172 | 30.0 31.4 34.8 1.6 39.5
345 30.0 31.3 35.0 11.5 41.1
12,000 | 689 30.0 314 35.7 11.9 44 8
1034 29.8 31.3 37.5 11.7 493
1724 29.1 314 40.1 11.2 58.1

To support the assertion, note that the recorded lubricant outlet temperature is much
lower that the measured peak temperatures, a few degrees above the supply oil temperature
[2] (Table 8), and also lower than the predicted lubricant temperature at the bearing exit
plane. Hence, excessive churning of the lubricant on the bearing sides contributes to the
distinctive differences. At the high shaft speed condition (Q2=12 krpm), most of the cold
supply flow rate likely does not enter the bearing pads, thus causing the lubricant (and

pads) to heat excessively.
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In Ref. [2], Gaines uses a frequency independent (K-C-M) model to extract the bearing
static stiffness (K), damping (C) and virtual mass (M) coefficients from curve fits to the
experimentally derived complex stiffnesses (2),

Re(Z) > K-o’M ,Im(Z) - oC (25)

In Ref. [2], the frequency range to obtain the bearing K-C-M coefficients is 0~200 Hz.
The predictions are based on the same frequency range. The following figures compare
test data against predictions with/without the consideration of pad flexibility. To evaluate
the effect of pad flexibility, Figures 15-18 depict predictions accounting for both pad and
pivot flexibility and predictions considering pivot flexibility only.

For the largest applied static load, Figures 15 and 16 show the real part of the bearing
direct complex stiffnesses, Re(Z), obtained at two shaft speeds (Q2=6 krpm and 12 krpm)
versus excitation frequency (0<w<200 Hz). Note Re(Zyy), along the load direction, is less
than Re(Zxx). This peculiar behavior is distinctive for the three-pad bearing, each pad
having a large (90°) arc extent. In general, the predicted Re(Zyr) correlates best with the
test data, whereas Re(Zxx) is overestimated at high frequencies (w>100 Hz). Note the
experimental Re(Z) show little frequency dependency, yet the predictions forward a
stiffening Re(Zyr) as frequency increases, and in particular for operation at the low shaft
speed (6 krpm). Including pad flexibility reduces the dynamic stiffness, Re(Z); the effect

being more pronounced on the thin pad.
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Fig. 15 Real part of bearing complex stiffnesses, Re(Z), for TPJBs with pads of
thickness (a) =8.5 mm (b) =10 mm (c) =11.5 mm. Shaft speed Q=6 krpm and unit
load WI(LD)=1,724 kPa. Test data from Gaines [2] and predictions (with and without
pad flexibility).
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Fig. 16 Real part of bearing complex stiffnesses, Re(Z), for TPJBs with pads of
thickness (a) =8.5 mm (b) =10 mm (c) t=11.5 mm. Shaft speed Q=12 krpm and unit
load WI(LD)=1,724 kPa. Test data from Gaines [2] and predictions (with and without
pad flexibility).
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For the same static load condition and two journal speeds, Figures 17 and 18 depict
the experimental and predicted imaginary part of the bearing complex stiffnesses, Im(Z).
In general, the bearing damping coefficient (C) is the slope of Im(Z)~ wC. Both Im(Zxx)
and Im(Zyy) from the experiments show a linear growth with frequency, i.e., a frequency
independent C. Note Im(Zxx) > Im(Zyr). The predictions are in very good agreement with
the experimental results for operation with the high shaft speed (12 krpm). On the other
hand, for operation at 6 krpm, the predicted Im(Zxx) is larger than the test results and
evidences a reduction in growth on the high side of the excitation frequency range

(0>1.5Q).
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Fig. 17 Imaginary part of bearing complex stiffnesses, Im(Z), for TPJBs with pads
of thickness (a) =8.5 mm (b) =10 mm (c) =11.5 mm. Shaft speed Q=6 krpm and
unit load W/(LD)=1,724 kPa. Test data from Gaines [2] and predictions (with and
without pad flexibility).
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Fig. 18 Imaginary part of bearing complex stiffnesses, Im(Z), for TPJBs with pads
of thickness (a) =8.5 mm (b) =10 mm (c) t=11.5 mm. Shaft speed Q=12 krpm and
unit load W/(LD)=1,724 kPa. Test data from Gaines [2] and predictions (with and
without pad flexibility).

The correlation coefficient (7%) represents the goodness of the [K-C-M] curve fit to
predicted complex stiffnesses. Table 9 lists 7 for the results of predictions conducted with
three TPJB configurations. A correlation coefficient (#°)—1 indicates that the [K-C-M]
model delivers perfect force coefficients. All the correlation coefficients for the curve fits
to the predicted imaginary part of the bearing complex stiffnesses are close to 1, thus
revealing that the predicted damping coefficients are nearly frequency independent.

At a rotor speed of 12 krpm, the correlation coefficients of the curve fit (K,M)
parameters to the predicted real part of the bearing complex stiffnesses are low, varying
from 0.13 to 0.87. Recall that at a rotor speed of 12 krpm, Re(Z) is almost invariant over
the frequency range (0~200Hz). At Q=6 krpm, Re(Z) is frequency independent at a sub
synchronous frequency (w<Q). Thus, Re(Z) is not a quadratic function of @ and the curve

(K-Mw?) cannot adequately represent Re(Z). A constant K is a better match.
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Table 9 Correlation coefficients (r?) of curve fit force coefficients (K,C,M) to
predicted complex stiffnesses at two operating conditions for TPJBs in Ref. [2].
Excitation frequency range 0 to 200 Hz.

Rotor Specific load (kPa)
speed 172 345 689 1,032 1,724

Kxx-w’Mxx—Re(Zxx) | 0.86 0.80 094 096 0.99
6 krpm Kyy-w’Myy—Re(Zyy) | 0.80 0.77 0.76 0.79 0.90
w Cxx—Im(Zxx) 1.00 1.00 1.00 1.00 0.99
Thin pad @ Cyyr—Im(Zyy) 1.00 1.00 1.00 1.00 0.99
=8.5 mm Kxx-o’Mxx—Re(Zxx) | 0.71 0.66 051 029 0.19
12 krpm Kyr-o’Myr—Re(Zyy) | 0.78 0.79 0.82 0.84 0.87
w Cxx—Im(Zxx) 099 099 099 0.99 0.99
@ Cyyr—Im(Zyy) 099 099 098 098 098

Kxx-o’Mxx—Re(Zxx) | 0.86 089 093 096 0.99
6 krpm Kyy-w’Myy—Re(Zyy) | 0.80 0.78 0.75 0.76 0.93
 Cxx—Im(Zxx) 1.00 1.00 1.00 1.00 0.99

Medium
thick pad oCyy—Im(Zyy) 1.00 1.00 1.00 1.00 1.00
=10 mm Kxx-0’Mxxy—Re(Zxy) | 0.76 0.71 058 037 0.13
12 krpm | Kr-o’My—Re(Zyy) | 0.80 0.82 083 0.84 0.84
o Cxx—Im(Zxx) 099 099 0.99 099 0.99
oCyy—Im(Zyy) 099 099 099 098 098
Kxx-o’Mxx—Re(Zxx) | 0.84 0.88 093 096 0.99
6 krpm Kyy-w’Myy—Re(Zyy) | 0.78 0.74 0.74 0.80 0.94
o Cxx—Im(Zxx) 1.00 1.00 1.00 1.00 0.99
Thick pad wCyy—Im(Zyy) 1.00 1.00 1.00 1.00 1.00
=11.5 mm Kxx-0’Mxy—Re(Zxy) | 0.78 0.74 0.61 038 0.22

12 krpm Kyy-o’Myy—Re(Zyy) | 0.81 083 0.86 0.83 0.73
o Cxx—Im(Zxy) 0.99 0.99 099 099 099
@Cyy—Im(Zyy) 0.99 099 098 0.98 0.99
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Define dimensionless dynamic force coefficients as'?

K.C C.QC M.QC
kz‘j: ;VP’CV= UW ”,mij=# l,]:)(,Y (26)

where K, C and M are the bearing stiffness, damping and virtual mass coefficients derived
from the complex stiffnesses using a [K-C-M] model. Cp is the cold pad radial clearance,
Q is the rotor speed in rad/s, and W is the static load applied on the bearing.

Figure 19 depicts the TPJB stiffness coefficients (kxx > kyr) versus unit load as
identified (curve fits) from the measured and predicted bearing complex stiffnesses (Z).
The predicted stiffnesses correlate well with the test data at low loads, W/(LD)<1,032 kPa,
but are underestimated at the highest load, W/(LD)=1,724 kPa. Note that pad flexibility
increases the predicted kxx and kyy at low loads, W/(LD)<689 kPa, whereas it reduces the
predicted kxx and kyy for high loads, W/(LD)>689 kPa. Predicted direct stiffnesses
accounting for pad flexibility are up to 20% smaller than those assuming a rigid pad. As
the pad thickness decreases from 11.5 mm to 8.5 mm, the predicted kxx decreases by 21%.

Interestingly, the direct stiffness (krr) along the static load direction (-Y) is
significantly lower than the stiffness kxx, in particular as the unit load increases. Fig. 20
depicts the film thickness and hydrodynamic pressure at the bearing mid-plane (z=" L).
Both the minimum film thickness and the maximum pressure are quite close to the X axis
(6=180°), thus causing a large stiffness along the unloaded direction (X). That is, the

stiffening effect is a result of the long arc extent of the bearing pads, 90°.

13 At WI(LD)=172, 345, 689, 1,032 and 1,724 kPa, W/C,=[11, 23, 46, 69, 115] MN/m; at the journal speed
of 6 krpm, W/(QC,)=[18265, 36637, 73168, 109805, 183079] N's/m, and W/(Q>C,)=[29, 58, 116, 175,
291] kg; at the journal speed of 12 krpm, W/(QC,)=[9133, 18318, 36584,54902, 91539] N-s/m, and
WI(QC,)=[7, 15, 29, 44, 73] kg.
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Fig. 19 Direct stiffnesses (kxx and kyy) versus unit load and two shaft speeds.
Predictions (without and with pad flexibility) and test data from Gaines [2]. Results
shown for thin, medium and thick pads.
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Fig. 20 Predicted film pressure and film thickness at bearing mid plane. Operation
with unit load W/(LD)=172 kPa and shaft speed Q=6 krpm. Location of the maximum
film pressure for each pad: 6,=33° (pad 1), 6,=153° (pad 2) and 6;=273° (pad 3). Location
of the minimum film thickness for each pad: 6,=53° (pad 1), 6,=173° (pad 2) and 6;=301°
(pad 3).

Figure 21 depicts the damping coefficients (cxx > crr) versus unit load for two shaft
speeds. Pad flexibility reduces the predicted damping over the entire load range, 172 kPa<
WI(LD)< 1,724 kPa. The experimental results show less differences for the three pad
thicknesses than the model otherwise predicts. Predictions including pad flexibility deliver
damping coefficients that are up to 20% lower than similar coefficients obtained with a
rigid pads model. Reducing the pad thickness from 11.5 mm to 8.5 mm produces also a
reduction of 34% (at most) in predicted direct damping. Note that the test results appear
to agree with the predictions including pad flexibility for cxx. At the rotor speed of 6 krpm,

including pad flexibility still overestimates cvy.
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Fig. 21 Direct damping coefficients (cxx and cyy) versus unit load and two shaft
speeds. Predictions (without and with pad flexibility) and test data from Gaines [2].
Results shown for thin, medium and thick pads.
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Figure 22 displays the virtual mass coefficients (mxx, myy) versus unit load and
operation at the low shaft speed of 6 krpm. The test results evidence smaller magnitudes
for the added masses than the predictions otherwise show. The negative values denote the
bearing dynamic stiffness hardens slightly as frequency increases, see Fig. 15. Most
importantly, as the unit load increases, note (mxx, myy) approach null values, thus
indicating the real part of the complex stiffnesses (Z) does not show a frequency
dependency. Similar results follow for operation at 12 krpm. Note that in the sub-
synchronous frequency range (w<Q), the virtual mass coefficients have a negligible

impact on the dynamic stiffnesses (Re(2)).
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Fig. 22 Direct virtual mass coefficients (mxx and myy) versus unit load and shaft
speed= 6krpm. Predictions (without and with pad flexibility) and test data from
Gaines [2]. Results shown for thin, medium and thick pads.

Gaines [2] reports the percent reduction in the experimentally estimated dynamic force

coefficients for the TPJB with thin pad sets (/=8.5 mm), with respect to those coefficients

for the TPJB with thick pad sets (#=11.5 mm). Similarly, define Ak, ,Ak, ,Ac,, and Ac,

as the percent reduction in predicted direct dynamic force coefficients for the TPJB

including pad flexibility with respect to those coefficients for the TPJB assuming rigid

pads as

YY, flex

YY ,rigid

_ CYY,ﬂex

CYY,rigid

(27.a)

27.b)
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where kxxiex, kyvflex, Cxxflex, Cyvflex are the predicted stiffness and damping coefficients
assuming both flexible pads and flexible pivots; and kxx rigid, kvv.rigid, CXX,rigid, CyY.rigid are the
predicted stiffness and damping coefficients assuming a rigid pad with a flexible pivot.

Table 10 lists the percentage reduction in bearing direct stiffness and damping
coefficients at W/(LD)=172 kPa and 1,724 kPa and Q=6 krpm and 12 krpm. A positive
value means including pad flexibility reduces a predicted force coefficient while a

negative value means pad flexibility increases a predicted force coefficient.

Table 10 Percentage difference’*between predicted dynamic force coefficients
including pad flexibility and those assuming rigid pads at the lowest load
(WALD)=172 kPa) and the highest load (W/(LD)=1,724 kPa).Frequency ranges from
0 to 200 Hz

Speed | Unit load — — AC AC.
[rpm] | [KPa] Ao A - !
Thin pad sets, =8.5 mm

172 -5.7 -10.5 16.7 15.2
6,000 004 14.7 15.2 6.8 5.1

172 -3.3 -6.4 18.9 18.9
12,0000 954 19.5 173 6.7 5.2

Medium thick pad sets, =10 mm

172 -5.6 -8.0 12.7 11.1
6,000 1724 12.6 12.8 7.3 0.9

172 -4.2 -5.9 12.5 11.8
12,0000 954 16.7 14.8 33 0.3

Thick pad sets, =11.5 mm

172 -3.7 -4.5 7.2 5.7
6,000 1724 8.7 8.9 6.3 0.2

172 -3.8 -3.6 4.9 3.5
12,000 1724 12.6 11.5 2.9 0.1

Stiffness Damping |

Pad flexibility influences significantly the dynamic force performance of the TPJB
with thin pad sets (+=8.5 mm), since these pads are more flexible. Gaines [1] reports that

the reduction in measured damping coefficients due to the increase in pad flexibility is

14 With respect to the predicted dynamic force coefficients assuming flexible pivot but rigid pad.
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more significant at a high rotor speed (€2=12 krpm). For the TPJBs with medium thick and

the thickest pad sets, the reduction in predicted direct damping coefficients ( Ac,, and Ac,,

) due to pad flexibility increases with an increase in rotor speed; while for the TPJB with

the thin pad sets, Ac,, and Ac,, ) due to pad flexibility decreases with an increase in rotor
speed. In general, Ac,, and Ac,, decrease as the load increases. The effect of pad flexibility

on the direct stiffnesses is larger at a high rotor speed and with a large unit load. In
addition, pad flexibility tends to increase slightly the direct stiffness coefficients at low
loads, thought it decreases the direct stiffnesses at high loads.

Closure Test data in Ref. [2] shows that pad flexibility reduces the journal eccentricity
and the dynamic force coefficients. However, pad flexibility shows little effect on the film
temperature. In the predictions, pad flexibility shows a more significant effect on the
predicted static performance of the TPJB operating at a high rotor speed (2=12 krpm). At
the highest shaft speed and with the largest load (Q2=12 krpm, W/(LD)=1,724 kPa), pad
flexibility reduces the predicted journal eccentricity of the TPJB with thin pad sets (+=8.5
mm) by up to 32%. At a rotor speed of 12 krpm, including pad flexibility reduces the
predicted maximum temperature by 11%.

The maximum pad deformations locate at both the pad leading and trailing edges and
increases linearly with the applied load. At Q=12 krpm and W/(LD)=1,724 kPa, the
maximum deformation for the thin pad is 25% of the cold pad clearance (Cp=93 pm).
Along the pad leading and trailing edges, the deformation at the pad mid-plane (Z = 0) is
up to 12% larger than that at the pad side edges (Z==+'/2 L).

At the largest load (W/(LD)=1,724 kPa), stiffnesses of the TPJB with thin pad sets
(=8.5 mm) including pad flexibility are up to 20% smaller than those assuming a rigid
pad. For the TPJB with thin pad sets (8.5 mm), including pad flexibility reduces the
direct damping coefficients by up to 20%. The effect of pad flexibility on the predicted
damping coefficients is more significant at the low unit load (W/(LD)=172 kPa).

In general, the predicted journal eccentricity and dynamic force coefficients including

pad flexibility correlate well with test data in Ref. [2]. The bearing damping coefficients
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are overestimated at low unit load (W/(LD)<1,032 kPa) and the low rotor speed (Q2=12
krpm). However, the maximum temperature is overestimated.

Example 2-Predicted Forced Performance for a Four-Pad LBP TPJB [27]

Branagan [27] reports predictions of performance for several fixed geometry journal
bearings and TPJBs. The author considers two forms of pad deformation: thermal bending
and mechanical bending. He regards the thermally and mechanically induced stresses as
due to an applied moment acting on the pad. The pad deformation is accounted for as a
change in pad clearance. One of the bearings analyzed in Ref. [27] is a four-pad TPJB
with a LBP configuration.

Predictions using the current model are compared against the published predictions in
Ref. [27] for both the static and the dynamic force performance characteristics of the four-
pad TPJB. Table 11 lists the geometry of the TPJB, the lubricant type, and operating
conditions. Figure 23 shows the schematic view of the four-pad TPJB with load-between-

pad (LBP) configuration.

Table 11 Geometry, lubrication properties and operating conditions of a four-pad
TPJB in Ref. [27]

Number of pads, Npad 4
Configuration LBP
Rotor diameter, D 120 mm
Pad axial length, L 60 mm
Pad thickness, #, 22.6 mm
Pad arc angle, ®p 75°
Pivot offset 60%
Dimensionless preload, 7, 0
Cold bearing clearance, C,cold 81.5 um
Cold pad clearance, Cp,coid 81.5 um

Hot bearing clearance, Cg,cold 79.4-81.1 um
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Pad mass'>, mp 0.98 kg
Pad moment of inertia, Ip 0.16 kg'm?

. Elastic modulus'®, E 207 GPa
Pad material ‘ _

Poisson’s ratio, v 0.289
Pivot type Spherical pivot
Supply oil pressure!” 1 bar
Inlet oil temperature 33.5°C
Lubricant density 854 kg/m’
Lubricant viscosity at 33.5°C, w0 52.1 mPa's
Viscosity temperature coefficient, 0.0342 1/°C
Lubricant specific heat capacity at 70 °C 1970 J/(kg'K)
Specific load, W/LD 688 kPa- 3,441 kPa
Journal speed, Q 4000 rpm
Y
Pad 4 Pad 3
)
w
X
Fluid film Journal
Pad 1 E; 2

Pad arc length = 75°
Pad pivot offset=0.6

15 Ref. [27] does not offer the pad mass and the pad moment of inertia. Magnitudes shown in Table 11 are

estimated using Solidworks©.

16 Pad material elastic modulus is taken from Ref. [27].
17 Ref. [27] does not report the supply oil pressure. The current predictions are obtained assuming the inlet

oil pressure is 0.1 bar.
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Fig. 23 Schematic view of a four-pad TPJB in Ref. [27]. Load between pads.

Pivot flexibility In Ref. [27], Branagan selects K,»=870 MN/m (5x10° Ibf/in) as the
stiffness of the spherical pivot. The current model adopts the same pivot stiffness.

Pad flexibility Branagan [27] considers the pad thermal expansion and the pad thermal
bending as a change in bearing clearance (ACp) and pad clearance (ACpr), respectively.
The bearing clearance decreases by an average heating of the pad [27],

a(L-T)R,

AC, =
’ In(r, )

[ —In(r,)—1] (28)
where o= 1.17x107 1/C° is the pad thermal expansion coefficient from Ref. [27] and ro=
(Ry*+1)/Rp with Ry as the pad radius and ¢ as the pad thickness. 71 and 7> are the average
circumferential temperatures for the Babbitt (7sawsir) and the back of a pad (Thack),
respectively. Branagan [27] solves for Tgassin by matching the heat conduction from the
film to the finite difference solution for the heat flow in the pad. He indicates that a
convection boundary condition on the back of the pads cannot be adequately defined. In
general, the pads are surrounded by oil, named as “sump oil”, churned by pad motion.
Branagan [27] set Teack = Tsump since the “sump oil” cools the back of the pads by forced
convection. The temperature of the “sump oil” is determined by a global heat balance,
P,

pe, O

T =T +

sump in

(29)

where Tin is the supply oil temperature, Py is the drag power loss in the film, e=100% is
the fraction of shear loss carried by the oil, p is the oil density, ¢ is the oil specific heat
and Qs is total supply oil flow rate.

Branagan [27] determines the change in pad clearance (ACp) using a curved beam

model with a bending moment M (thermal and mechanical) acting at its ends, i.e.,
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4{1— i (1-2mn(r, ))}
(r02 —1)2 —(2r0 In (ro ))2

where 4=Lxt is the area of a pad cross section and E is the elastic modulus of the pad. A

M,
gD (30)

thermally induced bending moment and a mechanical bending moment due to fluid film

pressure are determined from

aEARp( “L)r .
Mthermal (7" _1) ln( ) [ro 1-2 ro 1n(ro)] (31)

M e = —RiL%I:” P(6)sin(6-06,)do (32)

pressure

where L is the pad width, 6, is the location of the pad pivot, 6 is the location of the pad
leading edge and P(0) is the fluid film pressure at the bearing mid-plane.

In the current model, the element size along the circumferential direction is 2° (default
setting). Presently, the grid density for the pressure field on one pad surface is Neir X Naxial
=29x19. Figure 24 shows a simple pad structural model built in ANSYS© with the same
mesh. Since predictions in Ref. [27] neglect the Babbitt layer, the FE pad model does not

consider it either. Similar boundary conditions as those in Desbordes et al. [20] are applied

A Pad arc length, © =75°
\/ Pad thickness,

=22.6 mm

on the FE pad model.

A

Pivot
Offset=60%
<«— Pivot

Fig. 24 FE pad model of tilting pad in Ref. [27]

The current pad FE structural model (in Figure 24) considers the pad deflection due to
fluid film pressure. However, Branagan [27] takes both the thermal and mechanical
deflection of each pad into account. Table 12 lists the change in pad clearance (ACs) due

to the pad thermal expansion and the change in bearing clearance (ACp) due to the pad
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thermal bending in Ref. [27]. To approximate Branagan’s results, the current model uses

the same ACp and ACP listed in Table 12 to account for the pad deflection due to

temperature change.

Table 12 Predicted changes in bearing pad clearance due to pad thermal expansion
(ACg) and change in pad clearance due to pad thermal bending (ACp). Data from
Ref. [27]. Nominal bearing clearance Cs=81.5 um, pad clearance Cr=81.5 ym and pad

preload7,=0.
Unit load | Pad number ACs ACp Operating Preload'®
(kPa) (wm) (wm) )
1 -1.25 3.91 0.06
2 -1.43 4.48 0.07
688
3 -0.85 2.65 0.04
4 -0.74 2.32 0.04
1 -1.43 4.49 0.07
2 -1.79 5.58 0.08
1,377
3 -0.73 2.28 0.03
4 -0.56 1.76 0.03
1 -1.50 4.67 0.07
2 -1.67 5.20 0.08
2,065
3 -0.33 1.04 0.02
4 -0.28 0.89 0.01
1 -1.67 5.20 0.08
2 -1.79 5.59 0.09
2,753
3 -0.27 0.85 0.01
4 -0.22 0.68 0.01
1 -1.80 5.62 0.08
2 -1.89 5.93 0.09
3,441
3 -0.23 0.71 0.01
4 -0.17 0.54 0.01
18 Resultant pad preload due to pad thermally induced deflection, 7, =1—(C, +AC,)/(C, +AC,) . Note the

nominal pad reload 7, =0.
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In accordance with Ref. [27], the current predictions account for the heat convection

between the fluid film and the journal surface!®. The lubricant inlet thermal mixing
coefficient (A) is 0.8, since the rotational speed is low (€2=4,000 rpm). This section shows
the current predictions with and without accounting for pad flexibility. Recall that the
current model accounts for pivot flexibility (K»»=870 MN/m).
Journal eccentricity Figure 25 shows the journal eccentricity ratio (e/Cp) predicted by
the current model and that in Ref. [27] agree for most loads. Note that C, =81.5 um is the
cold pad clearance. Pad flexibility produces a negligible effect on the journal eccentricity.
The ratio between the pad maximum deformation (umax) and the pad clearance (Cp)
increases as the static load increases. The pad maximum deformation (#ma/Cp) is only
10% even at the largest load W/(LD)=3,441 kPa, thus indicating the pad is not very
flexible.

12 floxible pad -
-~ - liexible pa flexible pad and

0 rigid pad pivot-current model
S
S
s 8] flexible pivot and Branagan's
5 rigid pad-current prediction
> 061 model
S
= 0.4 -
(]
3
w 02 Current model - pad

' deformation (u/C,)
N
0.0 . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000

W/(LD) (kPa)

Fig. 25 Journal eccentricity ratio (e/C,) for example TPJB [27]. Current model
predictions vs. predictions in Ref. [27]; (Q=4 krpm; W/LD)=688 kPa to 3,441 kPa)

19 Predictions and Ref. [27] use the average fluid film temperature as the journal temperature.
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Figure 26 depicts the pressure, fluid film thickness and pad surface deformation field
for operation at 4 krpm and at the largest load (W/ALD)=3,441 kPa). As the upper two pads
are unloaded (P=0), they have no deformation. The maximum pad deformation locates at
the pad trailing edge mid-plane (Z=0) (pivot offset: 60%). Note that the pad deformation
along the pad width (Z) is not uniform. The minimum film thickness occurs at the pad

trailing edge.
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Fig. 26 (a) Fluid film pressure, (b) pad surface deformation, and (c) fluid film
thickness. Shaft speed Q=4 krpm and static load W/(LD)=3,441 kPa.

Figure 27 depicts the fluid film pressure at the bearing mid-plane for loads
WI(LD)=1,377 kPa, 2,065 kPa and 3,441 kPa and operation at 4 krpm. Though the nominal

pad preload is nil (7, =0), at W/(LD)=1,377 kPa, the upper two pads (#3 and #4) are

loaded. For modeling purposes, the upper two pads tilt to generate a minute fluid film
pressure (P>0). However, at 3,441 kPa, the fluid film pressure on the upper pads (#3 and
4) is zero. Interestingly, at WALD)= 2,065 kPa, there is fluid film pressure generated on
pad #4, albeit the pressure on pad #3 is zero.
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Fig. 27 Fluid film pressure at bearing mid-plane. Current predictions. Operating
preload on each pad noted. Rotor speed Q=4 krpm and unit loads W/(LD)=1,377
kPa, 2,065 kPa and 3,441 kPa.

Maximum film pressure Figure 28 depicts a comparison between the predicted
maximum fluid film pressure and predictions in Ref. [27]. At W/(LD)=3,403 kPa, the
current maximum fluid film pressure becomes 16% smaller than predictions in Ref. [27].
For the current predictions, pad flexibility shows no effect on the peak pressure. The
reason for the discrepancy with data in Ref. [27] is that the FE pad model predicts a surface
deformation field over the whole pad whereas Branagan [27] only accounts for the pad

deformation as a change in pad clearance due to a bending moment created by the pressure

field?°.
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Fig. 28 Maximum fluid film pressure for example TPJB [27]. Current model
predictions vs. predictions in Ref. [27]; (Q=4 krpm; W/(LD)=688 kPa to 3,441 kPa)

Maximum film temperature Figure 29 shows the predicted maximum fluid film
temperature and that in Ref. [27] versus applied load. Note that Branagan [27] reports the

maximum Babbitt surface temperature. Current predictions including pad flexibility are

20 See Egs. (30, 32).
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slightly lower (within 2°C) than those in Ref. [27]. Though the effect of pad flexibility is

not significant, it tends to reduce the maximum temperature as the load increases.
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Fig. 29 Maximum fluid film temperature for example TPJB. TPJB [27]. Current
model predictions vs. predictions in Ref. [27]; (Q=4 krpm; W/(LD)=688 kPa to 3,441
kPa)

TPJB stiffness and damping force coefficients In Ref. [27], Branagan uses a K-C model
and reduces the dynamic force coefficients at a whirl frequency of w=1 krpm, whereas the
rotor speed () is at 4 krpm (nonsynchronous speed analysis with w/Q=1/4). Figures 30
and 31 show the asynchronous shaft speed direct-dynamic-force coefficients predicted
using the current model. Both the current model and Branagan’s predictions show a
difference between the direct force coefficients, i.e., KxyZKyy and Cxx#Cyy. The difference
is more significant in Branangan’s predictions. Recall that Branagan presents the dynamic
force coefficients with and without the consideration of pad flexibility.

In Figure 30, the current predictions for Kxx and Ky correlate well with the predictions
in Ref. [27]. The stiffnesses increase with an increase in load. Though the effect of pad
flexibility tends to reduce the stiffness coefficients and increases as the load increases, the
reduction in direct stiffnesses is not significant. At the largest load (W/(LD)=4,021 kPa),
including pad flexibility reduces the direct stiffnesses by 7%.
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Fig. 30 Asynchronous direct stiffness coefficients (Kxx and Kyy) for example TPJB
[27]. Current model predictions vs. predictions in Ref. [27]; (w=1 krpm; Q=4 krpm;
WI(LD)=688 kPa to 3,441 kPa)
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Figure 31 depicts the asynchronous speed (w/Q=1/4) damping coefficients versus
specific load. At W/(LD)<1,377 kPa, Cxx and Cyy increase slightly with applied load;
whereas, since the upper two pads become unloaded for W/(LD)>1,377 kPa, Cxx and Cyy
decrease with applied load. At a large load, W/(LD)>2,500 kPa, the current model
predictions start to approach the predictions in Ref. [27]. However, at W/(LD)=1,377 kPa,
the current predictions including pad flexibility are up to 34% larger than the Branagan’s
predictions including pad flexibility [27].

The current model predictions show that including pad flexibility reduces the damping
coefficients by up to 21% at the lowest unit load (W/(LD)=688 kPa) and by 6% at the
largest unit load (W/(LD)=3,441 kPa). In Ref. [27], including pad flexibility reduces the
damping coefficients by up to 8% at the smallest unit load (W/(LD)=619 kPa) and by 7.3%
at the largest load (W/(LD)=3,403 kPa). Similar to bearing stiffnesses, at W/(LD)>1,856
kPa, the bearing damping coefficients decrease since the upper two pads become unloaded

(see Figure 27).
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Closure For the example analyzed, a TPJB with both flexible pads and pivots, pad
flexibility shows little influence on the predicted static load results (i.e., journal
eccentricity, maximum pressure and maximum temperature). At the largest load
W/(LD)=3,441 kPa, the maximum pad deformation is 10% of the cold pad clearance thus
indicating the pad is quite rigid. However, including pad flexibility reduces the bearing
dynamic force coefficients, in particular the damping coefficients. For the current model,
pad flexibility reduces the direct stiffnesses as the applied load increases. However, for
the direct damping coefficients, the influence of pad flexibility is more significant at low
loads, W/(LD)<2,000 kPa.

Note that Branagan’s bearing [27] has stiffer pads, with shorter arc length and larger
pad thickness, than those in the bearings tested by Gaines [2]. Under a uniform pressure
(1 MPa), the trailing edge deformation of Gaines’ thickest pad (r=11.5 mm) is 40% larger
than that of the pad in Ref.[27]. At the largest load (W/(LD)=1,724 kPa) in Ref. [2], umar/Cp
for Gaines’ thickest pad bearing is 10% while that for Malcher’s bearing in Ref.[27] is
7%. Thus, the effect of pad flexibility on the force performance of this bearing is not as

pronounced as that in those bearing tested by Gaines [2].
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CONCLUSIONS

Accurate characterization of mechanical components presently requires physical
models to have ever increasing complexity that include all relevant geometrical aspects,
material properties and fluid flow conditions, as per installation and operation, even
envisioning operation well beyond their intended original design [1]. This report extends
a computational thin film fluid flow model for TPJBs to include both pad and pivot
flexibility on the prediction of the static and dynamic forced performance of typical
bearings.

Presently, a FE structural commercial model builds the stiffness matrix for pad
displacements. This stiffness matrix is condensed to show only the pad surface
deformations due to an applied pressure field. The deformation field is integrated into the
evaluation of film thickness for solution of the Reynolds equation delivering the
hydrodynamic pressure field. A small amplitude perturbation analysis produces equations
for the zeroth and first-order pressure fields from which the load capacity and a multitude
of complex stiffness for each pad are determined. A pad assembly method with frequency
reduction delivers the 4x4 stiffnesses and damping coefficients for lateral displacements
of the shaft center. In a K-C-M model, curve fits of the force/displacement versus
excitation frequency also deliver the bearing stiffness, damping, and virtual mass
coefficients.

In comparisons to experimental data and predictions in Refs. [2,27], current
predictions including both pad and pivot flexibility correlate better than the predictions
solely including pivot flexibility. For a three-pad TPJB with thin pad sets in Ref. [2], pad
flexibility reduces significantly the journal eccentricity by up to 32% and the maximum
temperature by up to 11%, in particular for operation at a high rotor speed (Q2=12 krpm).
The four-pad LBP TPJB in Ref. [27] has stiffer pads. The maximum pad deformation is
10% of the cold pad clearance at the largest load. Including pad flexibility has little effect

on the journal eccentricity and the peak fluid film temperature.
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In general, the dynamic force coefficients are reduced due to pad flexibility. For the
three pad TPJBs in Ref. [2], pad flexibility causes up to a 20% reduction in predicted
bearing stiffness. However, both test data in Ref. [2] and current predictions show an
increase in bearing direct stiffnesses for the TPJB at a low load (W/(LD)<689 kPa). Pad
flexibility shows a more significant effect on the predicted dynamic force coefficients than
the experimental results evidence, in particular at a higher rotor speed (=12 krpm), thus
indicating the pad structural FE model delivers a smaller stiffness than that of the actual
test pad. Measurements for the structural stiffness of the pads are needed to further
improve the FE model. Predictions including pad flexibility deliver damping coefficients
up to 20% lower than those obtained with a rigid pads model. Reducing the pad thickness
from 11.5 mm to 8.5 mm causes also a reduction of up to 34% in the predicted direct
damping coefficients.

For a four-pad TPJB with a LBP configuration [27], current predictions include both
the pad thermal expansion and the pad thermal bending using the resultant bearing and
pad clearance listed in Ref.[27]. Including pad flexibility reduces the direct stiffnesses by
up to 7% at the largest load and the damping coefficients by up to 21% at the smallest
load.

The report also introduces a parametric study to quantify the influence of pad
flexibility on the rotordynamic force coefficients of sample TPJBs. Generally, pad
flexibility shows a more pronounced effect at a large Sommerfeld number (5>0.8). For the
sample TPJB with three pads of increasing preload=0, 0.25 (baseline) and 0.5 under LBP
or LOP configurations, the bearing pads vary from being rigid to flexible (kpas = o0, 3.15
and 7.33). The operating journal eccentricity and dynamic force coefficients are reduced
due to pad flexibility in particular for operation at a large Sommerfeld number ($>0.8).
However, for the LOP and LBP bearings with a 0.25 pad preload, pad flexibility increases
the stiffness coefficients at large Sommerfeld number (5>0.8). Pad flexibility shows a
more pronounced effect for the TPJB with null pad preload at a large Sommerfeld number.

The report further considers a sample TPJB with four pads with null preload (LBP or
LOP configurations). The pads have stiffnesses kpas = 00, 24.4 and 4.1 (rigid to soft). Pad
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flexibility shows a more pronounced effect, generally decreasing the bearing dynamic
force coefficients along the loaded direction for the TPJB with LOP configuration. The
bearing stiffnesses for the bearing with the softest pads (kpas=4.1) are 14% smaller than
those for the bearing with rigid pads. The bearing damping coefficients with rigid pads are
up to 19% larger than that with the softest pads (kpas=4.1).

Future work should focus on the accurate prediction of pad thermal expansion and pad
thermal bending to render the actual bearing and pad clearances. Besides the current
flooded lubricated condition, the model should also include a directed lubricated condition
and also fluid starvation to accurately predict the force performance for more realistic

types of bearings.
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APPENDIX A- PAD DEFLECTION AND PAD STIFFNESS COEFFICIENT [35]

Analyses on pad flexibility available in the archival literature commonly adopt a beam
bending or flexural model to estimate pad deformations. Often enough, the analyses ignore
some important parameters affecting pad flexibility, like the pad thickness and arc length,
and the Babbitt layer. This appendix presents a novel model, accounting for the effect of
the pad geometry and material properties, to estimate the pad surface deformation.

The simple model adopts a unit-load method [35-37]. Regard half of the pad as a

cantilevered curved beam (see Figure A.1) and with a uniform pressure ( p ) acting on it.

The curved beam has radius R, thickness ¢, width L and arc length ;. The elastic modulus

of the pad material is E.

Pad arc length
6 =26 - - 1
p t

Thickness,

Uniform
pressure, p

Unit dummy
load, F

Beam arc
length, 6,

Fig. A. 1 simplified cantilevered beam model for a pivoted pad

The bending moment (M,) at =0 caused by a uniform pressure ( p ) is
6 _ . _ )
Mpzj.OpLRdQ-RsmH:pLR -(1-cos 6) (A.1)

Apply a virtual radial load (F) at the end of the curved beam. The bending moment (MF)
caused by this force is

M, =—F-Rsin(6) (A2)
The total bending moment (M5) at 6 is

Mb(H)sz+MF

(A3)
PLR*-(1-cos@)—F-Rsin(6)
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The total work (W) performed by the external loads ( p and F) is

IeMRdg J. pLR (I-cos®)- FRsm(@)J

RdO (A4)
2EI 2EI

where I=(L#’)/12 is the area moment of inertia of the beam cross-section. According to

Castigliano’s theorem [38], the beam displacement along the same direction as the applied
force (F) is

w_ M,(60) oM, (6) s A [BLR*-(1-cos6)~ F - Rsin(6)]

U= —
oF Y EI oF EI

Rsin(6)RdO

(A.5)

Since F'is arbitrary, set /=0 to obtain the radial displacement [37] at the end of the curved

beam due to the uniform pressure ( p ) only

LR*
Uy = pEI IO (1 cos@)sm&d@
—_— (A.6)
:sz[ [(cos6,—2)cos 6, +1]

Eq.(A.6) is adequate for a thin beam, i.e. one with a small thickness. For a beam with
a large thickness and a rectangular cross-section, replace R in Eq.(A.6) with the neutral

t

In(R,/R)’

axis of the beam R =

— 7 p4

) =%[(cos6’t —~2)cos 6, +1] (A.7)

Beam inner Beam outer Beam neutral
radius, R; adius, R, axis, Rn
l > Beam
thickness, t

Fig. A. 2 Neutral axis of a curved beam
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Recall that a pivoted pad is simplified into a curved beam, see Figure A.1. Thus, the
radial deformation at the leading or trailing edge of the pad can be estimated using
Eq.(A.7).

Table A.1 lists the geometry and material properties for three pads of differing pad
thicknesses. Note that the pad model has no Babbitt layer.

Table A. 1 Pad geometry and material for three pads

Pad thickness 11.3 mm, 18.1 mm, 22.6 mm
Pad radius 59.9 mm

Pivot offset 0.5 and 0.6

Pad width 60 mm

Elastic modulus 207 GPa

Poisson ratio 0.289

Pad full arc length, 6, 75° (6~0.5-6,=37.5°)

and (0~0.4-6,=30°)

The deformation at the pad trailing edge can be determined by applying a uniform
pressure (1 MPa) on the pad. Table A.2 shows the deformation at the pad trailing edge for
the three pads determined using Eq.(A.7) and a finite element (FE) structural
computational commercial program. Comparisons in Table A.2(a) indicate that Eq.(A.7)
can predict well the deformation at the pad trailing edge for the pad with 0.5 pivot offset.
Note that Eq.(A.7) slightly overestimates the pad deformation for the thin pad by 5%.
However, for the pad with 0.6 pivot offset, Eq.(A.7) delivers more accurate results for the
thinnest pad but underestimates the pad deformation for a thicker pad.

To include the Babbitt layer deposited on a pad surface, an equivalent elastic modulus
of the composite pad with both metal and Babbitt is employed. Gere [39] details the
procedure to derive the equivalent elastic modulus of a bimetallic straight beam. Figure

A.3 shows a curved beam and two end moments (M5).
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Table A. 2 Deformation at pad trailing edge due to applied pressure (1 MPa).

(a) Pad offset=0.5

Pad model Pad Pad trailing edge Percentage difference
number,i  thickness, ¢ deformation, u;
FE software  Eq.(A.7)  (uiFE) - ti (Eq.A.7)/ Ui(FE)
1 11.3 mm 1491 pm 15.68 um -5.1%
2 18.1 mm 4.64 pm 4.61 pm 6.5 %
3 22.6 mm 2.87 um 2.66 pm 7.3 %

(b) Pad offset=0.6

Pad model Pad Pad trailing edge Percentage difference
number,i  thickness, # deformation, u:
FE software  Eq.(A.7)  (uiFE) - ti (Eq.A.7)/ Ui(FE)
1 11.3 mm 6.98 um 6.59 um 54%
2 18.1 mm 2.34 pm 1.94 pm 17.1 %
3 22.6 mm 1.31 pm 1.12 pm 14.5 %

Follow the procedure in Ref. [39] and derive the location of the neutral axis (R») of a
bimetallic curved beam with rectangular cross-section [40],
R — E t+E ¢,
" EMW(R,/R)+E,In(R/R,)

(A.9)

where E1 and E> are the elastic moduli of material 1 and 2; #1 and £ are the thickness of
material 1 and material 2. R; and R, demote the inner and outer radius of the beam, and R
is the radius of the contact layer of the two materials.

Now express the applied moment (M5) on a bimetallic curved beam as

w, =40

¢

where ¢ is arc legnth between ad and bc (see Figure A.3(a)) and d¢ is the rotation from

R() _ Rm

(A.10)

R —R
El[ = I_Rbi]A1+E2[

9 _Rbi]Az

bc to b’c’. Regarding the bimetallic curved beam as an equivalent curved beam made of

single material, Eq.(A.10) becomes
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V—R

02 "—Req](AlJrAz)‘ (A.11)

Rpi: radius of neutral axis
Ri: inner radius of the beam
Ro: outer radius of the beam
Ru: radius of contact layer of
the two materials
Mp: moment applied at the
: beam
t1: thickness of part 1
t2: thickness of part 2
L: width of the beam
@: arc legnth between ad
and bc
(a) d®: the rotation from bc to
bec’

material 1

%) / Centroidal axis

d _ < Neutral axis

€

<>l

1

<>

material 1
Ro

(b)
Fig. A. 3 A curved beam made of two materials applied with bending moments (M,):
(a) shape of the curved beam (b) cross-section of the curved beam

where Req and Eeq; are the radius of the neutral axis and the elastic modulus of the

t

equivalent beam made of single material; R, = m
n 0 i

Comparing Eq. (A.10) and Eq. (A.11) yields an equivalent elastic modulus as
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E_= (A.16)
eq 1
oy
The elastic deformation () at the trailing edge of a bimetallic beam is
1 PLR,
u, . =—- [(cos@t —2)0050[ +1] (A.17)
@) 2 EI

Consider the pads having the similar geometry and materials listed in Table A.1 but
with a 1.5 mm Babbitt layer on the top surface of the pads.
As areference, Branagan [27] introduces several equations to calculate the pad elastic

deformation due to a bending moment. The one used for predictions in Ref.[27] is

4[1—(m)2(1—21n(m)ﬂ it R (418

[(m)2 —1}2 ~(2(m)In(m))’ R,

where R, is the pad outer radius and R; is the pad inner radius. Note that this equation does

%(
AE

_1)

not account for the Babbitt layer or the pad arc length.

Use the equivalent elastic modulus from Eq. (A.16) and calculate the pad deformation
at the trailing edge. Table A.3 shows the deformation at a pad trailing edge predicted using
Eq.(A.17), Eq. (A.18), and from a FE commercial software.

Table A. 3 Tip deformation of a pad due to an applied uniform pressure (1 MPa)

Pad model number,i Pad thickness, Pad trailing edge deformation, ui
(with 1.5 mm Babbitt layer)
FE software Eq.(A.17)  Eq. (A.18)

11.3 mm 19.20 pm 17.18 um 11.72 pm
2 18.1 mm 4.54 pm 4.86 um 4.54 um
3 22.6 mm 2.82 um 2.76 um 2.92 um

The pad trailing edge deformations calculated using Eq.(A.17) and the FE structural
model correlate well with each other. Eq. (A.18) from Ref. [27] underestimates the pad
trailing edge deformation for the thin pad (Pad #1) by 39%, but predicts well the
deformation for the medium thickness pad (Pad #2) and thick pad (Pad #3).
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Eq. (A.17) is adequate for general pad cases (any pad thickness ), while Branagan’s
equation (Eq.(A.18)) is accurate for a pad with large thickness (#R > 0.3).
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APPENDIX B-EFFECT OF PAD FLEXIBILITY ON THE FORCE PERFORMANCE

OF THREE-PAD TPJBS (LOP AND LBP CONFIGURATIONS) AND WITH

PRELOAD VARYING FROM 0, 0.25 TO 0.5 [2]

This section presents a parametric study on the effect of pad flexibility on the force

performance of a three-pad TPJB. Table B.1 lists the geometry and lubricant properties of

the model bearing taken from Ref. [2], i.e., the bearing has a pad clearance of 92.9 um

with thickest pad sets (+=11.5 mm)?!. Table B. 2 presents the operating conditions and

geometrical parameters varied for the model TPJB.

Table B. 1 Parameters of a TPJB model in Ref. [2].

Number of pads, Npad
Configuration

Rotor diameter, D

Pad axial length, L

Pad arc angle, ®p

Pivot offset

Nominal preload, 7,
Cold pad clearance??, Cp
Pad mass, m,

Pad moment of inertia, /,
Pivot stiffness, Kpiv

Lubricant type

Supply lubricant temperature

Supply lubricant pressure

Lubricant density

Lubricant viscosity at 49 °C, w
Viscosity temperature coefficient,
Lubricant specific heat capacity at 70 °C

3
LBP

101.6 mm
61 mm
90°
50%
0.25
92.9 um
0.54 kg
4.86 kg-cm?
751 MN/m
ISO VG46
49 °C
2.2 bar
854 kg/m’
0.0269 Pas
0.0319 1/°C

1830 J/(kg'K)

21 The bearing with the medium thick pad sets and that with the thick pad sets have the same bearing

clearance and pad clearance: C5=70 um and Cp=93 um. For the bearing with the thin pad sets, Cz=69 pm

and Cp=92 pum.

22 The bearing clearance varies for the bearing with differing preload, i.e., 7,=0,0.25 and 0.5.



85

Table B. 2 Cases to assess effect of pad flexibility on the performance of a TPJB.

Static specific load, W/LD 689 kPa

Journal speed, Q2 1000 rpm — 12,000 rpm
Pad preload, FP 0,0.25,0.5

Load configuration LBP, LOP

Pad thickness??, ¢ Rigid pad, 8.5 mm, 11.5 mm
Pivot stiffness, Kpiv 750 MN/m

The predictive model assumes that the lubricant carries away all the heat generated in
the bearing, i.e., adiabatic journal and pad surface. Following the parametric study
conducted by San Andrés et al. [41], the change in clearance due to an increase in film
temperature is not considered, so as to limit the number of factors affecting bearing
performance other than pad flexibility.

Define a dimensionless pivot stiffness as (Kpn=750 MN/m)

K _C

ki =%=16 (B.1)

max

Note that the bearing has a moderately rigid pivot. According to Appendix A and Ref.

[41], define a dimensionless pad stiffness as

C C, pLD
ko= r g __p PE_
“w(LD) M w, W
(B.2)*
EJ D > c,
R}, R, [(cos6,—2)cos6, +1]\ W

with 6 is the arc length from the pivot to the pad trailing edge. Thus, the dimensionless
pad stiffness kpaa =3.15 for a pad with a thickness of 8.5 mm, and kpas =7.33 for another

pad with a thickness of 11.5 mm, respectively. kpas = o denotes a rigid pad.

23 The model pad has a 1.5 mm thick Babbitt layer.
2 In Eq. (C.2), Rey=54.9 mm for ke = 3.15 and R.;=56.4 mm for ky,s = 7.33.
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The dimensionless dynamic force coefficients are defined as®® [42]

2
_KC, _GQc, M,

ki w G w0

ij=X,Y (B.3)

where K, C and M are the bearing stiffness, damping and virtual mass coefficients derived
from the complex stiffnesses using a [K-C-M] model. C, is the cold pad radial clearance,
Q is the rotor speed, and W is the static load applied to the bearing. The Sommerfeld
number (), increasing with shaft speed (€2) and decreasing with applied load (W), is

2
LD
NT{_] B4

p
where N :%0 is the shaft rotational speed in revolutions per second, and us is the

lubricant viscosity at supply temperature. Since the static load is invariant, W/(LD)=689
kPa, S varies from 0.18 to 2.22 as the shaft speed increases from 1,000 rpm to 12,000 rpm.
For the LBP and LOP configurations and three pad preloads, 7, =0, 0.25, 0.5, Figure

B. 1 depicts the journal eccentricity (e/Cp) and the maximum pad deformation (#max/Cp)
for the bearing with thin pads sets versus Sommerfeld number (S). At a large S and as the
pad flexibility increases (kpaa decreases), the journal eccentricity decreases greatly for the
LBP bearing with a null pad preload and the LOP bearing with 0.25 preload, in particular.
Contrarily, the maximum pad deformation (umax/Cp) increases with Sommerfeld number
(S). For the LBP bearing with 0.5 preload, the maximum pad deformation (umax/Cp) for the
bearing with thin pads sets is even greater than the bearing journal eccentricity (e/Cp) at a

large S (>1.1), but is still less than the pad clearance (umax/Cp=0.22).

3 W/C,=46 MN/m, W/(QC,)=36584~439006 N-s/m, and W/(Q*C,)=29~4192 kg.
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_ ' ( W\X Pad stiffness
Q 08 P increases k,,q
)
2 ) Load on pad
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00 t=8.5 mm k,,,=3.15
0.1 1.0

Sommerfeld number S

(b) LBP & LOP, 7, =0.25

Fig. B. 1 Three-pad TPJB journal eccentricity (e/Cp) and maximum pad deformation
(Umax/Cp) vs. Sommerfeld number (S). Pad stiffness kpaq = 3.15, 7.33, ~ (rigid) and
pivot stiffness kpiv = 16. Pad preload: 0, 0.25 and 0.5. LBP and LOP configurations.

Specific load WI(LD)=689 kPa, rotor speed Q=500 rpm to 12,000 rpm.

Figure B.2 depicts the fluid film thickness and pad deformation at bearing mid-plane
for the LBP bearing with 0.5 preload, at W/(LD)=689 kPa and rotor speed Q=12,000 rpm.
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The minimum film thickness increases with an increase in pad flexibility. As the pad
flexibility increases, the location of the minimum film thickness moves from the pad
trailing edge towards the pad pivot. This leads to a smaller maximum fluid film

temperature (see Figure 14 in Example 1).

180 180
160 Pad 3 - 160
£ 10 140 4
» a
g 120 fluid film | 120 o
g thickness ]
S 100 - 100 S
£ 3
L Q
£ 80 80 g:
pas 60 - 60 2
E 5
- 40 Pad deformation r40 =
20 - .t
N\ pd ~ P ~om -
0 = —S~gF 0 4715
235 285 335
0 . .=35° Angle (°) 0,,i3=275° Pad 1 )

piv1

Fig. B. 2 Fluid film thickness and pad deformation at bearing mid-plane. Pad
stiffness kpaa = 3.15 and pivot stiffness kpv = 16. Pad preload 7,= 0.5. LBP

configurations. Specific load W/(LD)=689 kPa, rotor speed Q=12,000 rpm and
Sommerfeld number $=2.22.

Figure B.3 shows the pad surface mechanical deformation () due to the hydrodynamic
fluid film pressure. Similarly, along the circumferential direction, the maximum pad
deformation occurs at both the pad leading edge and the pad trailing edge (pivot
offset=50%); while along the axial direction, the maximum pad deformation is at the pad
mid-plane (Z=0). For the LBP bearings, as the pad preload increases from 0, to 0.25, to

0.5, the pad deformation increases since the fluid film pressure on the pad increases.

ad 2
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Figure B.4 depicts the

drag friction coefficient f=Torque/(RIW)

90

increasing

proportionally with S for both the LBP and LOP configurations. The bearing with the

largest preload has more viscous drag. Pad flexibility has no effect on the drag friction (f),

hence has no influence on the bearing drag power losses.
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Preload rp=0.5

0-100 ] L L Pad stiffness
1 Drag friction coefficient f increases K.
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- = f(t=11.5 mm,k,,,=7.33) | Preload r,=0.5 | a B’
k= = f (=8.5 mm,k,,,~3.15) s
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2 ]
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o
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Sommerfeld number S
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=
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(b) LBP & LOP, 7p =0.25

Load between pad
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Fig. B. 4 Three-pad TPJB drag friction coefficient (f) vs. Sommerfeld number (S).
Pad stiffness kpaq = 3.15, 7.33, « (rigid) and pivot stiffness kpi, = 16. Pad preload: 0,
0.25 and 0.5. LBP and LOP configurations. Specific load W/(LD)=689 kPa, rotor

speed Q=500 rpm to 12,000 rpm.




91

Figure B.5 to B.10 depict the (dimensionless) bearing force coefficients, k, ¢ and m
versus Sommerfeld number. The frequency range to obtain the force coefficients is up to
twice the synchronous shaft speed: 0~2Q [43].

Figure B.5 depicts the dimensionless direct stiffnesses (kxx, kyr) for the LBP bearings
with preload 7, = 0 and 0.5, while Figure B.6 shows kxx and kyy for the LBP and LOP

bearing with a 25% pad preload. Pad flexibility increases both kxx and kyr at a large
Sommerfeld number ($>0.8). For the LOP bearing, pad flexibility increases kxx by up to
30% at $=2.22. Recall that Fig. 15 in Example 1 depicts an increase in bearing stiffnesses
due to pad flexibility at a smaller unit load. For the LOP TPJB, the stiffness along the
unloaded direction (kxx) is one order of magnitude lesser than the stiffness along the load
direction (kyr) at a Sommerfeld number less than 1 (§<1).

For the LBP TPJB with a 50% pad preload and the LOP TPJB with a 25% pad preload,
kxx and kyy increase with S. For the LBP TPJB with null preload, kxx and kyy decrease with

an increase in S.
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Fig. B. 5 Three-pad TPJB stiffness coefficients (kxx, kyy) vs. Sommerfeld number
(S). Pad stiffness kpaq = 3.15, 7.33, = (rigid) and pivot stiffness kpi, = 16. Pad preload
7, =0, 0.5. LBP configuration. Specific load W/(LD)=689 kPa, rotor speed Q=500

rpm to 12,000 rpm.
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Fig. B. 6 Three-pad TPJB stiffness coefficients (kxx, kyy) vs. Sommerfeld humber
(S). Pad stiffness kpas = 3.15, 7.33, « (rigid) and pivot stiffness ki, = 16. Pad preload
7, =0.25. LBP and LOP configurations. Specific load W/(LD)=689 kPa, rotor speed

Q=500 rpm to 12,000 rpm.

Figure B.7 depicts the direct damping coefficients (cxx, cyy) versus Sommerfeld
number (S) for LBP bearings with pad preload 7 = 0 and 0.5. Figure B.8 shows cxx and
cyy for both LBP and LOP bearings with a 25% pad preload. The damping (cxx, crr)

coefficients increase with §; however, for the LBP TPJB with null preload, cry decreases
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for 0.74<S<1.48. As pad flexibility increases, the damping coefficients decrease
dramatically by up to 24%, in particular for large Sommerfeld number ($>1.0). Pad
flexibility has a more pronounced effect on cxx of a LBP TPJB with null pad preload (7,
=0).

Figure B.9 depicts the virtual mass coefficients (myy, myy) versus Sommerfeld number

(S) for the LBP bearings with preload 7 = 0 and 0.5, and Figure B.10 shows the mass

coefficients (myy, myy) for the LBP and LOP bearings with a 25% pad preload. In general
myy, myr<0 denote the bearing stiffens as the excitation frequency increases. Pad flexibility
has a more pronounced effect on myy, in particular for the LBP bearing with preload equal
to either 0 or 0.25. Though the coefficients (m) do not approach zero as S increases, the
physical virtual mass coefficients (Myy, Myr) approach to zero at a large S, thus indicating

the dynamic stiffness Re(Zyr) is frequency independent.
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Fig. B. 7 Three-pad TPJB damping coefficients (cxx, cyy) vs. Sommerfeld number
(S). Pad stiffness kpas = 3.15, 7.33, « (rigid) and pivot stiffness ki, = 16. Pad preload
7, =0, 0.5. LBP configuration. Specific load W/(LD)=689 kPa, rotor speed Q=500

rpm to 12,000 rpm.
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Fig. B. 8 Three-pad TPJB damping coefficients (cxx, cyy) vs. Sommerfeld number
(S). Pad stiffness kpas = 3.15, 7.33, « (rigid) and pivot stiffness ki, = 16. Pad preload
7, =0.25. LBP and LOP configurations. Specific load W/(LD)=689 kPa, rotor speed

Q=500 rpm to 12,000 rpm.
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Fig. B. 9 Three-pad TPJB virtual mass coefficients (mxx, myy) vs. Sommerfeld
number (S). Pad stiffness kpaqs = 3.15, 7.33, « (rigid) and pivot stiffness ki, = 16. Pad
preload7, =0 and 0.5. LBP configuration. Specific load W/(LD)=689 kPa, rotor speed

Q=500 rpm to 12,000 rpm.
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Fig. B. 10 Three-pad TPJB virtual mass coefficients (mxx, myy) vs. Sommerfeld
number (S). Pad stiffness kpaq = 3.15, 7.33, « (rigid) and pivot stiffness ki, = 16.
Pad preload 7, =0.25. LBP and LOP configurations. Specific load W/(LD)=689 kPa,

rotor speed Q=500 rpm to 12,000 rpm.
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Closure Pad flexibility shows a more pronounced effect on the journal eccentricity and
the force coefficients of a TPJB with null pad preload than for the bearings with a physical
pad preloads (0.25 and 0.5), in particular for operation with a small load or at a high
surface speed (5>0.8).

The bearing journal eccentricity decreases with the Sommerfeld number S. At a large
$>0.8, pad flexibility decreases greatly the bearing journal eccentricity for the LBP
bearing with a null pad preload and the LOP bearing with 0.25 preload, in particular. Pad
flexibility has no effect on the bearing viscous drag friction coefficient.

For the LOP and LBP bearings with a 25% pad preload, pad flexibility increases the
stiffness coefficients (kxx, kyyr) at large Sommerfeld number ($>0.8). For the LBP bearing
with null pad preload, pad flexibility reduces (kxx, kvr) by up to 17%.

As the pad flexibility increases, the damping coefficients (cxx, crr) reduces at large
Sommerfeld number ($>1.0), in particular for the LBP bearing with null preload. Pad
flexibility drops the damping coefficients by up to 24%.
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APPENDIX C-EFFECT OF PAD FLEXIBILITY ON THE FORCE PERFORMANCE
OF FOUR-PAD TPJBS WITH TWO LOAD CONFIGURATIONS (LBP AND LOP)

This section presents a parametric study on the effect of pad flexibility on the forced

performance of a four-pad TPJB presented in Ref. [27]. Table C.1 lists the bearing

geometry and operating conditions.

Table C. 1 Parameters of the four-pad TPJB presented in Ref. [27]

Number of pads, Npad
Configuration

Rotor diameter, D

Pad axial length, L

Pad arc angle, Op

Pivot offset
Dimensionless preload, 7,
Bearing cold clearance, Cs
Pad cold clearance, Cp
Pad mass, mp

Pad moment of inertia, /p

Pad material

Poisson’s ratio, v

Pivot type
Supply oil pressure
Inlet oil temperature

Lubricant density

Lubricant viscosity at 33.5°C,
Viscosity temperature coefficient,
Lubricant specific heat capacity at 70 °C

Young’s modulus, £

4
LBP & LOP

120 mm
60 mm
75°
60%
0,0.25
81.5 um
81.5 um
0.98 kg
0.16 kg'm?
207 GPa
0.289
Spherical pivot
1 bar
33.5°C
854 kg/m?
52.1 mPa's
0.0342 1/°C
1970 J/(kg'K)

Recall that the TPJB in Ref. [27] has stiff pads with a moderate stiff pivot (Ky»=870

MN/m). In this appendix, the pad thickness varies to change the pad flexibility. Table C.

2 lists the operating conditions and geometrical parameters for the TPJB model. As is
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discussed in Appendix B, pad flexibility shows a more pronounced effect on a TPJB with

null preload. Thus, the following parametric study analyzes a TPJB with a null preload 7,
=0 operating at either LBP or LOP configurations.

Table C. 2 Cases to assess effect of pad flexibility on the performance of a TPJB.

Static specific load, W/(LD) 1,435 kPa

Journal speed, Q 500 rpm — 6,000 rpm
Sommerfeld number?®, S 0.19-2.27

Pad preload, 7, 0

Load configuration LOP & LBP

Pad thickness, ¢ Rigid pad, 22.6 mm, 11.3 mm
Pivot stiffness, Kpiv 870 MN/m

Define a dimensionless pivot stiffness as,

K ivCP
o =p7=8.0 (C.1)
where Kp»=870 MN/m is the dimensional pivot stiffness, C,=81.5 um is the cold pad
clearance and W=8,896 N is the applied static load. According to Appendix A, define a

dimensionless pad stiffness as

k =—2r K
e w(LD) M

E, D 2 C,
R}, R, [(cos6,—2)cosd, +1|\ W

(C.2)7

with 6=30° is the arc length from the pivot to the pad trailing edge. Thus, the
dimensionless pad stiffnesses are kpas = 4.1 for a pad with a thickness of 11.3 mm, kpas =
24 .4 for another pad with a thickness of 22.6 mm?®. kpas = o0 denotes a rigid pad.

Current predictions assume that the lubricant carries away all the heat generated in the

bearing, i.e., adiabatic journal and pad surface. The lubricant inlet thermal mixing

26 Since the static load is constant, W/(LD)=1,435 kPa, S varies from 0.19 to 2.27 as the shaft speed
increases from 500 rpm to 6,000 rpm.

¥ In Eq. (C.2), Re=65.4 mm for kyqq = 4.1 and R.;=70.6 mm for kp. = 24.4.

28The pad FE model does not include a Babbitt layer.
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coefficient (4) is assumed to be 1=0.8 in the prediction. Following the parametric study
conducted by San Andrés et al. [42], the change in clearance due to an increase in film
temperature is not considered, so as to limit the number of factors affecting bearing
performance other than pad flexibility.

Figure C.1 depicts the journal eccentricity (e/Cp) and peak pad surface deformation
(umax/ Cp) versus Sommerfeld number (S) for the TPJB under LBP and LOP configurations
with null pad preload. The effect of pad flexibility on the journal eccentricity is not
significant. At low Sommerfeld number (5<0.3), pad flexibility slightly increases the
journal eccentricity. The maximum pad deformation (uma/Cp) for the LOP bearing is
larger than that of the LBP bearing. At the largest S, the maximum pad deformation is
36% of the cold pad clearance.

1.2 ,
[ . LBP
ol Kpa=24.4 (=22.6 mm) f W) L tep _
B o LOP
2 on IS Ns IS0 |mmmmm e
5 L~
= I w
c 0.6 %q& kpad=4'1
§ T Nl (113 mm) k,, =
4 iqi
[ %4 1 lop rigid ‘_y—“
5 - -— e = == = --—
S 024 TadC,
i =11.3 mm (k,,,,~4.1)
0.0 + : .
0.1 1.0

Summerfeld Number S

Fig. C. 1 Four-pad TPJB journal eccentricity (e/Cp) vs. Sommerfeld number (S).
Pad stiffness kpaq = 4.1, 24.4, ~ (rigid) and pivot stiffness kv = 8.0. Pad preload FP

=0. LBP and LOP configurations. Specific load W/(LD)=1,239 kPa, rotor speed
Q=500 rpm to 6,000 rpm.

Figure C.2 shows the pad surface mechanical deformation () due to the hydrodynamic
fluid film pressure for the TPJB with the most flexible pads (kpas = 4.1). The maximum
pad deformation locates at the pad mid-plane (Z=0) and the pad leading edge. Pad #1 for
the LOP bearing is the most loaded pad and has the largest deformation at its leading edge.
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For the LBP bearing, due to geometric symmetry, the loaded two pads (#1 and 2) have the

same pad deformation while the upper two pads (#3 and 4) have the same pad deformation

.,

0.5
Opiva=315° 0 L

05

as well.
Pad 1 Pad 2

30
§ 25
'é_: 20 —
® 15—
E 10
)
g -
B 0
o

-5

0 50 100 150 200 250 300 350

Bpiv1=45 Angle (deg)
(a) LBP
Pad 1

30
E 2
s
® 15
E 1
R
g -
g 0 - Pivot
o I Iocation\‘| Opiv2=180° | Boive=270°

45 105 165 225 285 345 405

Bpi1=90° Angle (deg)
(b) LOP

0.5
I Bpiva=360° 0 L

0.5

Fig. C. 2 Pad surface radial deformation. Pad stiffness kpas = 4.1 and pivot stiffness
kpiv = 8.0. Pad preload 7,=0. LOP and LBP configurations. Specific load W/(LD)=

1,239 kPa, rotor speed Q=6,000 rpm (S=2.22).

Figure C.3 shows the drag friction coefficients f=Torque/(R/W) increasing with S. The

load configuration difference and pad flexibility show no effect on the bearing drag

friction coefficients, since the bearing drag torque (7orque) varies little for all cases listed

in Table C.2.



104

0.04 -
- / LBP
I h ¥ LBP
0.03 + k _/ LOP
€ I | P
c Drag friction coefficient f
2 ()
o 1 pa
£ 002 7 = f (K,uq=24.4) v \x
o) = f (Kpag™=4-1)
o
o] I
0.01 + LOP
0.00 -+ - S
0.1 1.0

Summerfeld Number S

Fig. C. 3 Four-pad TPJB drag friction coefficient (f) vs. Sommerfeld number (S). Pad
stiffness Kkpas = 4.1, 24.4, < (rigid) and kpiv = 8.0. Pad preload 7p=0. LBP and LOP

configurations. Specific load W/(LD)=1,239 kPa, rotor speed Q=500 rpm to 6,000
rpm.

The dimensionless dynamic force coefficients are defined as®® [43]

2
. K¢ _gec, —_MQC,
i w i} w )

ij=X,Y (C.3)

where K, C and M are the bearing stiffness, damping and virtual mass coefficients derived
from the complex stiffnesses using a [K-C-M] model. Cp is the cold pad radial clearance,
Q is the rotor speed, and W is the static load applied to the bearing. The frequency range
to obtain the force coefficients is up to twice the synchronous speed: w=0~€.

Figure C.4 depicts the real part of the complex stiffnesses, Re(Z)=K-w’M, reduced at
synchronous speed (w=Q). Pad flexibility reduces Re(Z), in particular for the LOP
bearing.

Figure C.5 shows the stiffness coefficients (k) of the TPJB versus Sommerfeld number
(). Pad flexibility reduces the bearing stiffnesses. Note that kxx=kvyy for the four-pad TPJB

under a LBP configuration due to geometry symmetric. For the LBP bearing, pad

2 W/C,=109 MN/m, W/(QC,)=173723~2084676 N-s/m, and W/(Q>C,)=276~39814 kg.
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flexibility reduces k by up to 12%. For the LOP bearing, pad flexibility shows a more
pronounced effect on the stiffnesses along the load direction (kyy). kyyfor the TPJB with
rigid pad (kpad = ) is up to 14% smaller than that for the TPJB with the most flexible pads
(kpaa = 4.1). Pad flexibility increases slightly kxx by 5% at the largest S. At a low

Sommerfeld number (S<1), kxx is greatly less than kyy.
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Fig. C. 4 Four-pad TPJB dimensionless stiffnesses (kxx and kyy) vs. Sommerfeld
number (S). Pad stiffness kpas = 4.1, 24.4, ~ (rigid) and pivot stiffness ki, = 8.0. Pad

preload 7,=0. LBP and LOP configurations. Specific load W/(LD)=1,239 kPa, rotor
speed Q=500 rpm to 6,000 rpm.
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Fig. C. 5 Four-pad TPJB dimensionless stiffnesses (kxx and kyy) vs. Sommerfeld
number (S). Pad stiffness kpas = 4.1, 24.4, ~ (rigid) and pivot stiffness ki, = 8.0. Pad

preload FP =0. LBP and LOP configurations. Specific load W/(LD)=1,239 kPa, rotor

speed Q=500 rpm to 6,000 rpm.
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Figure C.6 shows the dimensionless damping coefficients (c) of the TPJB versus
Sommerfeld number (S). Pad flexibility has a more pronounced effect on cxx for the LOP
bearing. At the largest Sommerfeld number, cxx for the LOP bearing with rigid pads is up
to 19% larger than that with the softest pads (kpaa=4.1). For the LBP TPJB, pad flexibility
reduces the damping coefficients by up to 15%.

4
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Fig. C. 6 Four-pad TPJB dimensionless damping coefficients (cxx and cyy) vs.
Sommerfeld number (S). Pad stiffness kpaq = 4.1, 24.4, ~ (rigid) and pivot stiffness

keiv = 8.0. Pad preload 7,=0. LBP and LOP configurations. Specific load
WI(LD)=1,239 kPa, rotor speed Q=500 rpm to 6,000 rpm.
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Figure C.7 shows the dimensionless virtual mass coefficients (m) of the TPJB versus
Sommerfeld number (S). A negative virtual mass indicates the bearing becomes stiffer as
the excitation frequency increases (Re(Z)=K-Mw?). Increasing the pad flexibility tends to

reduce the magnitude of bearing virtual mass coefficients, in particular at $>0.8.
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Fig. C. 7 Four-pad TPJB dimensionless virtual mass coefficients (mxx and myy) vs.
Sommerfeld number (S). Pad stiffness kpaq = 4.1, 24.4, ~ (rigid) and pivot stiffness

keiv = 8.0. Pad preload 7,=0. LBP and LOP configurations. Specific load
WI(LD)=1,239 kPa, rotor speed Q=500 rpm to 6,000 rpm.
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Closure For a four pad TPJB, pad flexibility shows little effect on the journal eccentricity
and drag friction coefficient. The journal eccentricity (e/Cp) for the LBP bearing is larger
than that for the LOP bearing at a small Sommerfeld number (5<1.0). The maximum pad
deformation at the leading and trailing edges (u#max) increases with the Sommerfeld number
and is up to 36% of the cold pad clearance (Cp).

At the largest Sommerfeld number, the most loaded pad (#1) for the LOP bearing has
the largest pad surface deformation. For the LBP bearing, the loaded two pads have the
same pad surface deformation due to geometric symmetry.

Pad flexibility has a more pronounced effect on the dynamic force coefficients for the
LOP bearing. The stiffness coefficients for the bearing with the softest pads (kpa—4.1) are
up to 14% smaller than those with rigid pads. At the largest Sommerfeld number, pad
flexibility reduces the damping coefficients by up to 19%.



