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EXECUTIVE SUMMARY

Work in 2018 extends an earlier (2017) single-pad, laminar flow thermohydrodynamic

(THD) model, into a multiple-pad, turbulent flow thermoelastohydrodynamic (TEHD)

model for the prediction of the static and dynamic force performance of tilting pad thrust

bearings (TPTBs). The updated XLTHRUSTBEARINGR R software offers three ways,

simple to complex, to account for mechanical and thermal pad deformations in the anal-

ysis. The first way relies on an approximate solution, based on a generalization of the

EulerBernoulli beam theory, and outputs the axial deformation field on a pad top surface.

The second method is an in-house three dimensional (3D) Finite Element (FE) model that

accounts for all modes of elastic deformations, both pressure and temperature induced, and

delivers a complete 3D pad deformation field. The third method, specific for pads with a

complex geometry, provides a user with the option to model the pad in a commercial FE

software and to import the (reduced) stiffness matrix into the code. This method only ac-

counts for pad mechanical deformations and produces axial deformations of the pad top

surface.

Predictions of pad sub-surface temperature are benchmarked against published test

data for an eight-pad TPTB, 267 mm in OD, operating from 4 krpm to 13 krpm (maximum

surface speed = 54 to 181 m/s) and under a specific load/pad ranging from 0.69 to 3.44

MPa. The test data covers operation in the laminar flow, turbulent flow and transition flow

regimes. Predictions agree with measured temperatures for most test conditions, including

the transition flow regime.
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NOMENCLATURE

Ai Weight coefficients for pad analytical model [m]

cP Lubricant specific heat [J/kg °C]

CXY Damping coefficients (X = z, x, y, η, γ, ξ and Y = ec, φ,ψ, ep,α, β)

ec Thrust collar axial location [m]

ep Pivot tip axial location [m]

E Elasticity modulus [Pa]

fi Dimensionless shape functions for pad analytical model

h Fluid film thickness [m]

KXY Stiffness coefficients (X = z, x, y, η, γ, ξ and Y = ec, φ,ψ, ep,α, β)

N Shaft rotational speed [rpm], N = Ωπ/30

Nj Finite Element shape functions

NP Number of pads in a bearing [-]

mr , mθ Gradient radial and circumferential loading on the pad [Nm]

Mr , Mθ Radial and circumferential moments on the pad [Nm]

P Pressure [N/m2]

Re Local circumferential Reynolds Number, Re = RΩρh
µ

Ri, Ro Inner radius and outer radius of a pad [m]

RP, θP Pivot radial and circumferential location [m]

t Time [s]

tP Pad thickness [m]

T Temperature [°C]

U, V , W Radial, circumferential, and axial components of the fluid velocity [m/s]

VB Bending Energy of a pad [J]

w Pad top surface axial displacement [m]
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WM Mechanical loading energy [J]

WT Thermal loading energy [J]

Wz Axial load applied on the bearing [N]

ZXY Stiffness coefficients (X = z, x, y, η, γ, ξ and Y = ec, φ,ψ, ep,α, β)

α, β Pad tilt angles around (γ, ξ) axes, respectively [rad]

αTV Lubricant viscosity-temperature coefficient [1/°C]

αT Thermal expansion coefficient [1/°C]

εm, εH Eddy viscosity for momentum and heat transfer [m2/s]

θl , θt Circumferential location of leading edge and trailing edge [rad]

λ Heat convection coefficient [W/m2°C]

µ Lubricant dynamic viscosity [Pa.s]

φ,ψ Thrust Collar Misalignment angles around (x, y) axes, respectively [rad]

υ Lubricant kinemetic viscosity [cSt]

ρ Lubricant density [kg/m3]

κ Lubricant conductivity coefficient [W/m C]

κP Pad material conductivity coefficient [W/m C]

ω Excitation frequency [rad/s]

Ω Shaft angular speed [rad/s]

Matrices and Vectors

C Damping coefficient matrix

FB Body force vector (gravity or magnetic)

K Stiffness coefficient matrix

M Complex stiffness coefficient matrix

u Displacement vector

σ Stress tensor [Pa]
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ε Strain tensor [m/m]

Subscripts

F Fluid film

i Inner radius

l Leading edge

o Outer radius

p Pivot

P Pad

t Trailing edge

Su Lubricant supply condition

Abbreviations

FEM Finite Element Method

FDM Finite Difference Method

ID Inner Diameter

OD Outer Diameter

TEHD Thermo-elasto-hydrodynamic, includes pressure and thermally induced de-

formations

THD Thermo-hydrodynamic

TPTB Tilting Pad Thrust Bearing
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1. INTRODUCTION

Tilting Pad Thrust Bearings (TPTBs), used in rotating machinery to control rotor ax-
ial placement, offer advantages such as low power loss, simple installation, and low-cost
maintenance. Figure 1 depicts a schematic view of a TPTB (the fluid film thickness and
pad tilts are exaggerated for clarity), consisting of a bearing housing, a thrust collar at-
tached to the rotating shaft, and a series of pads supported on pivots. The ports in the
bearing housing supply cold lubricant into the bearing pads, meanwhile some hot lubri-
cant leaves the bearing through its sides. In the grooves between pads, the cold supplied
lubricant mixes with the upstream hot flow and enters the leading edge of the downstream
pad. As the thrust collar rotates, it draws the fluid into the wedge (between a pad and
the thrust collar) to generate a hydrodynamic pressure field. Lubricant is sheared through
the hydrodynamic wedge and its temperature increases. The load capacity of a hydro-
dynamic fluid film bearing largely depends on the lubricant viscosity, a function of its
temperature[1].

Figure 1: Schematic view of a tilting pad thrust bearing (Film thickness and pad tilts exag-
gerated).

As Figure 2 shows, thermally and mechanically induced elastic deformations of pads
and the thrust collar shape the operating fluid film thickness to impact the static and dy-
namic force performance of a TPTB [2, 3]. The hydrodynamic pressure acting on a pad
warps it backwards around the support point (pivot point) and produces a larger fluid film
thickness at its edges. The same pressure also acts on the thrust collar and bends it to
enlarge the fluid film thickness, more significantly at the outer radius of a pad. At the
same time, a portion of the heat generated in the fluid film is transferred away through
bearing elements, creating a temperature gradient which further adds to the deformations
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in both the pads and the thrust collar [4, 5]. Ahmed et al [6] studied the characteristic
performance of an eight-pad TB with 200 mm in outer diameter (OD) and observe the
significance of deformations in pads and the thrust collar specially under a heavy specific
load1, thus proving them vital for accurate modeling.

Figure 2: Schematic deformations of pads and thrust collar in a TPTB (not to scale).

Last year TRC report [7] details a thermohydrodynamic model for tilting pad thrust
bearings (TPTBs). The model couples a generalized Reynolds equation for the film pres-
sure, including cross-film viscosity variation and turbulence flow effects, a 3D energy
transport equation for the film temperature, and a heat conduction equation for pad tem-
perature. A numerical solution of these equations with boundary conditions delivers pres-
sure and temperature fields towards the calculation of the TPTB load capacity, shear drag
power loss, and flow rate. A small amplitude thrust collar motions (perturbation) analysis
produces first-order pressure fields to calculate the bearing axial stiffness and damping
coefficients (frequency reduced). Predictions of film pressure and pad surface temperature
agree with archival test data for a laminar flow six-pad TPTB (228 mm OD) under specific
load 0.5 to 2.0 MPa and operating with rotor speed 1.5 to 3.0 krpm (36 m/s). Comparisons
between predictions and test data show a difference of 8% in peak pressure and 17% for
pad temperature.

The present report describes a thermo-elastic-hydrodynamic (TEHD) model that offers
three methods to include pad mechanical and thermal elastic deformations. The first is a
3D Finite Element (FE) model which accounts for elastic deformations due to a pad tem-
perature gradient an/or a hydrodynamic pressure field. The modes of elastic deformation
in a pad are compression/expansion and bending. The FE model delivers an accurate 3D

1Unit load or specific load = Wz/AP , where Wz is the axial load on a pad and AP is its area.
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deformation field (axial, radial, and circumferential) for the entire pad geometry. The sec-
ond method is an analytical solution that accounts for bending mode deformations, both
thermally and mechanically induced, and is based on the EulerBernoulli beam theory that
produces an axial displacement field only over a pad top surface. The main advantage of
the analytical solution is its fast computational process, albeit with a lesser accuracy than
that from the FE model. The third method is specific for pads with a complex geometry
and provides the user an option to model a pad in a commercial FE software (ANSYS)
and imports the stiffness matrix into the current model. The third method only accounts
for pad mechanical deformations and delivers an axial deformation field over a pad top
surface.

This report describes a multiple-pad computational analysis tool for the static and dy-
namic force performance of tilting pad thrust bearings (TPTBs). Unlike single pad models,
a multiple-pad predictive tool extends the analysis to include thrust collar misalignment
and delivers more realistic predictions. The model performs a single pad analysis if thrust
collar is not misaligned to insure an efficient computation process. A 3D thermal energy
transport equation in the fluid film, coupled with heat conduction equations in the pads,
is solved collectively with a generalized Reynolds equation. That allows for cross-film
viscosity variations. Then, the predicted pressure field and temperature rise are employed
by an elasticity model to deliver axial elastic deformations for pads.
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2. REVIEW OF PAST WORK

Since 1960s, several researchers study the impacts of pad elastic deformations on the
performance predictions of tilting pad bearings . However, each researcher has perused a
different approach in the calculation of pad elastic deformation. Table 1 highlight the char-
acteristics of each approach. The following describes the advantages and disadvantages
associated with each of them.

Table 1: Characteristics of different approaches for the calculation of pad elastic deforma-
tions.

Researcher Strenlicht Robinson Brockette Glavatskih Ahmed
et al.[8] [9] et al.[10] et al.[11] et al.[6]

Year 1961 1975 1996 2001 2010
Analysis Euler- Timoshenko Finite Finite Finite

Bernouli Element Element Element
Deformation Bending Bending Bending, Bending, Bending,
Modes Compression Compression Compression Compression

Expansion Expansion Expansion
Bearing Pads Pads Pads Pads Pads
Element Collar Collar Liner Collar

In 1961, Sternlicht et al. [8] are among the first to account for bending deformation of
the a pad in the analysis of TPTBs, using the Euler Bernoulli deformation theory. An elas-
ticity equation, integrated over a pad volume using the principle of minimum energy, leads
to an analytical solution for axial deformations, both thermally (temperature gradient) and
mechanically (hydrodynamic pressure) induced. Sternlicht et al. assume the temperature
variation in a pad is linear, hence replacing it with an equivalent mechanical loading. The
authors detail predictions for a centrally pivoted TPTB with 0.787 m in OD operating at
320 rpm (ΩRo=13.17 m/s) and with a minimum film thickness of 25 µm. Compared to the
thermo-hydrodynamic (THD) analysis, the thermo-elasto-hydrodynamic (TEHD) analysis
(including pad mechanical deformations) predicts a lesser film temperature (up to 25%)
and a larger load capacity (42%). Strenlicht et al.'s approach only accounts for the bending
mode of deformations (compression/expansion neglected) and is limited to a point pivot
TPTB (not applicable for line pivot TPTBs).

In 1975, Robinson and Cameron [9] extend the elastic analysis in TPTBs to include
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thermally and mechanically induced deformations of the thrust collar. They also advance
their model to account for direct compression caused by mechanical loading and expan-
sion due to thermal loading, using a Timoshenko deformation theory (first order shear
deformations are included). In a second part, Robinson and Cameron [12] compare pre-
dictions against test data for a three-pad line pivot TPTB with 97 mm in OD operating
at rotor speed ranging from 2 to 6 krpm (ΩRo=6.8-20.41 m/s) and under specific load
between 1.37 to 6.89 MPa. Predictions show a very good agreement with measurements
with a maximum difference of 9% for the fluid outlet temperature and 8% for the fluid film
thickness. In general, the Robinson and Cameron approach can not be used for complex
geometries and is widely dependent on measurements.

In 1996, Brockett et al. [10] develop a thermo-elasto-hydrodynamic (TEHD) model
for laminar flow fixed geometry thrust bearings.A FE model is incorporated to calculate
the elastic deformations: 3D deformation field in pads, both mechanically and thermally
induced, and axisymmetric deformation field in the thrust collar, only mechanically in-
duced. Predictions are detailed for a six-pad TB with 0.305 m in OD, operating at a rotor
speed of 2 krpm (ΩRm=32 m/s) and under a specific load between 1.32 to 10.52 MPa.
Comparing predictions obtained with and without accounting for elastic deformations in
a pad shows that mechanical deformation is small (8% of hmin) and leads to a maximum
temperature rise of 2°C whereas thermal deformation is relatively large (45% of hmin) and
could cause a maximum temperature rise up to 24°C. Power loss and flow rate are insignif-
icantly (at most, %8) affected by deformation modes. Predictions of the presented TEHD
analysis are not compared against experimental data.

In 2001, Glavatskih and Fillon [11] extend their earlier model (THD model of Ref.
[4]) to account for both pressure and temperature induced elastic deformations of pads in
a laminar flow TPTBs using a FE model. Predictions are compared against test data for the
a six-pad TPTB with 228 mm in OD operating with a rotor speed up to 3 krpm (ΩRo=36
m/s), and under a specific load up to 2.0 MPa. TEHD predictions for pad temperature show
up to15% improvement over predictions delivered by THD analysis. Three years later,
Glavatskih and Fillon [13] expand their TEHD model to include the effects of pad face
coating (liner) in the laminar flow TPTB’s analysis. Deformations of a pad backing part,
thermally and mechanically induced, are calculated through a FE model. For mechanically
induced axial deformations in a liner layer, the authors adopt an analytical model from Ref.
[14]. Measured pad temperature and fluid film thickness are compared against TEHD and
THD predictions. TEHD predictions of fluid film thickness are significantly more accurate
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(up to 15%) over predictions obtained using THD analysis.
In 2010, Ahmed et al. [6] use a TEHD analysis tool to study the impact of the elas-

tic deformations of pads and the thrust collar on the performance of a fixed-geometry
hydrodynamic TB. Their model accounts for pad deformations due to both pressure and
temperature changes and the thrust collar deformations only pressure induced. Predictions
for an eight-pad thrust bearing with 200 mm in OD, operating with a rotor speed of 2.6
krpm (ΩRo=27 m/s), and under a specific load of 1.4 MPa, shows that pad mechanical
deformations do not exceed 5 µm and have a very limited influence on the fluid film thick-
ness. On the other hand, the pressure induced deformations in the thrust collar raise up to
45 µm and significantly influence the film thickness. The predictions made by the TEHD
model largely differ from THD predictions as the applied load increases (>0.9 MPa). The
maximum difference is 8% for pressure (0.4 MPa), 40% for film thickness (15 µm), and
20% for fluid film temperature rise (6°C).

The literature review elaborate on the importance of accounting for pad elastic defor-
mations in the analysis of TPTBs. Among the different approaches used, the analytical
solutions are simple and fast albeit offering lesser accuracy than that from a computa-
tional physical (FE) models. In addition, the FE analysis can be used for pads of physical
complex geometry.

6



3. ANALYSIS

A brief description of the thermoelastohydrodynamic (TEHD) analysis for TPTBs fol-
lows, detailed for multiple-pad analysis including (potential) thrust collar misalignment.

Figure 3 depicts a TPTB geometry and the definition of variables. A global cylindrical
coordinate system (r , θ, z) has its origin at the center of bearing housing surface (OB) with
the z-axis normal to its surface. Parameters (φ,ψ) represent thrust collar misalignment
angles around x-axis and y-axis, respectively.

Figure 3: Geometry and coordinate systems for a TPTB.

At any point on a pad surface, the film thickness (h(r ,θ,t)) is a function of the thrust
collar axial location (ec(t)), the pivot axial location (eP(t)), and the pad tilt angles (α(t), β(t)),
respectively around the (γ, ζ) axes. On pad k th with a pivot located at (Rk

P, θk
P), the film

thickness is,

hk
(r ,θ,t) = (ec − ek

P − tP) + (φ r) sin θ − (ψ r) cos θ

+(αk r) sin(θk
P − θ) + (β

k r) cos(θk
P − θ) − (β

k Rk
P)

θk
l < θ < θk

t (1)

where tP is the pad thickness. If the thrust collar is perfectly aligned, then φ = ψ = 0 and
all pads produce an identical fluid film geometry.
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3.1. REYNOLDS EQUATION FOR A THIN FILM

Jeng et al. [15] derive a general form of the Reynolds equation governing the gener-
ation of hydrodynamic pressure field (P(r ,θ,t)) in a turbulent flow fluid film bearing. The
fluid is Newtonian, incompressible, and inertialess. This equation is [15]

1
r
∂

∂r

(
rHr

∂P
∂r

)
+

1
r
∂

∂θ

(
Hθ

1
r
∂P
∂θ

)
= Ω

∂G
∂θ
+
∂h
∂t

(2)

whereΩ is the rotor (thrust collar) speed, and (Hr , Hθ , and G) are turbulent flow functions.
See Appendix A for the description of the turbulent flow functions.

Note that, in a laminar flow with constant viscosity cross the film,

Hr = Hθ =
h3

12µ
, G =

h
2

(3)

Then, the Reynolds equation takes a familiar form,

1
r
∂

∂r

(
r

h3

12µ
∂P
∂r

)
+

1
r
∂

∂θ

(
h3

12µ
1
r
∂P
∂θ

)
=
Ω

2
∂h
∂θ
+
∂h
∂t

(4)

3.2. THE FLUID FLOW THERMAL ENERGY TRANSPORT EQUATION

The thermal energy transport equation balances the energy generated due to viscous
shear dissipation in the fluid film and the energy disposed through fluid flow advection and
conduction to the solids (pads and thrust collar). Figure 4 shows a schematic view of the
fluid film boundary conditions.

Figure 4: Schematic view of heat conduction to the bearing elements (pads and thrust col-
lar) and heat advection by the fluid.
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At a steady state condition, Jeng et al. [15] state the thermal energy transport equation
of an incompressible fluid with temperature T(r ,θ,z), as

ρcp
[
U
∂T
∂r
+ V

∂T
r∂θ
+W

∂T
∂z

]
= κ∗ [∇2T] + Φ

= κ∗
[
1
r
∂

∂r

(
r
∂T
∂r

)
+

1
r2

∂T2

r∂θ2 +
∂T2

∂z2

]
+ µ∗

[(
∂U
∂z

)2
+

(
∂V
∂z

)2]
(5)

where ρ and cp are the lubricant density and specific heat. These parameters are assumed
constant over the flow domain. U, V , and W are fluid velocity components in the radial,
circumferential, and axial directions, respectively.Above µ∗ and κ∗ are the turbulent flow
viscosity and the turbulent flow heat conductivity, both detailed in Appendix A.

3.3. THE HEAT CONDUCTION EQUATION IN A PAD

The steady-state heat conduction equation governing the flow of heat through a pad
with isotropic conductivity is [4],

∇2TP =
1
r
∂

∂r

(
r
∂TP

∂r

)
+

1
r2

∂T2
P

r∂θ2 +
∂T2

P

∂z2 = 0 (6)

where TP is the temperature in a pad.

3.4. ELASTICITY ANALYSIS FOR PAD DEFORMATIONS

3.4.1. Finite Element Model for Pad Elastic Deformations

The elastic deformation in a pad is governed by a force equilibrium equation, a strain-
displacements equation, and a material constitutive law. Let σ represent the stress tensor
in a cylindrical coordinates system; then a solid subject to body force FB={Fr , Fθ , Fz}

T is
in equilibrium [10],

DT
σσ + FB = 0 (7)

where Dσ is the stress gradient operator for the cylindrical coordinate (r , θ, z). The ther-
moelastic law [11] correlates the stress components to any initial, thermal or mechanical
strain tensors,
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εi j =
1 + ν

E
σi j − (

ν

E
σkk + αT∆TP)δi j i, j, k = r , θ, z (8)

where εi j is the strain tensor tensor for a material, ν and E are the Poisson ratio and
elasticity modulus, αT is the coefficient of thermal expansion, and ∆TP represents the
temperature variation at each material point, relative to a reference temperature. δi j = zero
for i , j and unity for i = j. A strain-displacement equation [10] relates the strain tensor
to a displacement vector u for each point,

ε = Duu (9)

with Du as the displacement gradient operator in the cylindrical coordinate system
The principle of virtual works combines the elasticity equations Eqns. (7-9) along with

boundary conditions into a single equation, [16]∭
V
δuT [DT

u E Duu − DT
u E ∆TPαT − FB] dV −

∬
S
δuTP dS = 0 (10)

where P is the pressure vector acting on a surface. Using shape functions (Ni, i = 1, . . . , NNE :number
of nodes per element) associated with the FE model, Eqn. (10) becomes a liner system of
equations for each element,

K j u = f j
B + f j

P + f j
T , j = 1, . . . , NE : number of elements (11)

where f j
B is the body force vector (gravity or magnetic), f j

T is the force vector induced due
to the temperature gradient, and f j

P is induced due to the hydrodynamic pressure on a pad
top surface. The local stiffness matrix and load vectors for each element are,

K j =

∭
V

NTDT
u E DuN dV (12a)

f j
B =

∭
V

NTFB dV , f j
T =

∭
V

NTDT
u E Du N dV , f j

P =

∬
S

NTP dS (12b)

Thus, the local stiffness matrices and load vectors are stored in a global stiffness matrix KG

and a global load vector FG, respectively. After enforcing proper boundary condition for
the pivot, a Cholesky decomposition technique solves for the global displacement vector
uG.
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3.4.2. Analytical Solution for Pad Elastic Deformations

The analytical solution for pad elastic deformations includes analysis for bending de-
formations in the pad and for the compression/expansion in the pad liner layer, both super-
positioned to calculate the total deformation on a pad top surface. The following describes
each model.

Elastic Deformation in a Pad

The present work follows the analytical model by Sternlicht et al. [8] to calculate
pad axial elastic deformations, induced both thermally and mechanically. Timoshenko’s
plate theory [17, 18] states that the axial deformation w(r ,θ) of a plate subjected to a static
pressure P(r ,θ) and temperature gradient ∆T(r ,θ) across thickness is governed by,

∇4w =
12(1 − ν2)P

Et3
P

+
1 + ν

tP
∇2(αT∆T) (13)

Eqn. (13) only accounts for bending mode deformations and disregards any axial com-
pression/expansion. Ref. [8] suggests to use a series of (dimensionless) shape functions
f i
(r ,θ) to represent the axial deformations on the pad top surface. Appendix B describes the

selected shape functions consistent with the geometry of a point pivot (2D tilting) and a
line pivot (1D tilting). Thus, the axial deformations on the pad top surface are

w(r , θ) =
∑
i=1

Ai f i(r , θ) (14)

where Ai are weight coefficients.The mechanical loading energy associated with hydrody-
namic pressure acting on the pad top surface is

WM =

∬
S

P(r ,θ)w(r ,θ) dS (15)

Thermal loading is also represented by an equivalent mechanical loading including a
moment on the pad borders,

Mr = Mθ =
Et2

P

12(1 − ν)
αT∆T (16)
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where tP is the pad surface and a gradient of moments on the pad top surface,

mr = −(1 + ν)αT
∂Mr

∂r
(17a)

mθ = −(1 + ν)αT
∂Mθ

r∂θ
(17b)

Thus, the thermal loading is,

WT =

∬
S

(
− mr

∂w

∂r
− mθ

∂w

r∂θ

)
dS −

∫
Γ

Ml
∂w

∂®n
dΓ (18)

where Γ represents the boundary around the pad top surface with ®n as a normal vector.
Appendix B includes equations to calculate the bending energy VB, hence, all terms of
energy VB, WP, and WT are functions of axial deformations in a pad top surface and, in
case of using shape functions, are in fact linear functions of coefficients Ai. Thereafter, the
principle of minimum energy helps to solve for shape function coefficients Ai.

Deformation of Pad Liner

Ref. [19] states that the total deformation of a liner layer (wL(r ,θ)) is the superposition
of a compression mode due to static pressure P(r ,θ) and an expansion mode induced by the
temperature rise ∆TL(r ,θ),

wL
r ,θ = tL

(
(1 + νL)(1 − 2νL)

EL(1 − νL)
P − αTL∆T

)
(19)

with tL as the liner thickness, νL and EL as its Poisson ratio and elasticity module, and αTL

is the liner thermal expansion coefficient.

3.4.3. Substructuring Analysis for Pad Mechanical Deformations (Reduction of DOFs)

As Section 3.4.1 describes, A structural FE model for a pad predicts 3D displacement
fields for the entire pad volume. Assuming a rigid pivot, the displacement vector uG

induced by an applied load FG is
KG uG = FG (20)

where KG is a global stiffness matrix with a dimension of 3n × 3n and n is the number
of nodes. However, the axial DOFs of nodes attached to the pad top surface are the only
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DOFs subjected to mechanical (the hydrodynamic pressure) loading. These are called
active DOFs. Additionally, for a deformed pad, active DOFs are the only DOFs influencing
the fluid film geometry and consequently the performance of the thrust bearing. Hence,
reorganizing Eqn. (22) in terms of active and inactive DOFs, i. e.,[

K11 K01

K01 K00

] {
u1

u0

}
=

{
Fp

0

}
(21)

After some manipulations, Eqn. (21) becomes,(
K11 −K01K−1

00 K01

)
u1 = KR u1 = Fp (22)

where KR is a reduced global stiffness matrix. Compared to a full global stiffness matrix
KG, the reduced stiffness matrix KR is substantially smaller, hence, simpler to store and
faster to process.
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4. VALIDATION OF THE ANALYTICAL SOLUTION AND
FE MODEL FOR PAD DEFORMATIONS

This section compares predictions from the current model for pad elastic deformations
against those delivered by a commercial Finite Element software package, i.e. ANSYS R

Mechanical APDL. As prior sections detail, elastic deformations of a pad top surface in the
axial direction are modeled through two methods: a FE model and an analytical solution.
Hence, predictions delivered by these methods are compared to an ANSYS R computa-
tional analysis for two types of TPTBs. The first type is a 60% offset cylindrical pivot (1D
tilting) TPTB and the second type is a 50% offset spherical pivot (2D tilting) TPTB.

4.1. VALIDATIONS OF PAD AXIAL DEFORMATIONS FOR A CYLINDRICAL PIVOT
TPTB

This report uses the configuration of a cylindrical pivot TPTB tested by Guo et al.[20]
to compare predictions for pad top surface axial elastic deformations. Table 2 lists the
geometry, lubricant properties, operating conditions, and thermal properties of the TPTB,
Figure 5 shows a schematic view of the pad. The bearing has 3 pads, each 220 mm in
OD, 110 mm in ID, 45°in arc length, and supported on 60% offset cylindrical pivots. The
bearing operates at 3 krpm rotor speed (ΩRo= 35 m/s) and under a 1 MPa specific load per
pad. The bearing is assumed to operate with no thrust collar misalignment.

Figure 5: A schematic view of a cylindrical pivot pad in Guo et al.[20]. (Not to scale)
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Table 2: Characteristics of a cylindrical pivot in Guo et al. [20]
Bearing properties

Number of pads,NP 3
Inner diameter 110 mm
Outer diameter 220 mm
Pad arc length 45 °
Pivot circumferential offset 60 %
Pad thickness 27 mm
Pivot Length 55 mm
Pivot width 4 mm
Pad area, AP 35.6 cm2

Operating condition
Specific Load W/(NP AP) 1.0 cm2

Shaft rotational speed 3 krpm
Max surface speed ΩRo 23 m/s
Lubricant supply pressure 0 bar

Fluid properties ISO VG32
Viscosity at supply temperature 54 cPoise
Viscosity temperature coefficient∗ 0.0247 1/°C
Density 821 kg/m3

Specific heat capacity 2.17 kJ/(kg·K)
Thermal conductivity 0.13 W/(m·K)

Pad material properties∗ Steel
Thermal conductivity 51 W/(m·K)
Elasticity modulus 210 GPa
Thermal expansion 12 × 10−6 1/°C
Poisson ratio 0.3 -

Thermal properties∗
Reference temperature (for elastic analysis) 20 °C
Thermal mixing coefficient λ 0.8 -

∗Assumed or calculated based on the available data.

Figure 6 (a) shows an ANSYS R 3D model of a pad with boundary conditions applied
at the pivot location. The nodes at the pivot are set to a zero axial displacement constraint.
Figure 6 (b) and (c) depict predictions for the hydrodynamic pressure field and temperature
field for the operating conditions listed in Table 2. The peak pressure is 2.4 MPa. The
pad maximum temperature is 61°C located near the trailing edge and outer radius corner.
Figure 6 (d) demonstrates ANSYS R predictions for the pad axial deformations due to
pressure and thermal loading.

In Figure 6 (d), observe that ANSYS R predictions include the axial displacement for
the pad in both the forward (positive) and backward (negative) directions. A forward
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displacement indicates that a point has moved closer to the thrust collar and leads to a
reduction in the film thickness. The bending and compression of a pad only contribute to
a backward displacement (away from thrust collar). Nonetheless, local expansions in the
axial direction may produce a forward displacement. The maximum forward displacement
is 9 µm for a point near the trailing edge at the pad top surface (pad peak temperature spot).
But, the maximum backward displacement is 23 µm at the leading edge of the pad back
surface. Note that only the displacements on the pad top surface change the fluid film
geometry and influence the bearing performance.

Figure 6: : (a) Pad model and boundary conditions at pivot in ANSYS R©, (b) temperature
distribution in pad, (c) hydrodynamic pressure field acting on pad, and (d) contour of pad
axial deformations (µm). Results for cylindrical pivot pad taken from Ref.[20], rotor speed
= 3 krpm, applied specific load = 1 MPa, supply temperature = 20°C. Cylindrical pivot taken
from Ref.[20]

Figure 7 shows predictions for the pad top surface deformations from ANSYS R ver-
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sus those obtained by the current model using the analytical solution and the in-house
FE model. Deformations are due to the combined actions of pressure and temperature
in a pad. Pad top surface axial deformations obtained by the FE model almost exactly
match with those delivered by ANSYS R . The maximum difference between ANSYS R

predictions and analytical solution is 15%. The main reason is that the analytical solution
only accounts for the bending mode of deformations and disregards local axial expan-
sion/compression. Thus, elastic deformations are a direct function of the distance from the
pivot line.

Figure 7: Axial deformations (µm) on top surface of pad due to combined action of pressure
and temperature as obtained by (b) ANSYS R©, (c) an analytical solution, (d) an in-house FE
model. Results for cylindrical pivot pad in Ref.[20], rotor speed = 3 krpm, applied specific
load = 1 MPa, supply temperature = 20°C.
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4.2. VALIDATIONS OF PAD AXIAL DEFORMATIONS FOR A SPHERICAL PIVOT
TPTB

The configuration of a spherical pivot TPTB tested by Mikula [21] is used to evaluate
predictions of pad axial deformations. Table 2 outlines the geometry, lubricant properties,
operating conditions, and thermal properties of the TPTB. Figure 8 shows a schematic
view of the pad. The bearing has 8 pads, each 267 mm in OD and 133 mm in ID, 39°in
arc length, and supported on 50% offset spherical pivots. The bearing operates at 3 krpm
(ΩRo= 41 m/s) and under a 1 MPa specific load per pad. The bearing is assumed to work
with a aligned thrust bearing.

Table 3: Characteristics of a point pivoted TPTB tested by Mikula. [21]
Bearing properties

Number of pads, NP 8
Inner diameter 133 mm
Outer diameter 267 mm
Pad arc length 38 °
Pivot circumferential offset 50 %
Pivot radial offset 50 %
Pad thickness∗ 23 mm
Pivot radius∗ 15 mm
Pad area, AP 45.6 cm2

Operating condition
Specific Load W/(NP AP) 1.0 MPa
Shaft rotational speed 3 krpm
Max surface speed ΩRm 41 m/s
Lubricant supply pressure 0 bar

Fluid properties ISO VG32
Viscosity at supply temperature∗ 22 cPoise
Viscosity temperature coefficient∗ 0.0247 1/°C
Density 821 kg/m3v
Specific heat capacity 2.17 kJ/(kg·K)
Thermal conductivity 0.13 W/(m·K)

Pad material properties Steel
Thermal conductivity 51 W/(m·K)
Elasticity modulus 210 GPa
Thermal expansion 12 × 10−6 1/°C
Poisson ratio 0.3 -

Thermal properties∗
FE reference temperature (for elastic analysis) 20 °C
Thermal mixing coefficient λ 0.8 -

∗Assumed or calculated based on the available data.
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Figure 8: A schematic view of a spherical pivot pad in Mikula [20]. (Not to scale)

Figure 9 (a) depicts the spherical pivot pad modeled in ANSYS R with boundary con-
ditions applied on the pivot. All nodes on the pivot-pad surface are constrained to zero
axial displacement. Figure 9 (b) and (c) show predictions for the hydrodynamic pressure
field and pad temperature field for the operating conditions listed in Table 3. The pad max-
imum temperature is 106°C and the peak pressure is 2.1 MPa. Note that the peak pressure
is located on top of the pivot at the pad center point.

Figure 9 (d) shows ANSYS R predictions for pad elastic deformations in the axial
direction, induced by the combined action of pressure and temperature. The pad maximum
displacement in the forward direction is 20.4 µm for a point on the pad top surface and in
the retract direction is 5.5 µm at the leading edge of the pad back surface. Note that the pad
peak forward displacement occurs at the peak temperature point. In general, deformations
of the pad top surface add 11 µm into the variations of the fluid film thickness.
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Figure 9: : (a) Pad model and boundary conditions at pivot in ANSYS R©, (b) temperature
distribution in pad, (c) hydrodynamic pressure field acting on pad, and (d) contour of pad
axial deformations (µm). Results for cylindrical pivot pad taken from Ref.[20], rotor speed
= 3 krpm, applied specific load = 1 MPa, supply temperature = 46°C.

Figure 10 shows predictions for the pad top surface axial deformations obtained through
ANSYS R versus those calculated by the analytical solution and the FE model. FE predic-
tions are in a very good agreement with ANSYS R analysis with a maximum difference
of 1.2%. Predictions of the analytical solution show a maximum of 40% difference with
ANSYS R analysis.
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Figure 10: Axial deformations (µm) on top surface of pad due to combined action of pres-
sure and temperature as obtained by (b) ANSYS R©, (c) an analytical solution, (d) a FE model.
Results for spherical pivot pad in Ref.[20], rotor speed = 3 krpm, applied specific load = 1
MPa, supply temperature = 46°C.
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5. COMPARISON OF PREDICTIONS VERSUS TEST DATA

Mikula [21] also measured pad (subsurface) temperatures in a double-sided tilting pad
thrust bearing operating under both laminar and turbulent flow conditions. A double-sided
TPTB has two bearings installed on the opposite sides of a thrust collar, one acts against
a primary axial load in the system (active side) while the other one reacts to occasional
reverse-direction momentary loads (inactive or slack-side). Figure 11 shows a schematic
view of the test rig with a gas turbine driving the main shaft of the rig through a flexible
coupling with a controlled speed from 4 to 13 krpm. The main shaft/collar is positioned
with a fixed bearing housing on one side and an axially sliding bearing housing on the
other side. A hydraulic system applies load on the sliding housing and moves it toward the
fixed one. Hence, test TPTB 1 is forced against collar 1 and collar 2 is pushed again
slave TPTB 2 . This arrangement creates an identical loading on the test bearings 1 and
2 . Oil control rings, shrouded on the thrust collar, divert the discharge oil and reduce the

hot oil carry over. Teflon oil seal rings also act to prevent oil leakage out of the bearing
housings or into the journal bearings. A flooded lubrication system is used to supply cold
oil into the test bearings.

Figure 11: Schematic view of a test rig in Mikula [21] to evaluate the operating characteris-
tics of laminar and turbulent flow TPTBs.

Table 4 outlines the geometry, lubricant properties, and operating conditions of the
eight-pad bearing 267 mm in OD and 133 mm in ID, each pad is supported on 50% offset
(centrally pivoted) rocker back (2D tilting) pivots. A pad top surface is covered with a 2
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mm thick Babbitt layer, and thermocouples are positioned within 0.8 mm depth from the
Babbitt surface. The rotor speed ranges from 4 to 13 krpm and gives a outer surface speed
between ΩRo = 54 to 181 m/s. The load applied (Wz) on the bearing is between 200 kN to
1 MN, equivalent to a specific load per pad ( Wz

AP NP
) ranging from 0.69 to 3.44 MPa. The

bearing is assumed to operate under no thrust collar misalignment.

Table 4: Characteristics of a point-pivot TPTB tested by Mikula. [21]
Bearing properties

Number of pads, NP 8
Inner diameter 133 mm
Outer diameter 267 mm
Pad arc length 39 °
Pivot circum. offset 50 %
Pivot radial offset 50 %
Pad thickness∗ 25 mm
Babbitt thickness∗ 2 mm
Pivot radius∗ 15 mm
Pad area AP 45.6 cm2

Operating conditions
Specific load Wz/(APNP) 0.69-3.44 MPa
Shaft rotational speed 4-13 krpm
Mean surface speed ΩRm 41-136 m/s
Lubricant supply pressure 1.0 bar

Fluid properties ISO VG32
Viscosity at supply temperature 22 mPa·s
Viscosity temperature coefficient 0.0247 1/°C
Density 821 kg/m3

Specific heat capacity 2.17 kJ/(kg·K)
Thermal conductivity 0.13 W/(m·K)

Pad material properties Steel Babbitt
Thermal conductivity 51 24 W/(m·K)
Elasticity module 210 52 GPa
Thermal expansion 12 × 10−6 26 × 10−6 1/°C
Poisson ratio 0.3 0.3 -

Thermal properties∗
Reference temperature (for elasticity analysis) 20 °C
Thermal mixing coefficient λ 0.4-0.6 -

∗Assumed or calculated based on the available data.

The TPTB operates at speeds that determine either laminar flow, transition from lami-
nar to turbulent flow, or turbulent flow as based on a characteristic circumferential Reynolds
number, Re= RmΩρhmin

µ where Rm is the mean radius, hmin is the minimum fluid film thick-
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ness, Ω is the rotor speed, and ρ and µ are the fluid density and viscosity averaged across
the film thickness. The flow remains laminar with a Reynolds number Re < 580 (ReL:
lower critical Reynolds number), and transits to fully turbulent at Re > 800 (ReU :upper
critical Reynolds number) [22, 23].

The following shows a comparison of the measurements in Ref.[21] against predictions
based on a TEHD analysis that includes pressure and temperature induced pad elastic
deformations. TEHD predictions based on the analytical solution and the in-house FE
model for elastic deformations (described earlier) are shown. Figure 12 depicts the pad
schematic view with thermocouple locations.

Figure 12: Schematic view of pad and location of thermocouples placed under top surface.
Details taken from [21]

Operation under Laminar Flow Condition
Figure 13 shows a circumferential Reynolds number at the minim film thickness for

the test TPTB operating at 4 krpm (RoΩ=54 m/s) and under applied load ranging between
0.69 to 3.44 MPa. The maximum Reynolds number associated with the slightest load (0.69
MPa) is 424 and decreases down to 199 under the largest applied load (3.44 MPa). Hence,
the operating remains below the lower band of critical Reynolds number (ReL=580) and
the flow is laminar.
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Figure 13: Circumferential Reynolds number at minimum film thickness. (Supply tempera-
ture = 46°C, rotor speed = 4 krpm, laminar flow condition)

Figure 14 depicts the measured pad subsurface temperature rise and current model
predictions versus specific load (a) at the pad leading edge and (b) at the pad trailing edge.
For low to moderate specific loads (<2 MPa), predictions with analytical solutions for
pad elastic deformations align closely with those obtained with the FE model but slightly
differ as the applied load increases. In general, predictions using the FE model best match
with test data with a maximum difference of 3°C. Predictions using the analytical solution
match test data with a maximum difference of 8°C.

Figure 14: Pad subsurface temperature rise versus specific load at pad (a) leading edge and
(b) trailing edge. Test data from Ref.[21] versus predictions from the current TEHD model:
analytical solution and an in-house FE method. (Supply temperature = 46°C, rotor speed =
4 krpm, laminar flow condition)
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Operation under Turbulent Flow Condition
Figure 15 demonstrates the predicted characteristic circumferential Reynolds number

for the test TPTB operating at 10 krpm of rotor speed (RoΩ=135 m/s) and specific load
ranging from 0.69 to 3.44 MPa. The Reynolds number is at its maximum of 1675 at
the slightest load (0.69 MPa) and goes to its minimum of 787 at the largest load. The
upper band of critical Reynolds number is ReU=800. Accordingly, the flow is turbulent
for specific loads below 2.75 MPa and turns into the transition zone under a larger load. A
transition from turbulent to laminar is followed by a fast increase in the temperature as the
thermal mixing in the flow lessens.

Figure 15: Circumferential Reynolds number at the minimum film thickness. (Supply tem-
perature = 46°C, rotor speed = 10 krpm, turbulent flow condition)

Figure 16 benchmarks test data from Ref.[21] for pad subsurface temperature rise
against predictions obtained from the current model for (a) the pad leading edge and (b)
the pad trailing edge. Predictions with the FE model for pad show a good agreement with
test data. Predictions for pad subsurface temperature using the analytical solution show a
larger difference with test data than that in FE predictions. The maximum difference with
test data is 19% for FE predictions and 45% for analytical predictions.

Figure 17 depicts the test data for pad subsurface temperature rise versus predictions
using a turbulent flow model and a laminar flow model. TEHD predictions are based on
the in-house FE model. Laminar flow predictions disagree with test data with a maximum
difference of 17°C (50%) at the leading edge and 33°C (50%) at the trailing edge. Tur-
bulent flow predictions, however, are substantially better with a maximum difference of
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10°C (20%) from test data.

Figure 16: TEHD predictions versus measurements for pad subsurface temperature rise
versus specific load at pad (a) leading edge and (b) trailing edge using an analytical solution
and a FE model. Test data from Ref.[21]. (Supply temperature = 46°C , rotor speed = 10
krpm, turbulent flow condition)

Figure 17: Laminar flow and turbulent flow predictions versus measurements for pad sub-
surface temperature rise at pad (a) leading edge and (b) trailing edge. Test data from
Ref.[21]. (Supply temperature = 46°C, rotor speed = 10 krpm, turbulent flow condition)

Operation in Transition Zone from Laminar Flow to Turbulent Flow
Figure 18 shows the characteristic circumferential Reynolds number for the test TPTB

under 3.44 MPa specific load with a rotor speed ranging from 4 to 13 krpm (RoΩ=54-
181 m/s). The Reynolds number is 199 at the lowest rotor speed (4 krpm) and the flow
is laminar. With the rotor speed at 9 krpm, the Reynolds number rises to 672 and the
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flow moves into transition zone (larger the lower critical band ReL=580). A transition
from laminar to turbulent is followed by a fast drop in the temperature due to the enhance
thermal mixing in the flow. For rotor speeds above 11 krpm, the Reynolds number is larger
than the upper critical band (ReU=800) and the flow is fully turbulent.

Figure 18: Circumferential Reynolds number at the minimum film thickness. (Supply tem-
perature = 46°C , specific load = 3.44 MPa)

Figure 19 shows predictions along with test data for pad subsurface temperature rise at
(a) the pad leading edge and (b) the pad trailing edge versus rotor speed. TEHD predictions
show a good agreement with test data. Predictions based on the FE model of pad elastic
deformations demonstrates a better match with test data with a maximum difference of
25%.

Figure 20 compares the test data to predictions for the pad subsurface temperature rise
at (a) the pad leading edge and (b) the pad trailing edge versus rotor speed. Predictions
are from the current model using the the laminar flow and the turbulent flow analyses.
Observe that the turbulent flow predictions follow the trend of the test data with a substan-
tially lesser difference than that in laminar predictions. At rotor speeds above 9 krpm, the
flow begins to transits to turbulent, hence, the thermal mixing increases in the film and
temperature notably drops. As the pad operates with a fully turbulent flow (>11 krpm),
the temperature again increases with rotor speed but with a much lesser rate than that in a
laminar flow.
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Figure 19: TEHD predictions and measured pad subsurface temperature rise versus rotor
speed at pad (a) leading edge and (b) trailing edge. Test data from Ref.[21]. (Supply tem-
perature = 46°C , specific load = 3.44 MPa)

Figure 20: Turbulent flow and laminar flow predictions versus measurements for pad sub-
surface temperature rise for pad (a) leading edge and (b) trailing edge. Test data from
Ref.[21]. (Supply temperature = 46°C, specific load = 3.44 MPa)
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CLOSURE

This report describes a multiple-pad thermo-elasto-hydrodynamic (TEHD) computa-
tional analysis tool to deliver predictions for the static and dynamic force performance of
tilting pad thrust bearings (TPTBs) operating under both laminar and turbulent flow con-
ditions. The current TEHD analysis accounts for pad elastic deformations, both pressure
and temperature induced, using a full 3D Finite Element model or an approximate but fast
analytical solution.

A 3D thermal energy transport equation in the fluid film, coupled with heat conduction
equations in the bearing elements (pads and the thrust collar), is solved collectively with
a generalized Reynolds equation, allowing for cross-film viscosity variations. Then, the
predicted pressure field and temperature rise are employed by a pad structure stiffness
model to deliver deformations on the pad top surface, further integrated to update the fluid
film geometry.

Pad subsurface temperature predictions from the current model are compared against
test data for an eight-pad TPTB with 267 mm in OD operating at rotor speeds ranging from
4 to 13 krpm (ΩRO = 54 to 181 m/s) and under a specific load ( Wz

AP NP
) between 0.69 to

3.44 MPa. The operating conditions set a characteristic Reynolds number (Re at the mini-
mum film thickness) ranging from 199 to 1675, determining a laminar flow condition for
Re<580 and a fully turbulent flow condition for Re>800. In general, TEHD predictions
using the FE model better match with test data than those from the analytical solution.
In addition, accounting for turbulent flow effects improves temperature predictions up to
50% (43°C).
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A. APPENDIX: TURBULENT FLOW FUNCTIONS

In the generalized Reynolds equation, Eqn. (2), Hr , Hθ , and G are turbulent flow

functions defined as, [15]

Hr(r ,θ,t) =

∫ h

0

∫ z

0
ζ3(z̄) : dz̄ dz −

∫ h
0 ζ3(z)dz∫ h
0 ζ4(z)dz

∫ h

0

∫ z

0
ζ4(z̄) dz̄ dz (A.1a)

Hθ(r ,θ,t) =

∫ h

0

( ∫ z

0
ζ1(z̄)dz̄

)
dz −

∫ h
0 ζ1(z)dz∫ h
0 ζ2(z)dz

∫ h

0

( ∫ z

0
ζ2(z̄)dz̄

)
dz (A.1b)

G(r ,θ,t) = h −
1∫ h

0 ζ4(z)dz

∫ h

0

( ∫ z

0
ζ4(z̄)dz̄

)
dz (A.1c)

Above, ζi , i = 1 : 4 are functions of the local viscosity (µ) across the fluid film and the

flow turbulence, [15]

ζ1(z) =
h
2 − z
µ(z) f (z)

(
1 −

g(z)
f (z)

)
(A.2a)

ζ2(z) =
1

µ(z) f (z)

(
1 −

g(z)
f (z)

)
(A.2b)

ζ3(z) =
h
2 − z
µ(z) f (z)

(A.2c)

ζ4(z) =
1

µ(z) f (z)
(A.2d)

where f and g are the turbulent flow functions obtained based on Ng and Pan [15] modeling

of the flow turbulence phenomena,

f (z) = 1 +
εm

υ
= 1 + κ f

[
z+c − δ

+
l tanh

(
z+c
δ+l

)]
(A.3a)

g(z) = τc
∂
( εm
υ

)
∂τ

�����
τ=τc

=
1
2
κ f z+c tanh2

(
z+c
δ+l

)
(A.3b)
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here κ f and δ+l are Reichardt’s formula coefficients and

z+c =
z
υ

√
τc

ρ
(A.4)

where τc is the Couette shear stress,

τc =
rΩ∫ h

0
dz

µ(z) f (z)

(A.5)

hence, an accurate assessment of f and g functions requires an iterative solution between

f and,
εm

υ
= f − 1 +

ζ4(h)
rΩ

∂P
∂θ

g

(
z −

h
2
+
ζ1(h)
ζ2(h)

)
(A.6)

Using Ng’s model [24], turbulent flow effects continuously increase with Reynolds

number (Re= RΩρh
µ where R is the radial length, h is the fluid film thickness, Ω is the rotor

speed, and ρ and µ are the fluid density and viscosity averaged cross the film thickness).

However, in 1955, Abramovitz [22] experimentally observes that a TPTB operating with

a Reynolds number (at the minim film thickness) lower than 580 remains laminar (ReL:

lower critical Reynolds number) and transits to fully turbulent with a Reynolds number

higher than 800 (ReU :upper critical Reynolds number). Abramovitz uses mean values of

fluid viscosity and film thickness for the calculation of Reynolds number. In 1974, Grogery

[23] further investigates and confirms Abramovitz’s observation for a six-pad TPTB with

267 mm in OD operating at 4-13 krpm of rotor speed (ΩRm = 40-130 m/s). To rectify the

inconsistency between experiments and theory, Jeng et al. [15] introduce a turbulent flow

coefficient ϑ into Ng’s model as,
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ϑ(Re) =



0.0 (Reh)max ≤ ReL

1.0 −
(

ReU−(Reh)max

ReU−ReL

) 1
8

ReL < (Reh)max ≤ ReU

1.0 ReU < (Reh)max

(A.7)

where Reh is the local Reynolds number with an averaged viscosity cross the film. Thus,

the fraction εm
υ in Eqn. (A.3) is multiplied by the turbulence coefficient ϑ.

Accordingly, the equivalent turbulent flow viscosity µ∗ and heat conductivity κ∗ are

µ∗(r , θ, z) = µ
(
1 + ϑ(Re)

εm

υ

)
(A.8a)

κ∗(r , θ, z) = κ
(
1 + ϑ(Re)Pr

εH

υ

)
= κ

(
1 + ϑ(Re)

Pr
Pr∗

εm

υ

)
(A.8b)

where the lubricant conductivity κ is constant over the entire film domain and lubricant

viscosity (µ) is a function of local temperature (T),

µ = µSu e−αVT (T−TSu) (A.9)

where µSu and TSu are fluid viscosity and temperature at supply condition and αVT is a

fluid temperature-viscosity coefficient.

The Prandtl number Pr and the turbulent Prandtl number Pr∗ are,

Pr =
µcP

k
(A.10a)

Pr∗ =
εm

εH
≈ 1 (A.10b)

and εH is the eddy viscosity for heat transfer. Note that if the flow is laminar, then f = 1,

g = 0, µ∗ = µ, and κ∗ = κ.
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B. SHAPE FUNCTIONS FOR AN ANALYTICAL SOLUTION
OF PAD ELASTIC DEFORMATIONS

As section 3.4.2 describes, the analytical solution for pad elastic deformations requires

a series of shape functions to be defined for deformations over a pad top surface. The shape

functions defined in Ref. [8] for spherical pivot (2D tilting) TPTBs are used here,

f1 =
(
rc

r0

)2
(B.1a)

f2 =
(
rc

r0

)4
(B.1b)

f3 =
(
rc

r0

)2
sin 2θc (B.1c)

f4 =
(
rc

r0

)2
cos 2θc (B.1d)

f5 =
(
rc

r0

)4
sin 2θc (B.1e)

f6 =
(
rc

r0

)4
cos 2θc (B.1f)

The authors also uses additional shape functions for cylindrical pivot (1D tilting) TPTBs,

f1 =
(
rc

r0
cos θc

)2
(B.2a)

f2 =
(
rc

r0
cos θc

)4
(B.2b)

f3 =
(
rc

r0
cos θc

)2
sin 2θc (B.2c)

f4 =
(
rc

r0
cos θc

)2
cos 2θc (B.2d)

f5 =
(
rc

r0
cos θc

)4
sin 2θc (B.2e)

f6 =
(
rc

r0
cos θc

)4
cos 2θc (B.2f)
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where the local cylindrical coordinate (rc, θc) has its origin at the pivot . See Figure 21 for

the local coordinate system. Note that all the shape functions are zero at the pivot, some

are symmetric around the pivot, and some are unsymmetric. Hence, both symmetrical

loading (hydrodynamic pressure) and unsymmetrical loading (temperature gradient) can

be represented.

Figure 21: The global (r , θ) and local (rc , θc) cylindrical coordinates systems of a pad.

The relation between the local coordinate and the global coordinate is,

rc =

√
r2 + R2

P − 2rRP cos(θP − θ) (B.3a)

θc = tan−1(
r cos(θP − θ) − RP

r sin(θP − θ)
) (B.3b)

In a cylindrical coordinate, a plate bending energy is,

V =
∬

S

Et3

24(1 − ν2)

[(
∂2w

∂r2 +
1
r
∂w

∂r
+

1
r2
∂2w

∂θ2

)2

− 2(1 − ν)
∂2w

∂r2

(
1
r
∂w

∂r
+

1
r2
∂2w

∂θ2

)
+ 2(1 − ν)

(
∂

∂r

(
1
r
∂w

∂θ

))2]
dS

(B.4)

where S is the plate top surface.
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