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EXECUTIVE SUMMARY  

A FE Model for Static Load in Tilting Pad Journal Bearings with Pad Flexibility 
Yinkun Li and Luis San Andrés 

 
Tilting pad journal bearings (TPJBs) supporting high performance turbomachinery rotors 

have undergone steady design improvements to satisfy ever stringent operating 

conditions that include large specific loads, due to smaller footprints, and high surface 

speeds that promote flow turbulence and hence larger drag power losses.  

Simultaneously, predictive models continuously evolve to include minute details on 

bearing geometry, pads and pivots’ configurations, oil delivery systems, etc. In general, 

predicted TPJB rotordynamic force coefficients correlate well with experimental data for 

operation with small to moderately large unit loads (1.7 MPa). Experiments also 

demonstrate bearing dynamic stiffnesses are frequency dependent, best fitted with a 

stiffness-mass like model whereas damping coefficients are adequately represented as of 

viscous type.  However, for operation with large specific loads (> 1.7 MPa), poor 

correlation of predictions to measured force coefficients is common. Recently, an 

experimental effort [1] produced test data for three TPJB sets, each having three pads of 

unequal thickness, to quantify the effect of pad flexibility on the bearings’ force 

coefficients, in particular damping, over a range of load and rotational speed conditions. 

This paper introduces a fluid film flow model accounting for both pivot and pad 

flexibility to predict the bearing journal eccentricity, drag power loss, lubricant 

temperature rise and force coefficients of typical TPJBs. A FE pad structural model 

including the Babbitt layer is coupled to the thin film flow model to determine the 

mechanical deformation of the pad surface. Predictions correlate favorably with test data, 

also demonstrating that pad flexibility produces a reduction of up to 50% in damping for 

the bearing with the thinnest pads relative to that with the thickest pads. A parametric 

study follows to quantify the influence of pad thickness on the rotordynamic force 

coefficients of a sample TPJB with three pads of increasing preload, pr =0, 0.25 (baseline) 

and 0.5. The bearing pads are either rigid or flexible by varying their thickness. For 

design considerations, dimensionless static and dynamic characteristics of the bearings 
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are presented versus the Sommerfeld number (S). Pad flexibility shows a more 

pronounced effect on the journal eccentricity and the force coefficients of a TPJB with 

null pad preload than for the bearings with larger pad preloads (0.25 and 0.5), in 

particular for operation with a small load or at a high surface speed (S>0.8).  

Turbulent flow may occur in (large size) hydrodynamic bearings operating at high 

rotational speeds and with low viscosity lubricants. Appendix A describes a turbulent 

bulk-flow model for thin films and presents predictions from the model for a large size 

four-pad water lubricated TPJB. The agreement with test data is remarkable as the 

bearing operating with turbulent flow has a much larger power loss and temperature rise. 

Hydrodynamic bearings commonly use Babbitt layer as the liner to protect the 

surfaces of rotors while ensuring low friction. As a substitute for Babbitt, PTFE 

(polytetrafluoroethylene) shows better performance at high temperatures while offering a 

low breakaway friction. However, the high flexibility of PTFE does affect the static and 

dynamic forced performance of a hydrodynamic bearing. Appendix B describes a simple 

model for the liner elastic deformation due to hydrodynamic pressure and temperature 

differential. This deformation changes the operating clearance thus affecting the bearing 

performance. The model predictions are in good agreement with other model predictions 

in the literature. Liner flexibility reduces the peak film pressure and journal eccentricity. 

Lastly, an addendum provides a (practical) graphical overview on the creation of the 

pad structural stiffness matrix using a commercial finite element software. 
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NOMENCLATURE  

A Cross-sectional area of a pad [m2] 

CB Bearing radial clearance [m] 

Cp Pad radial clearance [m] 

CXX, CYY Bearing damping force coefficients [N∙s/m], c=CΩCp/W 

D Bearing diameter [m] 

E Material elastic modulus [N/m2] 

Eeq Equivalent elastic modulus of composite material [N/m2] 

e Journal eccentricity [m] 

f Drag friction coefficient 

h Fluid film thickness [m] 

hX, hY, hδ, hξ, hη  Perturbed film thickness components due to pad motions 

I Lt3/12. Pad area moment of inertia [m4] 

KXX, KYY Bearing stiffness coefficients [N/m]   

k=KCp/W 

Kpiv Pivot stiffness [N/m] , kpiv=KpivCp/Wmax 

Kpad Pad bending stiffness [N/m]  

kpad= KpadCp(LD)/W 

L Bearing length [m] 

Mb Bending moment [N∙m] 

MXX, MYY Bearing virtual mass force coefficients [kg]  m=MΩ2Cp /W 

N Journal rotational speed [rev/s], N=Ω/2π   

P Pressure field on pad surface [Pa] 

PX, PY, Pδ, Pξ, Pη  Perturbed (first-order) pressure fields due to journal and pad motions 

[Pa/m] 
p  Uniform pressure applied on a pad [Pa] 

R, RB Journal and bearing radii [m] 

Rd Distance from pivot to bearing center [m] 

Req, Rn Neutral axis of arc pad, single and two materials [m] 
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Rp Pad radius [m] 

R (R+t)/R. Ratio of pad inner & outer radii 

rp Pad dimensional preload [m], rP=CP-CB  pr =rP/CP 

S Sommerfeld number, S=µNDL(R/CP)2/W 

T Fluid film temperature [°C] 

Torque Bearing drag torque [N.m] 

T Pad thickness [m] 

U Pad surface nodal displacement [m] 

ut Deformation at pad edges [m] 

W Static load applied on the bearing [N] 

Z K + i ω C.  Complex dynamic stiffness coefficients [N/m] 

Zαβ
  Fluid film complex dynamic stiffness coefficients [N/m, Nm/rad] 

α,β=X, Y, δ, ζ, η 

δP    Pad tilt angle [rad] 

∆σ Perturbation in parameter σ 

ΔW External dynamic force [N] 

ηpiv Pad transvers displacement [m] 

Θp Pad arc length [rad] 

θP Pivot angular position [rad] 

µ Oil viscosity [Pa.s] 

ξpiv Pad radial displacement [m] 

ρ Oil density [kg/m3] 

Ω Journal rotational speed [rad/s] 

ω  Excitation frequency [rad/s] 

Coordinate Systems 

(X,Y) Cartesian coordinates for journal center displacements 

(ξ,η) Pad pivot local coordinates 

(r,θ,z) Cylindrical coordinates for pad finite element structural model 

 



6 

 

Vectors and Matrices 

A Matrix of element surfaces 

F  Reduced external force vector 

K Pad stiffness matrix 

K  Reduced stiffness matrix 

L Lower triangular form  

P Pressure filed 

S Surface traction vector 

U Pad displacement vector 

u  Reduced pad displacement vector  

Superscripts  

G Global matrix 

K kth pad 

Subscripts  

0 Static equilibrium position 

α,β,σ X,Y,δ, ξ,η                     

P Pad upper surface 

Acronyms  

DOF Degree of freedom 

FE Finite element 

LOP Load on pad 

LBP Load between pad 

TPJB Tilting pad journal bearing 
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INTRODUCTION 

Tilting pad journal bearings (TPJBs) offer rotor dynamically stable performance, a 

distinct advantage over fixed geometry fluid film bearings [2]. This feature is attractive 

for high speed rotating machinery applications where high levels of damping are 

desirable with absence of (destabilizing) cross-coupling hydrodynamic effects. During 

the last decade there have been various test programs aiming to quantify the 

rotordynamic force coefficients of TPJBs while also elucidating the importance of 

excitation frequency dependence. Amongst these concerted efforts, Refs. [3-7] report 

that the actual damping offered by TPJBs is lower than predicted; possibly degrading 

with increasing rotor speed and applied load.  Discrepancies between predictions and 

experimentally identified force coefficients, in particular under a heavy static load, 

W/(LD) >2.0 MPa, are attributed to the physical model(s) not accounting for either pad 

and/or pivot flexibility [6,7].  

Refer to San Andrés et al. [8,9] for a review on the effects of pivot stiffness on the 

force coefficients of TPJBs, the description of a predictive model and its validation 

against test force coefficients available in the literature, and a discussion on the impact 

of pivot flexibility on the performance of TPJBs. 

Analyses including pad surface flexibility on the modeling of the forced response of 

TPJBs are well documented.  In a few analyses, pad flexibility is modeled with a 

moment-bending stiffness derived from beam theory and a change in pad curvature that 

reduces the pad mechanical preload as the applied load increases [6,7,9-12]. In other 

analyses, the whole pad structure is modeled with finite elements (FE), for example, and 

active degrees of freedom synthetized to produce a system of algebraic equations 

relating the hydrodynamic pressure to a pad surface deformation field that affects the 

film thickness [13-16].  In 1978, Nilsson [10] predicts single pad force coefficients for 

arc lengths varying from 60° to 120° and realizes that the pad with the longest arc length 

bends more and affects more the damping coefficients. At a specific journal eccentricity 

(e/CB=0.5), the direct damping coefficient along the load direction decreases by 6% for a 

60° arc pad and by 21% for a 120° arc pad. Ettles [11] in 1980 produces a computational 
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one-dimensional beam model for pad deflections due to both a hydrodynamic film 

pressure and thermally induced stresses.  Ettles contrasts the force coefficients of TPJBs 

with rigid pads against those with flexible pads, and finds an apparent reduction in 

damping (up to 40%) due to pad flexibility, further aggravated as the applied static load 

increases. Ettles notes that pad flexibility has a negligible effect on the journal 

eccentricity (and minimum film thickness), the maximum fluid film temperature; and for 

actual thick pads configurations, has no discernible effect on the bearing stiffnesses. In 

1987, Lund and Pederson [12] detail a perturbation analysis to derive the bearing 

dynamic force coefficients including both pad and pivot flexibility. The authors find that 

the more flexible a pad is, the more is the reduction in the bearing damping coefficients. 

To include for pad axial deformations, in 1989 Brugier and Pascal [13] build a three-

dimensional (3D) finite element (FE) structural pad model to predict the elastic 

deformation of the pads. Predictions for a large scale three-pad TPJB with a diameter of 

0.75 m and a slender ratio (L/D) of 0.75 show that both pad flexibility and pivot 

flexibility reduce significantly the bearing force coefficients, yet only produce a small 

decrease in the maximum film temperature and the minimum film thickness of the most 

loaded pad. The authors also predict an increase in direct stiffness coefficients at low 

loads due to both pad and pivot flexibility. Later in 1995, Desbordes et al. [14] evaluate 

predictions using two-dimensional (2D) and three-dimensional (3D) FE structural pad 

models and realize that pad deflections along the axial direction are not negligible in a 

heavily loaded TPJB. 

Neglecting the variation of the pad mechanical deformation along the axial direction, 

in 1990 Earles et al. [15] use a two-dimensional (2D), plane strain FE model to evaluate 

pad flexibility effects on the forced performance of TPJBs. By assuming a pad keeps its 

original curvature, the complex multiple degree of freedom (DOF) system is reduced to 

one single parameter which reflects as change in pad radius. Frequency reduced dynamic 

force coefficients for a single pad correlate well, within 5% difference, with those 

obtained by Lund and Pedersen [12]. Earles et al. [16] also implement a “Pad Assembly 

Method” to obtain the dynamic force coefficients of a TPJB. With pivot flexibility 
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modeled using Hertzian contact theory, the TPJB stiffness and damping matrices contain 

each (3Npad+2)2 coefficients. Using synchronous speed reduced TPJB force coefficients 

in a particular rotor-bearing system, the authors report that pad flexibility produces a 

reduction of 6% in the predicted onset speed of instability. 

Childs and students [1,3,5-7,17] utilize a test rig for measurement of the static and 

dynamic load performance of hydrodynamic bearings.  This test rig comprises of a rigid 

rotor supported on rolling element bearings and with a softly supported (floating) 

bearing cartridge holding the test bearing element at the rotor mid span. Operators 

perform sets of tests spanning a range of applied static loads for one or more shaft speed 

conditions. Importantly enough, most tests are conducted with a constant lubricant 

supply rate, irrespective of the shaft speed or load condition. Orthogonally placed 

external shakers deliver multiple frequency dynamic loads exciting the test element over 

a prescribed frequency range. Bearing force coefficients – stiffness, mass and damping 

(K, C, M), are extracted from curve fits to experimentally derived complex stiffness 

functions.   Recently, Wilkes [7] reports both measurements and predictions for a load 

on pad (LOP), five-pad TPJB with 50% pad pivot offset. Wilkes’ predictions point to 

pad flexibility having a more pronounced effect under large loads. Do notice that 

Wilkes’ meticulous work produces a method to measure pad flexibility by inducing 

moments on the leading and trailing edges of a pad and recording the pad strain. Wilkes 

plots the pad bending stiffness versus the applied bending moment curves and obtains 

the bending stiffness for the pad in his test bearing. Wilkes uses this bending stiffness to 

predict pad flexibility and regards the pad deformation as a change in pad clearance. 

Based on the urge of Wilkes [7] to assess systematically the effect of pad flexibility 

on the dynamic force coefficients of TPJBs, Gaines [1] conducts a concerted effort to 

quantify the influence of pad thickness, e.g. its flexibility, on the static and dynamic 

forced performance of a three pad TPJB installed in a load between pads (LBP) 

configuration. Gaines used three sets of pads, each with an arc length of 90o, and varying 

in thickness t=8.5 mm, 10 mm and 11.5 mm.   The unit load W/(LD) applied to the 

bearings increases from 1,72 kPa to 1,724 kPa while operating at three rotor speeds: 6, 9 



15 

 

and 12 krpm (32, 48, and 64 m/s). Test data show that the direct damping coefficients 

decrease up to 20% as pad flexibility increases. The reduction in direct damping 

coefficients due to pad flexibility prevails as the rotor speed increases but keeps nearly 

constant as the unit load varies. However, the effect of pad flexibility on the bearing 

direct stiffnesses is minor. Similar to Brugier and Pascal’s findings [13], Gaines also 

notices up to a 12% increase in direct stiffnesses as pad flexibility increases for 

operation with a low unit load, W/(LD)<689 kPa. Even at the largest unit load of 

W/(LD)=1,726 kPa, the direct stiffnesses of the TPJB with thin pad sets (t=8.5 mm) is 

only 3% smaller than those of the TPJB with thick pad sets (t=11.5 mm).  Refer to 

Gaines [1] for a lucid review of the archival literature on experiments related to pad 

flexibility and its effects on TPJB force coefficients. See also Ref. [17] for an abridged 

version of the original reference and a discussion on the effects of pad flexibility within 

the context of practical TPJB configurations. 

The current analysis extends the physical model in Refs. [8,9] to include pad 

flexibility to predict a TPJB static performance (e.g., journal eccentricity and minimum 

film thickness, fluid film temperature, etc.) and its dynamic force coefficients. A FE pad 

structural model including the Babbitt layer is coupled to the thin film flow model to 

determine the mechanical deformation of the pad surface. Exhaustive predictions are 

compared to the test data reported by Gaines [1]. The discussion produces relevant 

correlations while still stressing differences. Lastly, a parametric study follows to 

investigate the effects of pad and pivot stiffnesses, pad preload, and load orientation on 

TPJB force performance, static and dynamic. The graphs constructed using 

dimensionless parameters provide a bearing designer with a guide to estimate the effect 

of pad flexibility on journal eccentricity, drag friction coefficient, and the stiffness, 

damping and virtual mass force coefficients. 
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REYNOLDS EQUATION FOR THIN FILM BEARINGS 

Figure 1 depicts a schematic view of an idealized TPJB with its major components 

and reference coordinate systems. The external static load (W) forces the journal 

spinning with rotational speed (Ω) to displace to eccentricity (eX, eY) away from the 

bearing center. The pads in the bearing generate a fluid film hydrodynamic pressure (P) 

that acts on the journal to oppose the applied load. The pressure also acts on each pad, 

tilting the pad about its pivot with rotation δp and displaces the pad pivot to ξpiv and ηpiv. 

The pressure field also deforms elastically the pads. Of importance is up the deformation 

field on the pad surface facing the fluid film.  

An extended Reynolds equation1 [8,9] with temporal fluid inertia effects governs 

the generation of hydrodynamic pressure (Pk) in the kth pad with film thickness hk, 

( ) ( )3 2
2

212 2 12

k kk k k
k

h hh h hP
t t

ρ

µ θ µ

  ∂ Ω ∂ ∂ ∇ ∇ = + +  ∂ ∂ ∂  

 

                                       (1) 

where (z, θ) are the axial and circumferential coordinates on the plane of the bearing. 

The film thickness hk is     

( ) ( ) ( ) ( )
cos sin

cos sin

k k
p P X Y

k k k k k
piv P p piv d p p

h u C e e

r R

θ θ

ξ θ θ η δ θ θ

= + + +

+ − − + − −
                        (2) 

where CP and CB are the pad machined radial clearance and bearing assembly 

clearance, respectively, and rP=(CP-CB) is the pad mechanical preload. Above Rd=RP+t is 

the sum of the pad machined radius and pad thickness at the pivot location. The pad 

surface deflection field ( )0k
pu >  increases the film thickness. 

1 The model includes for flow turbulence and thermal energy transport effects. The analysis (equations) for 
these flow conditions are not included for brevity. 
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Figure 1 Schematic view of an idealized TPJB. Film thickness (h), pad deflection 
(up), pad rotation (δp) and pivot deflections (ξpiv,ηpiv) greatly exaggerated. 
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ANALYSIS FOR PAD MECHANICAL DEFORMATIONS  

 A structural FE analysis predicts the displacements of the kth pad upper surface 

caused by the fluid film pressure field (P). Figure 2(a) depicts a typical pad assembling a 

number of brick-like finite elements. The equation for the deflection field (uG) due to an 

applied load (FG) is [14]: 
G G G GK u = F + S                                                      (3) 

where KG is a global stiffness matrix and SG is a vector of surface tractions.  Desbordes 

et al. [14] introduce appropriate boundary conditions for an ideal tilting pad, i.e., one 

with infinite pivot stiffness. Figure 2(b) depicts in graphical form the lines where 

boundary conditions are specified. The solid line denotes the pivot (line contact) and all 

FE nodes are constrained to a null displacement; ur=uθ=uz=0, along the radial, 

circumferential, and axial directions. The two dashed lines parallel to the line contact 

denote nodes with no radial displacement, ur=0 only. On these lines, the nodes can take 

circumferential (transverse) and axial displacements.  

 

Radial  
direction r 

Circumferential 
Direction θ 

 

Axial  
Direction Z 

 
(a) Pad assembled by finite elements 
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(b) Boundary conditions at pivot line 

 
Figure 2(a) Typical FE model and mesh for a bearing pad, and (b) boundary 
conditions on pad as modeled in Ref. [14]. ur, uθ, uz are the nodal displacements 
along the radial, angular,  axial directions, respectively. 

 

Once the pivot boundary conditions are assigned, the global system of equations 

reduces to 
G G GK u = F                                                         (4) 

where GK  is a reduced (non-singular) stiffness matrix,  and Gu and GF are the vectors of 

global displacements and forces. The external load generated by the film pressure acts 

on the (upper) surface of the pad. Thus, further manipulation to reduce Eq. (4) is 

warranted. Write the vectors of displacements and generalized force in terms of active 

and inactive degrees of freedom, i.e.,  

[ ]T TP  
G G

pu = u u ; F = f( ) 0                                     (5) 

where up denotes the vector of radial displacements on the pad upper surface which are 

active DOFs, and u is the vector of displacements of other nodes, f(P)=(AP) is the 

vector of nodal forces generated by the pressure field P with A as a square matrix 

containing element surfaces. The reduced global stiffness matrix GK  can be partitioned 

as 
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 
 
  

p sG

s na

K K
K =

K K
                                                      (6) 

with these definitions, Eq. (4) can be written as 

Pp p s

s p na

K u + K u = f( )

K u + K u = 0
                                                 (7) 

From Eq. (7a), 
-1

na s pu = - K K u    and the displacements on the pad surface are obtained 

from 

Pp pK u = f( )                                                          (8) 

where  1

p p s na sK = K - K K K
     is a positive definite symmetric matrix, easily 

decomposed into its lower and upper triangular forms, T
pK = LL . Hence, Eq. (8) is 

rewritten as 

  PT
pL L u = f( )                                                       (9) 

Let * T
p pu L u ; a backward substitution procedure solves first * PpLu = f( )  to give 

*
pu ; and next, a forward substitution procedure solves *T

p pL u = u  to determine up, i.e., 

the vector of radial displacement at the pad surface. The vector up is used to update the 

film thickness (h), Eq. (2), for solution of the Reynolds Eq. (1) to find the pressure field 

(P). Note that the FE structural pad model and its end result, the L matrix, needs to be 

performed only once, preferably outside of the main computational program. 
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PERTURBATION ANALYSIS OF THE THIN FILM FLOW EQUATION  

At a constant shaft speed (Ω), the static load ( )0 0
,X YW W=0W T displaces the journal 

to it equilibrium position ( )0 0
,X Ye e=0e T with the generated fluid film pressure (P0k) 

acting on each pad surface. The kth pad reaches its equilibrium position ( )0 0 0
, ,k k k

p piv pivδ ξ η T 

and the deflection of the pad upper surface is
0

k
pu .  

An external dynamic force, ΔW=(ΔWX, ΔWY)T eiωt  with excitation frequency (ω) 

acts on the journal and causes the journal center to displace to Δe=(ΔeX, ΔeY)T eiωt  away 

from e0, i.e., e(t)=e0+ Δe eiωt [18]. The journal motion leads to changes in the pad pivot 

displacements and the pad surface deformation as 

( ) ( ) ( )
0 0 0

TT T
, , , , , ,k k k k k k k k k i t

p piv piv p piv piv p piv piv e ωδ ξ η δ ξ η δ ξ η= + ∆ ∆ ∆             (10a) 

0

k k k i t
P P Pu = u + u e ω∆ , 1,..., padk N=                                 (10b) 

On the kth pad, the changes in journal center position and pad displacements cause a 

change in the film thickness as 

0
k k k i th h h e ω= + ∆ , 1,..., padk N=                                  (11a) 

where 

{ }
X Y

k k k k k k k k k k
X Y piv piv p ph h e h e h h h uξ η δξ η δ∆ = ∆ + ∆ + ∆ + ∆ + ∆ + ∆      (11b) 

with cosk
Xh θ= , sink

Yh θ= , cos( )k k
phξ θ θ= − , sin( )k k

phη θ θ= − , k k
dh R hδ η= −  [18]. The 

fluid film pressure on a pad is 

0
k k k i tP P P e ω= + ∆ , 1,..., padk N=                                (12a) 

where the change in fluid film pressure caused by the perturbations in displacements is 

{ }k k k k k k k k k
X X Y Y piv piv pP P e P e P P Pξ η δξ η δ∆ = ∆ + ∆ + ∆ + ∆ + ∆                  (12b) 

Let ( )k k kP
-1

pg = K f(P )    . Hence, the pad deformations caused by the equilibrium 

pressure field  k
0P  and the perturbed pressure field (ΔPk) are  

0, ( ), ( ) ,k k k k k k k kP P
0

-1 -1

P P p 0 pu Δu = g g K A P K A ΔP                           (13) 
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Substituting Eq. (12b) into Eq. (13) yields the change in pad surface deformation as  
k k k k k k k k k
P X X Y Y p piv pivu u e u e u u u                            (14) 

Thus, 

( ) ( ) ( )

( ) ( )

k k k k k k k k
X X X Y Y Y piv

k k k k k k
piv p

h h u e h u e h u

h u h u
ξ ξ

η η δ δ

ξ

η δ

∆ = + ∆ + + ∆ + + ∆

+ + ∆ + + ∆
                 (15) 

That is, the film thickness changes due to physical displacements of the journal and pad 

as well as due to the deformation induced by a change or perturbation in pressure.  

Define the following linear operators [19], 

( ) ( ) ( )
3 3 3
0 0

( )

( )
12 12 12 T

h h h
R R z zθ µ θ µ µ

 ∂ ∗ ∂ ∗   ∂ ∂
∗ = + = ∇ ∇ ∗      ∂ ∂ ∂ ∂     

 

           (16) 

( ) ( ) ( ) ( ) ( )
2 2

20 0
0

( ) ( )

3
2 12 12T T

h hi Pρω ω
θ µ µ

   ∂ ∗Ω
ℜ ∗ = + ∗ − ∗ − ∇ ∗ ∇    ∂    

 

        (17) 

Substitution of hk and Pk into the extended Reynolds Eq. (1) gives: 

0
0( )

2
hP
θ

∂Ω
=

∂
                                                   (18) 

and                      

{ } { }k k kP h uσ σ σ= ℜ +  α,β=X,Y,δ, ξ, η                               (19) 

Note that the first-order or perturbed pressure fields due to a pad rotation and pivot 

radial and transverse displacements are a linear combination of PX and PY [18,19], i.e., 

cos sin

sin cos

k k
J

k k k k k
X P Y P

k k k k k
X P Y P

P R P

P P P

P P P

δ η

ξ

η

θ θ

θ θ

= −

= +

= − +

, 1,..., padk N=                      (20) 

Since the pad deformations are a linear function of the applied pressure, i.e., 

( )k ku g Pσ σ= with α,β=X,Y,σ,ξ,η, then 

cos sin

sin cos

k k
J

k k k k k
X P Y P

k k k k k
X P Y P

u R u

u u u

u u u

δ η

ξ

η

θ θ

θ θ

= −

= +

= − +

, 1,..., padk N=                          (21) 
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The analysis above reveals that the perturbed pressure fields due to pad rotation or pivot 

transverse displacements can be readily gathered from the fields determined for changes 

in the journal eccentricity (ΔeX, ΔeY). Furthermore, the changes in pad deformation also 

follow immediately after the perturbed displacements ( ),k k
X Yu u are found. The process is 

computationally fast and efficient. The only caveat is that Eq. (19) is solved iteratively, 

as ( )k ku g Pσ σ=  α,β=X,Y. 

Integration of the pressure fields, obtained after solving the first order Eqs. (19) on 

the kth pad, renders 25 fluid film dynamic complex stiffness coefficients ( kZαβ
 ) [18] 

/2

/2

k
t

k
l

L
k k k k

J
L

Z P h R d dz
θ

αβ β α
θ

θ
−

= ∫ ∫  α,β=X,Y,σ,ξ,η                                 (22)  

Reduced frequency force coefficients for lateral displacements, Zαβ=(Kαβ+iωCαβ) α,β=X,Y, 

are extracted from the complete sets of 25 Z’s by assuming all pads move with the same 

frequency ω.  For details on the reduction process, see Refs. [18-20]. 
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COMPARISON OF PREDICTIONS AGAINST TEST DATA 

Gaines [1] produced test data for three TPJB sets, each having three pads of unequal 

thickness, to quantify the effect of pad flexibility on the bearings force coefficients, in 

particular damping, over a range of loads and rotational speed conditions. This section 

presents exhaustive comparisons of predictions from the current model to the test data in 

Ref. [1]. Gaines and Childs [17] summarize the comprehensive measurements and data 

analysis in Ref. [1]. 

Table 1 lists the geometry of the TPJBs, lubricant properties and operation 

conditions and Figure 3 depicts the load between pads configuration of a test bearing and 

a photograph of one pad with a rocker back pivot type. The bearing assembly operates 

with a flooded lubricant supply condition, all measurements conducted with a flow rate 

of 31 LPM [1]. The arc length (90o) and inner radius of the pads for the three bearing 

configurations are identical. A pad is composed of two materials: a main body made of 

steel and a Babbitt layer, 1.5 mm thick. The elastic moduli for steel and Babbitt are 200 

GPa and 50 GPa, respectively [21]. The pad thicknesses (t) quoted includes the Babbitt 

thickness and is measured at the location noted in the photograph. Presently, in the 

discussion of results, the pads are referred as thin (t=8.5 mm), medium thickness (t=10 

mm), and thick (t=11.5 mm). 

 

Table 1 Geometry, lubrication properties, and operating conditions of three 
test TPJBs [1]. 

 
Number of pads, Npad 3 

Configuration LBP 

Rotor diameter, D 101.6 mm 

Pad axial length, L 61 mm 

Pad arc angle, ΘP 90° 

Pivot offset 50% 

Nominal preload, pr  0.25 

Pad thickness, t 8.5mm 10 mm 11.5mm 



25 

 

Cold bearing clearance, CB 69 µm 70 µm 70 µm 

Cold pad clearance, CP 92 µm 93 µm 93 µm 

Lubricant type ISO VG 46 

Supply lubricant temperature 49 oC 

Supply lubricant pressure 2.2 bar 

Lubricant density  854 kg/m3 

Viscosity at 49 oC,µ0 0.0269 Pa·s 

Viscosity temperature coefficient, α            0.0319 1/ oC 

Specific heat capacity at 70 oC 1830 J/(kg·K) 

Specific load, W/(LD) 172 kPa -1724 kPa 

Journal speed,Ω 6,000-12,000 rpm 

Surface speed,  ΩR 32-64 m/s 

 

 

X 

Y 

θ
l1

=-15
o
 

Pad 2 
 

Pad 3 
 

W 

Journal 

     

Fluid film 

Pad 1 
 

rp =0.25, CB=70 µm, Pivot offset=0.5,  
Pad arc length =90° 
 

Bearing 
cartridge 

    

Babbitt layer=1.5 mm 

Pad thickness 
Constraint pin 

 
 

Figure 3 Load configuration for three pad TPJB and photograph of one pad. 
 

To measure the pivot stiffness of a single pad, Gaines [1] assembled the bearing in a 

load on pad (LOP) orientation, as shown in Fig. 4. A hydraulic cylinder and spring pull 

on the bearing cartridge and displace it against the rigid rotor (journal). The applied load 

on the shaft is trough contact pressure over the whole pad arc extent. Eddy current 
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sensors record the relative displacements between the bearing casing assembly and the 

journal or shaft.  

 
 

Figure 4 Illustration of three pad bearing and set up for measurement of pivot 
stiffness. 

The load versus pivot deflection measurements conducted on pads (of differing 

thickness) evidence a nonlinear stiffening effect with mechanical hysteresis. For applied 

loads 47 kPa < W/(LD) <1,100 kPa, Table 2 lists the average pivot stiffness2 (Kpiv) used 

in the following predictions. 

Table 2 Estimated average pivot stiffness for each pad set configuration in Ref. 
[1] 

 
 Pivot stiffness [MN/m] 

Thin pad (t=8.5 mm) 573 
Medium thickness pad (t=10 mm) 675 
Thick (t=11.5 mm) 775 

 
The current predictive model includes the shaft and pad thermal expansion due to 

rises in film temperature3 that determine the hot bearing clearance. The predictive model 

assumes that the lubricant carries away all the heat generated in the bearing, i.e., an 

adiabatic heat flow process. The inlet heat carry over coefficient (λ) varies for differing 

2 It is not clear why the pads have differing stiffness as they have identical back surface configurations and 
contact areas at their pivot location. 
3 The shaft and pads, both made of steel, have a thermal expansion coefficient of 1.2×10-5/ oC [22]. 
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rotor speeds4; at Ω=6 krpm, λ=0.8; while at Ω=12 krpm, λ=0.98. Predictions with and 

without pad flexibility are presented.  

Figure 5 shows the predicted and measured journal eccentricity (e/CP) along the load 

direction (Y) for operation at 6 krpm and 12 krpm. The predictions include curves for 

pad flexibility and without it. At both operational speeds (Ω=6 krpm, 12 krpm), the 

predictions with pad flexibility correlate best with the test data as the applied load 

increases. Predictions solely considering pivot flexibility deliver a larger static 

eccentricity. Pad flexibility tends to reduce the predicted journal eccentricity, in 

particular for operation at the high rotor speed (Ω=12 krpm).  

      
 

                 (a) speed 6 krpm                        (b) speed 12 krpm  
 

Figure 5 Journal eccentricity (eY) along the load direction versus unit load W/(LD). 
Journal speed Ω=6 krpm and 12 krpm. Predictions (without and with pad 
flexibility) and test data from Gaines [1]. Results shown for thin, medium and 
thick pads. 

 

Figure 6 depicts the predicted maximum film temperature rise (ΔTmax/Tin) versus unit 

load for two journal speeds. In the tests [1], a pad (~5 mm below) sub-surface 

4 According to Tao [20], the inlet heat carry over coefficient (λ) varies with journal speed; a larger λ 

should be used for a high rotor speed (Ω>10 krpm). 
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temperature is recorded at 75% of the pad arc length. Predictions account for the heat 

transfer conducted through a pad and the heat convection in the back of a pad. The 

predictions show the bulk fluid film temperature in pad 2. Generally, the maximum 

temperatures are underestimated, in particular at the high speed and largest load; Ω=12 

krpm, W/(LD)=1,726 kPa. 

The significant differences in temperatures are due to the test bearing being supplied 

with a fixed flow rate, irrespective of the load and journal speed condition. For test with 

a shaft speed of 6 krpm, the actual supplied flow rate (31 LPM) is greater than the one 

predicted (17 LPM) while the recorded peak pad surface temperatures are much higher. 

Note the oil is pushed through three holes and not routed efficiently into the bearing pads. 

To support the assertion, note that the recorded lubricant outlet temperature is much 

lower that the peak temperatures measured [1], and also lower than the predicted 

lubricant temperature at the bearing exit plane. Hence, excessive churning of the 

lubricant on the bearing sides contributes to the distinctive differences. Most of the cold 

supply flow rate does not enter the bearing pads, thus causing the bearing pads to heat 

excessively.  

      
 

             (a) speed 6 krpm                      (b) speed 12 krpm 
 

Figure 6 Maximum pad-surface temperature versus unit load W/(LD). Journal 
speed Ω=6 krpm and 12 krpm. Predictions (without and with pad flexibility) and 
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test data from Gaines [1]. Inlet oil temperature, Tin = 49oC. Results shown for thin, 
medium and thick pads. 

 

For the largest applied static load, Figs. 7 and 8 show the real part of the bearing 

direct complex stiffnesses, Re(Z), obtained at two shaft speeds (Ω=6 krpm and 12 krpm) 

versus excitation frequency (0<ω<200 Hz). Note Re(ZYY), along the load direction, is 

lesser than Re(ZXX). This peculiar behavior is distinctive for the three pad bearing, each 

pad having a large (90o) arc extent. In general, the predicted Re(ZYY) correlates best with 

the test data, whereas Re(ZXX) is overestimated at high frequencies (ω>100 Hz). Note the 

experimental Re(Z) show little frequency dependency, yet the predictions forward a 

stiffening Re(ZYY) as frequency increases, and in particular for operation at the low shaft 

speed (6 krpm). Including pad flexibility reduces the dynamic stiffness, Re(Z); the effect 

being more pronounced on the thin pad. 

 
(a) Thin pad, t=8.5 mm 
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(b) Medium thickness pad, t=10 mm 

 
(c) Thick pad, t=11.5 mm 

 
Figure 7 Real part of complex stiffnesses for TPJBs with pads of thickness (a) 
t=8.5 mm (b) t=10 mm (c) t=11.5 mm. Shaft speed Ω=6 krpm and unit load 
W/(LD)=1,726 kPa. Test data from Gaines [1] and predictions (with and without 
pad flexibility).  
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(a) Thin pad, t=8.5 mm 

 
(b) Medium thickness pad, t=10 mm 
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(c) Thick pad, t=11.5 mm 

 
Figure 8 Real part of complex stiffnesses for TPJBs with pads of thickness (a) 
t=8.5 mm (b) t=10 mm (c) t=11.5 mm. Shaft speed Ω=12 krpm and unit load 
W/(LD)=1,726 kPa. Test data from Gaines [1] and predictions (with and without 
pad flexibility).  

 

For the same static load condition and two journal speeds, Figs. 9 and 10 depict the 

experimental and predicted imaginary part of the bearing complex stiffnesses, Im(Z). In 

general, the bearing damping coefficient (C) is the slope of Im(Z)~ ωC.  Both Im(ZXX) 

and Im(ZYY) from the experiments show a linear growth with frequency, i.e., a frequency 

independent C. Note Im(ZXX) > Im(ZYY). The predictions are in very good agreement 

with the experimental results for operation with the high shaft speed (12 krpm). On the 

other hand,  for operation at 6 krpm, the predicted Im(ZXX) is larger than the test results 

and evidences a reduction in growth on the high side of the excitation frequency range 

(ω >1.5Ω). 
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(a) Thin pad, t=8.5 mm 

 
(b) Medium thickness pad, t=10 mm 
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 (c) Thick pad, t=11.5 mm 

 
Figure 9 Imaginary part of complex stiffnesses for TPJBs with pads of thickness 
(a) t=8.5 mm (b) t=10 mm (c) t=11.5 mm. Shaft speed Ω=6 krpm and unit load 
W/(LD)=1,726 kPa. Test data from Gaines [1] and predictions (with and without 
pad flexibility).  

 

 
(a) Thin pad, t=8.5 mm 
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(b) Medium thickness pad, t=10 mm 

 
(c) Thick pad, t=11.5 mm 

 
Figure 10 Imaginary part of complex stiffnesses for TPJBs with pads of thickness 
(a) t=8.5 mm (b) t=10 mm (c) t=11.5 mm. Shaft speed Ω=12 krpm and unit load 
W/(LD)=1,726 kPa. Test data from Gaines [1] and predictions (with and without 
pad flexibility).  

 

Childs [23], supported by a myriad of experimental results from numerous test 

bearings [1,3-7], stresses that the (issue on) frequency dependency of force coefficients  

in TPJBs is settled with a simple [K,C,M] model. That is the curve fits Re(Z)←(K-ω2M), 
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Im(Z)←(ωC) deliver accurate stiffness (K), damping (C), and virtual mass (M) 

coefficients for confident use in rotor-bearing system stability analysis, i.e., a reliable 

estimation of the system logarithmic decrement. 

Presently, define dimensionless dynamic force coefficients as [24], 

ij p
ij

K C
k

W
= , ij p

ij

C C
c

W
Ω

= ,
2

ij p
ij

M C
m

W
Ω

=  i,j=X,Y                         (23) 

Above Cp is the cold pad radial clearance, Ω is the rotor speed, and W is the static load 

applied to the bearing. 

Figure 11 depicts the TPJB stiffness coefficients (kXX > kYY) versus unit load as 

identified (curve fits) from the measured and predicted complex stiffnesses (Z). The 

predicted stiffnesses correlate well with the test data at low loads, W/(LD)<1,032 kPa, 

but are underestimated at the highest load, W/(LD)=1,724 kPa. Note that pad flexibility 

increases the predicted kXX and kYY at low loads, W/(LD)<689 kPa, whereas it reduces the 

predicted kXX and kYY for high loads, W/(LD)>689 kPa. Predicted direct stiffnesses 

accounting for pad flexibility are up to 20% smaller than those assuming a rigid pad. As 

the pad thickness decreases from 11.5 mm to 8.5 mm, the predicted kXX decreases by 

21%. 

 
(a) kXX 

 



37 

 

 
(b) kYY 

 
Figure 11 Direct stiffnesses (kXX and kYY) versus unit load and two shaft speeds. 
Predictions (without and with pad flexibility) and test data from Gaines [1]. 
Results shown for thin, medium and thick pads. 

 

Interestingly enough, the direct stiffness (kYY) along the static load direction (-Y) is 

significantly lower than the stiffness kXX, in particular as the unit load increases. Fig. 12 

depicts the film thickness and hydrodynamic pressure at the bearing mid-plane (z=½ L). 

Both the minimum film thickness and the maximum pressure are quite close to the X 

axis (θ=180o), thus causing a large stiffness along the unloaded direction (X). That is, the 

stiffening effect is a result of the long arc extent of the bearing pads, 90o. 
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      X 

Y 

W 

Pad 3 

Pad 2 Pad 1 

θ 

 
 

Figure 12 Predicted film pressure and film thickness at bearing mid plane. 
Operation with unit load W/(LD)=172 kPa and shaft speed Ω=6 krpm. Location of 
the maximum film pressure for each pad: θ1=33° (pad 1), θ2=153° (pad 2) and θ3=273° 
(pad 3). Location of the minimum film thickness for each pad: θ1=53° (pad 1), θ2=173° 
(pad 2) and θ3=301° (pad 3). 

 

Figure 13 depicts the damping coefficients (cXX > cYY) versus unit load and for two 

shaft speeds. Pad flexibility reduces the predicted damping over the entire load range, 

172 kPa< W/(LD)< 1,726 kPa. The experimental results show less differences for the 

three pad thicknesses than the model otherwise predicts. Predictions including pad 

flexibility deliver damping coefficients up to 46% lower than similar coefficients 

obtained with a rigid pads model. Reducing the pad thickness from 11.5 mm to 8.5 mm 

produces also a reduction of up to 50% in predicted direct damping. Note that the test 

results appear to agree with the predictions including pad flexibility for operation at the 

low speed of 6 krpm. The opposite argument applies to the test results at the high speed 

of 12 krpm, as they appear to agree with the predictions without pad flexibility. 
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(a) cXX 

 

 
(b) cYY 

 
Figure 13 Direct damping coefficients (cXX and cYY) versus unit load and two shaft 
speeds. Predictions (without and with pad flexibility) and test data from Gaines 
[1]. Results shown for thin, medium and thick pads. 

 

For completeness, Fig. 14 displays the virtual mass coefficients (mXX, mYY) versus 

unit load and operation at the low shaft speed of 6 krpm. The test results evidence lesser 

magnitudes for the added masses than the predictions otherwise show. The negative 
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values denote the bearing dynamic stiffness hardens slightly as frequency increases, see 

Fig. 7. Most importantly, as the unit load increases, note (mXX, mYY) approach null values, 

thus indicating the real part of the complex stiffness (Z) does not show a frequency 

dependency. Similar results follow for operation at 12 krpm, hence those predictions are 

omitted for brevity. Note that in the sub-synchronous frequency range (ω<Ω), the virtual 

mass coefficients have a negligible impact on the dynamic stiffnesses (Re(Z)). 

      
   (a) mXX                                                      (b)mYY 

 
Figure 14 Direct virtual mass coefficients (mXX and mYY) versus unit load and shaft 
speed= 6krpm. Predictions (without and with pad flexibility) and test data from 
Gaines [1]. Results shown for thin, medium and thick pads. 
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PARAMETRIC STUDY ON THE EFFECT OF PAD FLEXIBILITY ON TPJB 
PERFORMANCE 

Nicholas [2] and Someya [24] produced useful design performance data for TPJBs. 

However, the original data do not include either pad or pivot flexibility. San Andrés et al. 

[9] complement the design data by accounting for pivot flexibility. This section further 

supplements TPJB performance characteristics with consideration of both pad and pivot 

flexibility for a three-pad TPJB operating under both LOP and LBP configurations. The 

bearing configurations selected reproduces the geometry of the bearings in Ref. [1] and 

also include variations in pad preload ( pr ). Table 3 presents the operating conditions and 

geometrical parameters for the TPJB model.  The TPJB performance parameters are 

shown as a function of the Sommerfeld number (S), defined as 

                           
2

s

p

NLD RS
W C

µ  
=   

 
                                                (24) 

where N=Ω/2π is the rotational speed and μs is the lubricant viscosity at the supply or 

inlet temperature. 

 
Table 3 Cases to assess effect of pad flexibility on the performance of a TPJB. 

 
Static specific load, W/(LD) 689 kPa 
Journal speed, Ω 500 rpm – 12,000 rpm 
Pad preload, pr  0, 0.25, 0.5 
Pad thickness, t Rigid pad, 8.5 mm, 11.5 mm 
Pivot stiffness, Kpiv 750 MN/m 
 

Branagan [25] introduces several equations to estimate a pad elastic deformation due 

to a bending moment (M). He suggests as adequate, 

( )
( )

2

2 22

4 1 1 2log
( 1)

1 2 log
t

r rMu r
AE r r r

 − − = − −
 − − ⋅ 

                              (25) 

with r=(R+t)/R and A is the cross-sectional area of a pad. Nilsson [10] already notes that 

a pad with a long arc length is more flexible; alas, Branagan’s equation does not account 
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for pad arc length. In addition, Eq. (25) neglects the Babbitt layer that makes a pad more 

flexible.   

Prior to presenting predictions, let’s define a suitable pad bending stiffness (Kpad). 

Since a typical bearing pad integrates a thick base material (steel) and a Babbitt layer, 

define an equivalent elastic modulus as [26] 

   
 

1 1
1 1 1 2 2 22 2

1
2

n n
eq

eq

E t R t E t R t
E

t R t
  




                                   (26) 

where E1 and E2 are the elastic moduli of materials 1 and 2, t1 and t2 are thicknesses, and 

t=t1+t2 is the pad thickness. Above, Rn is the neutral axis of a pad (beam) of two 

materials, whereas Req is the neutral axis of a pad made of one material, 

 
1 1 2 2

1 2
1 2

1

,
ln 1ln 1 ln 1

n eq
E t E t tR R

t t tE E RR R t


 

              

                  (27) 

A simple elasticity analysis, based on information gathered from Refs. [27-30], takes 

a pad as a curved beam and apply a uniform pressure ( p ) to determine the radial 

deformation at its edge (ut),  
41 cos 2 cos 1

2 2 2
eqt P P

eq

LRu
p E I

Θ Θ  = ⋅ − +    
                          (28) 

where ΘP is the pad arc extent and I=Lt3/12 is the area moment of inertia. See Ref. [31] 

for details on the derivation of the equations above. Define a dimensionless pad stiffness 

as 

( ) 3

2
/ cos 2 cos 1

2 2

p p eq p
pad pad

t eq eq P P

C C E I CpLD Dk K
W LD u W R R WΘ Θ

 
= = ⋅ = ⋅      − +    

 

(29)                       

Thus, kpad = ∞, 3.15 and 7.33, for a rigid pad, a pad with a thickness of 8.5 mm, and 

another pad with a thickness of 11.5 mm, respectively5. Note that the kpad is nearly 

5 Recall a pad has a 1.5 mm Babbitt layer. 
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proportional to the cube of a pad thickness, ~t3.  Incidentally, in the analysis, the 

dimensionless pivot stiffness (kpiv) is, with Kpiv=750 MN/m, 

max

16piv p
piv

K C
k

W
= =                                                 (30) 

For the LBP and LOP configurations and varying pad preload, pr =0, 0.25, 0.5, Fig. 

15 depicts the journal eccentricity versus Sommerfeld number (S). At a large S and as 

the pad flexibility increases (kpad decreases), the journal eccentricity decreases greatly 

for the LBP bearing with a null pad preload and the LOP bearing with 0.25 preload, in 

particular. 

 
              (a) LBP, pr =0 & 0.5 
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              (b) LOP & LBP, pr =0.25 

 
Figure 15 Three-pad TPJB journal eccentricity (e/Cp) vs. Sommerfeld number (S). 
Pad stiffness kpad = 3.15, 7.33, ∞ (rigid) and kpiv = 16. Pad preload varies: LBP and 
LOP configurations. Specific load W/(LD)=689 kPa, rotor speed Ω=500 rpm to 
12,000 rpm. 

 

Figure 16 depicts the drag friction coefficient, f=Torque/(RJW) increasing 

proportionally with S for both the LBP and LOP configurations, the bearing with the 

largest preload having more drag. Pad flexibility has no effect on f, hence has no 

influence on the bearing drag power losses. 
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              (a) LBP, pr =0 & 0.5 

 

 
               (b) LOP & LBP, pr =0.25 

 
Figure 16 Three-pad TPJB drag friction coefficient (f) vs. Sommerfeld number. 
Pad stiffness kpad = 3.15, 7.33, ∞ (rigid) and kpiv = 16. Pad preload varies: LBP and 
LOP configurations. Specific load W/(LD)=689 kPa, rotor speed Ω=500 rpm to 
12,000 rpm. 

 

Figures 17 and 18 show pad flexibility reduces the stiffness coefficients (kXX, kYY). 

For the LBP bearing, pad flexibility increases slightly kYY by 3% at S>1. Recall that Fig. 
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11 depicts an increase in bearing stiffnesses due to pad flexibility at a smaller unit load. 

For the LOP TPJB, the stiffness along the unloaded direction (kXX) is one order of 

magnitude lesser than the stiffness along the load direction (kYY) at a Sommerfeld 

number less than 1 (S<1). For both the TPJBs under LBP and LOP configurations, pad 

flexibility slightly increases kYY at a large Sommerfeld number (S>0.8).  

For the LBP TPJB with 0.5 preload and the LOP TPJB with 0.25 preload, kXX and kYY 

increase with S. For the LPB TPJB with null preload, kXX and kYY decrease with an 

increase in S. 

 

 
                 (a) kXX 
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                 (b) kYY 

 
Figure 17 Three-pad TPJB stiffness coefficients (kXX, kYY) vs. Sommerfeld number 
(S). Pad stiffness kpad = 3.15, 7.33, ∞ (rigid) and kpiv = 16. Pad preload pr  =0, 0.5: 
LBP configuration. Specific load W/(LD)=689 kPa, rotor speed Ω=500 rpm to 
12,000 rpm. 

 

 
                 (a) kXX 
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             (b) kYY 

 
Figure 18 Three-pad TPJB stiffness coefficients (kXX, kYY) vs. Sommerfeld number 
(S). Pad stiffness kpad = 3.15, 7.33, ∞ (rigid) and kpiv = 16. Pad preload pr  =0.25: LOP 
and LBP configurations. Specific load W/(LD)=689 kPa, rotor speed Ω=500 rpm to 
12,000 rpm. 

 

Figures 19 and 20 show the damping coefficients (cXX, cYY) versus Sommerfeld 

number (S) for both LBP and LOP bearings and with pad preload pr = 0, 0.25, 0.5.  The 

dimensionless damping coefficients increase with S; however, for the LBP TPJB with 

null preload, cYY decreases on 0.74<S<1.08. As pad flexibility increases, the damping 

coefficients decrease dramatically by up to 33%, in particular for large Sommerfeld 

number (S>1.0). Pad flexibility has a more pronounced effect on the damping 

coefficients of a LBP TPJB with null pad preload ( pr =0). 
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                 (a) cXX 

 

 
                 (b) cYY 

 
Figure 19 Three-pad TPJB damping coefficients (cXX, cYY) vs. Sommerfeld number. 
Pad stiffness kpad = 3.15, 7.33, ∞ (rigid) and kpiv = 16. Pad preload pr  =0, 0.5: LBP 
configuration. Specific load W/(LD)=689 kPa, rotor speed Ω=500 rpm to 12,000 
rpm. 
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               (a) cXX 

 
                (b) cYY 

 
Figure 20 Three-pad TPJB damping coefficients (cXX, cYY) vs. Sommerfeld number 
(S). Pad stiffness kpad = 3.15, 7.33, ∞ (rigid) and kpiv = 16. Pad preload pr =0.25: LOP 
and LBP configurations. Specific load W/(LD)=689 kPa, rotor speed Ω=500 rpm to 
12,000 rpm. 

 

Figures 21 and 22 depict the virtual mass coefficients (m) versus Sommerfeld 

number (S). In general m<0 denotes the bearing will stiffen as the excitation frequency 

increases. Pad flexibility has a more pronounced effect on mYY, in particular for the LBP 
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bearing with preload equal to 0 and 0.25. Though the coefficients (m) do not approach 

zero as S increases, the virtual mass coefficients (MYY, MYY) approach to zero at a large S, 

thus indicating the dynamic stiffness Re(ZYY) is frequency independent.  

 
                 (a) mXX 

 

 
                 (b) mYY 

 
Figure 21 Three-pad TPJB virtual mass coefficients (mXX, mYY) vs. Sommerfeld 
number (S). Pad stiffness kpad = 3.15, 7.33, ∞ (rigid) and kpiv = 16. Pad preload pr =0, 
0.5: LBP configuration. Specific load W/(LD)=689 kPa, rotor speed Ω=500 rpm to 
12,000 rpm. 
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                 (a) mXX 

 
                 (b) mYY 

 
Figure 22 Three-pad TPJB damping coefficients (mXX, mYY) vs. Sommerfeld 
number (S). Pad stiffness kpad = 3.15, 7.33, ∞ (rigid) and kpiv = 16. Pad preload 

pr =0.25: LOP and LBP configurations. Specific load W/(LD)=689 kPa, rotor speed 
Ω=500 rpm to 12,000 rpm. 
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Introduction 
Those slides give the detail of each step to get the stiffness matrix from ANSYS©. 

The title of each slide shows 
the name of the dialog box 

shown in the slide 

The arrows show the 
operation in each step. 
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Introduction 

L/2 
l 

L/2 

Ri 
Ro 

β 
This guide uses a pad model shown on the right to 
help to illustrate the operations.  
The table below lists the geometry and material 
properties. 

Inner radius (Ri) 0.050921m 

Outer radius (Ro) 0.076321m 

Axial length of the pad (l) 0.0559m 

Angular amplitude of pad (β) 58.9° 

Pivot position  0.5 

Young’s modulus (E) 2.0×1011 Pa 

Poisson’s ratio 0.3 

Table Pad geometry and material parameters 

Figure The shape of the pad model 
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Main interface 
Click “Clear & 
Start New…” 
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Clear Database and Start New 

1. Select 
“Read file” 

2. Click ‘OK’ 
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Verify 

Click “Yes” 
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Main interface 
Click “Change 
Jobname…” 
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Change jobname 

1. Type in job name  
For example, “Pad” 

2. Click “OK” 

APPENDIX C 8 



Main interface 

Click “Preference” 
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Preference for GUI Filtering 

1. Select “Structural” 

2. 
Click 
“OK” 
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Main interface 
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Element Types 

Click “Add” 
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Element Types 

1. Select “Solid” 
– “Brick 8 node 

185” 

2. Click “OK” 
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Main interface 

Click “Preprocessor” – “Material 
Props” – “Material Models” 
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Define Material Model Behavior 

Select 
“Isotropic” 
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Linear Isotropic Properties 

1. Type in Young’s 
Modulus 2. Type in Poisson’s 

ratio 

3. Click “OK” 
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Define Material Model Behavior 

Select 
“Density” 
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Density for Material Number 1 

1. Type in Density 

2. Click “OK” 
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Density for Material Number 1 

1. Type in Density 

2. Click “OK” 
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Main interface 

Click “Preprocessor” – 
“Modeling” – “Create” – 
“Volumes” – “Cylinder” 
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Partial Cylinder 
Type in the center 
coordinate of the 
bearing 

Type in inner and outer 
radius of the pad  

Type in the leading edge 
angle and trailing edge 
angle of the pad  

Type in the axial length 
of the pad 
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The example pad model 
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Main interface 

Click “Preprocessor” – “Meshing” 
– “Mesh Attributes” 
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Volume Attributes 

1. Select the volume 

2. Click “OK” 
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Volume Attributes 

1. Select the number of material 
wanted to be applied 

2. Click “OK” 
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Main interface 

Click “Preprocessor” – “Meshing” 
– “MeshTool” 
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MeshTool 

Set element size on 
lines 
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MeshTool 

2. Click 
“OK” 

1. Select lines to define 
the size of elements on it 
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MeshTool 

1. Type in the number of 
element the line will be 

meshed into 

2. Click 
“OK” 
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Meshed model 
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Get stiffness matrix 

ANSYS© has a function to reduce the stiffness matrix of 
a structural model.  
As not all the nodal displacements are important to the 
analysis, ANSYS © offers a way to reduce the stiffness 
matrix into the size desired.  
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Main interface 

Click “Preprocessor” – “Solution” – 
“Analysis Type” – “New Analysis” 
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New Analysis 

1. Select 
“Substructuring/CMS” 

2. Click “OK” 
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Main interface 

Click “Preprocessor” – “Solution” – 
“Analysis Type” – “Analysis Options” 
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Substructuring/CMS 

1. Select “Substructuring” 

2. Click “OK” 
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Substructuring Analysis 

1. Select “Yes” 

2. Click “OK” 
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Main interface 

Click “WorkPlane” – “Change 
Active CS to” – “Global Cylindrical” 
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Main interface 

Click “WorkPlane” – “Align WP 
with” – “Active Coord Sys” 
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Main interface 

Click “Preprocessor” – “Modeling” – 
“Create” – “Nodes” – “Rotate Node 

CS” – “To Active CS” 
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Rotate Nodes into CS 

1. Click “Pick All” 

2. Click “OK” 
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Main interface 

Click “Select” – “Entities” 
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Select Entities 

1. Select “Area” 

2. Select “Num/Pick” 

3. Click “OK” 
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Select areas 

1. Select the upper 
surface 

2. Click “OK” 
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Main interface 

Click “Select” – “Entities” 
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Select Entities 

1. Select “Nodes” 

2. Select “Attached to” 

3. Select “Sele All” 

4. Select “OK” 
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Main interface 

Click “Solution” – “Mater DOFs” – 
“Use Selected” – “Define 
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Define Master DOFs 
2. Select “UX”  

NOTE: In ANSYS©, UX, 
UY and UZ stand for R 

(radial), θ (angular) and 
Z (axial) directions. 

3. Select “OK” 

1. Click “Pick All” 

4. Click 
“OK” 
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Main interface 

Click “Solution” – “Define Loads” – 
“Apply” – “Structural” – 

“Displacement” – “On Nodes” 
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Apply U, ROT on Nodes 
1. Choose the nodes on 
the middle line of the 

lower surface of the pad 
model and the two lines 
close to the middle line 

2. Click 
“OK” 

APPENDIX C 49 



Apply U,ROT on Nodes 

1. Select “UX” 

3. Select “OK” 

2. Type  in “0” 
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Main interface 

Click “Solution” – “Solve” 
– “Current LS” 
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Solve Current Load Step 

Select “OK” 
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Rotate Nodes into CS 

After solving the problem, the dialog 
box showing “Solution is done” will 
appear. Click “Close” to close the 
window. 
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Main interface 

Click “List” – 
“Other” – 

“Superelem Data” 
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List Superelement Data 

Click  “Full contents” 

Click “OK” 
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List of stiffness matrix 
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TXT file for nodal coordinates 

APPENDIX C 57 



TXT file for stiffness matrix 
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CONCLUSIONS 

Accurate characterization of mechanical components presently  requires of physical 

models of ever increasing complexity that include all relevant geometrical aspects, 

material properties and fluid flow conditions, as per installation and operation, even 

envisioning operation well beyond their intended original design. This paper extends a 

computational thin film fluid flow model for tilting pad journal bearings to include both 

pivot flexibility and pad flexibility on the prediction of the static and dynamic forced 

performance of typical bearings. Presently, a FE structural commercial model builds the 

stiffness matrix for pad displacements, further reduced to show only the pad surface 

deformations due to an applied pressure field. The deformation field is integrated into 

the evaluation of film thickness for solution of the Reynolds equation delivering the 

hydrodynamic pressure field. A small amplitude perturbation analysis produces 

equations for the zeroth and first-order pressure fields from which the load capacity and 

a multitude of complex stiffnesses coefficients for each pad are determined. A pad 

assembly with frequency reduction method delivers the 4x4 complex dynamic 

stiffnesses for lateral or radial displacements of the shaft center. Curve fits of the 

force/displacement frequency functions delivers the bearing stiffness, damping and force 

coefficients. 

In a parallel program, Gaines [1] performed measurements for three-pad LBP TPJBs. 

Pad thickness varied to change the pad flexibility. Gaines’ test data show that pad 

flexibility affects little the journal eccentricity and maximum pad temperature, but has an 

impact on the bearing dynamic force coefficients.   Current model predictions for the 

TPJBs in Ref. [1] correlate favorably with test data, except that the maximum 

temperature rise is underestimated by up to 40%. The reason may be due to that the oil 

pushed through the supply holes is not routed efficiently into the bearing pads. Pad 

flexibility reduces the predicted journal eccentricity and maximum temperature rise. 

The real part of the TPJB dynamic stiffnesses (Z) at super-synchronous frequency 

(ω>Ω) shows a hardening effect, yet it is nearly constant for frequencies lesser that the 

shaft angular speed, ω<Ω. Hence, the virtual mass coefficients identified with a [K-C-
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M] model are negative. However, the predicted virtual mass coefficients only affect the 

dynamic stiffnesses at a high frequency (ω>Ω). The imaginary part of the complex 

stiffnesses (Z ) increases linearly with frequency. However, at 6 krpm (100 Hz), Im(Z) 

show a decrease at a high frequency (ω>180 Hz). 

In general, both the experimental and predicted dynamic force coefficients reduce 

due to pad flexibility. Pad flexibility causes up to a 20% reduction in predicted bearing 

stiffness. However, Gaines [1] reports an increase in bearing direct stiffnesses for the 

TPJB with the more flexible pad. Predicted bearing stiffnesses also show a slightly 

increase at a low load (W/(LD)<689 kPa) due to pad flexibility but decrease at a high 

load (>689 kPa).  

Pad flexibility shows a more significant effect on the predicted dynamic force 

coefficients than the experimental results evidence, in particular at a high rotor speed 

(Ω=12 krpm), thus indicating the pad structural FE model delivers a smaller stiffness 

than that of the actual test pad. Measurements for the stiffness of the pads are needed to 

further improve the FE model. Predictions including pad flexibility deliver damping 

coefficients up to 46% lower than those obtained with a rigid pads model. Reducing the 

pad thickness from 11.5 mm to 8.5 mm causes also a reduction of up to 50% in predicted 

direct damping.  

The paper also includes a parametric study to quantify the influence of pad thickness 

on the rotordynamic force coefficients of a sample TPJB with three pads of increasing 

preload=0, 0.25 (baseline) and 0.5. The bearing pads varies from rigid to flexible (kpad = 

∞, 3.15 and 7.33). Graphs for journal eccentricity, drag friction coefficient, and 

dimensionless force coefficients are presented versus Sommerfeld number (0.2<S<2.2). 

The operating journal eccentricity and the dynamic force coefficients of a TPJB reduce 

due to pad flexibility, in particular for operation at a large Sommerfeld number (S>0.8). 

Pad flexibility shows a more pronounced effect for the TPJB with null pad preload.  
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APPENDIX A. HIRS TURBULENT FLOW MODEL 

XLTPJB© uses a laminar flow model to predict the static and dynamic performance 

of TPJBs. However, turbulent flow may occur in bearings operating at high rotational 

speeds, especially for bearings of large size, or with a lubricant of low viscosity [A.1]. 

The turbulent flow model based on Hirs [A.2] is introduced into the predictive model. 

According to Ref. [A.3], the fully developed turbulent bulk-flow equations in a thin 

film are the 

Continuity equation: 

    0x z
hhV hV

x z t
  

  
  

                                      (A.1) 

Circumferential momentum equation: 

 
2

x
x x J

hVP Uh V
x h t
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                                  (A.2) 

Axial momentum equation: 
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
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                                         (A.3) 

where
0

1 h

xV udy
h

= ∫  and
0

1 h

zV wdy
h

= ∫ are bulk flow velocities. 

J J Jf Rκ = , B B Bf Rκ = and ( )1
2x z J Bκ κ κ κ= = + are bulk flow turbulence shear 

parameters. For laminar flows, 12x z J Bκ κ κ κ= = = = . Above, h and P denote the film 

thickness and pressure, respectively, and U=ΩR is the journal surface velocity.  Note 

equations (A.2-3) include temporal fluid inertia terms only, with the advection terms 

omitted. 

Substituting the momentum Eqs.(A.2, A.3) into the continuity Eq.(A.1) gives 

( ) ( )

3 3
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κ
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κ µ κ µ κ µ κ µ

     ∂ ∂ ∂ ∂ ∂ Ω ∂   + = +     ∂ ∂ ∂ ∂ ∂ ∂        
    ∂ ∂∂ ∂ ∂ ∂ − + + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

      (A.4) 
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Taking the time derivative of the continuity Eq.(A.1) gives 
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hhV hV

t x t z t
  

  
    

                                  (A.5) 

Assume κx=κz=κ. Substituting Eq. (A.5) into Eq.(A.4) yields a Reynolds equation for 

turbulent flow with temporal fluid inertia effects. 

3 3 2 2

2 2
( ) ( ) ( )

1
2J T T T

h P h P h h h h
R z z t t

ρ
θ κ µ θ κ µ θ κ µ

   ∂ ∂ ∂ ∂ ∂ Ω ∂ ∂   + = + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂      
        (A.6) 

The turbulence shear parameters are  

κx=κz=κ= (κJ + κB)/2                                          (A.7) 

According to Refs. [A.3, A.4], κJ and κB are determined from 
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  (A.8) 

over the flow regimes from laminar, to transition, to fully developed turbulence. Above, 
1

5 35 100.001375 1
Rei
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f
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          

is Moody’s friction factor, and i=J (journal) or B (bearing) 

surfaces. The bulk-flow Reynolds numbers (Rei) relative to the bearing (B) and journal 

(J) surfaces are: 
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, 
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The bulk flow thermal energy transport equation with turbulent flow is [A.3] 
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 (A.10) 

Note the drag torque is obtained from  

2 4
J
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x h
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                                          (A.11) 



60 

 

Predictions from the implemented turbulent flow model are compared against the test 

data and predictions of Taniguchi et al. [A.5] collected for a large size four-pad TPJB 

used in a steam turbine. Ref. [A.5] adopts the turbulent flow model by Ng and Pan [A.6]. 

Table A.1 lists the geometry and lubricant properties of the test TPJB and Figure A.1 

shows a schematic view of the four-pad bearing. 

 

Table A.1 Geometry and lubricant properties of the test TPJB in Ref [A.5] 
Rotor diameter, D 479 mm 
Pad axial length, L 300 mm 
Pad arc angle, θP 80° 
Pivot offset 0.5 
Pad clearance, CB  612 µm 
Pad preload 0 
Pad mass, mp 119 kg 
Pad inertia, IP 2.74 kg.m

2
 

Lubricant type  ISO VG32 
Supply lubricant temperature, Tin ~40°C 
Supply lubricant pressure 1 bar 
Lubricant density, ρ 856.2 kg/m3 
Viscosity at 40°C, µ0 0.0274 Pa∙s  
Viscosity temperature coefficient, α 0.0296 1/°C 
Specific heat capacity at 40 oC 1950.7 J/(kg∙K) 
Journal speed, Ω 3000 rpm 
Surface speed, ΩR 75.24 m/s 
Unit load, W/(LD) 1,252  kPa 
Average shear Reynolds number6, Re 2,043 

 

6 Re=ρΩRCB/ µaverage with µaverage is the lubricant viscosity at the average temperature in the fluid film. 
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Figure A.1 Schematic view of large four-pad TPJB in Ref [A.5] 
 

Note that the current model predictions do not account for either pivot or pad 

flexibility, as also in the model  stated in Ref. [A.5]. The clearance is assumed constant, 

not affected by an increase in temperature, to keep consistancy with Ref. [A.5]. The 

journal and bearing surfaces are taken as adiabatic. The inlet heat carry over coefficient 

(λ) is 0.8. The average shear Reynolds number (Re=2,043) is higher than 2,000, thus 

indicating a turbulent flow condition. 

Figure A.2 shows the fluid film thickness at the mid-plane of the loaded two pads 

(#1 and #2). The current predictions and those from [A.5] agree with each other, albeit 

lower than the test results by 19% at the pad inlet, and correlating well for the magnitude 

of the minimum film thickness.   

 
     (a) Pad 1                                                (b) Pad 2 

 
Figure A.2 Film thickness at mid-plane of pads #1 and #2. Current predictions and 
results in Ref. [A.5]. W/(LD)=1,252 kPa,Ω=3 krpm, average Re=2,043. 

 

Pad 3 

Pad 2 

Pad 4 

Pad 1 
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Figure A.3 shows the pressure profile at the mid-plane of the loaded pads (#1 and 

#2). The current predictions give pressure profiles similar to those predicted in Ref. 

[A.5]. Note the models ignore the pressure rise at the pad inlet due to an entrance fluid 

inertia effect.  

 

 
     (a) Pad 1                                                (b) Pad 2 

Figure A.3 Pressure profile at the mid-plane of pads #1 and #2. Current 
predictions and results in Ref. [A.5]. W/(LD)=1,252 kPa,Ω=3 krpm, average 
Re=2,043. 

 

Figure A.4 depicts the temperature at the mid-plane of the loaded pads (#1 and #2). 

The current predictions and the data in Ref. [A.5] show good agreement at the pads’ 

leading edges. However, at the pads’ trailing edges, the current model delivers a 

temperature lower than the measured one and the predicted results in Ref. [A.5].  The 

current model takes a bulk temperature across the film whereas the measurement is 

obtained at 3 mm under a pad surface. 

 
     (a) Pad 1                                                (b) Pad 2 

 
Figure A.4 Temperature at the mid-plane of pads #1 and #2. Current predictions 
and results in Ref. [A.5]. W/(LD)=1,252 kPa,Ω=3 krpm, average Re=2,043. 
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Figure A.5 depicts the drag power loss predicted by the current model and those in 

Ref. [A.5]. For rotor speeds from 1,200 rpm to 3,800 rpm, the predicted power loss 

agrees with the data in Ref. [A.5].  However, for shaft speeds above 3,800 rpm, the 

current model overestimates slightly the drag power loss.  Note that during its operation, 

the thin film flow in the bearing is laminar (Re<1,000) for rotor speeds below 2,900 rpm, 

in the transition flow regime for rotor speeds from 2,900 rpm to 3,700 rpm, and fully 

turbulent above 3,700 rpm. 

 
Figure A.5 Bearing friction loss at W/(LD)=1,252 kPa. Speed varing 1200 rpm to 
4200 rpm. Current predictions and results in Ref. [A.5]. average Re from 1201 to 
4774. 
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APPENDIX B. A MODEL FOR BEARING LINER DEFORMATION 

As the external load increases, the fluid film in a hydrodynamic bearing becomes 

thinner, thus producing an increase in fluid temperature that reduces the oil viscosity, 

thus further decreasing the oil film thickness [B.1]. Conventional hydrodynamic 

bearings commonly adopt Babbitt (white metal) as a liner material to protect the surfaces 

of rotors while ensuring low friction. Though the Babbitt liner provides good 

conformability and embedability, it loses strength with a raise in temperature, and has a 

high breakaway friction [B.1]. As a substitute for Babbitt, PTFE 

(polytetrafluoroethylene) shows better performance at high temperatures with a low 

breakaway friction [B.2]. However, the high flexibility of PTFE affects the static and 

dynamic forced performance of a fluid film bearing. Thus, a predictive model for 

bearings with a PTFE liner should account for its deformation.  

The elastic radial deformation (δ) of a liner due to pressure is approximated as a 

plane strain problem [B.1-B.4],  

    1 1 2
1

as P P
E

 



  




                                         (B.1) 

where P is the hydrodynamic pressure, Pa is the ambient pressure, and s is the thickness 

of the liner. E and ν denote the elastic modulus and the Poisson’s ratio for the liner 

material, respectively. 

Ref. [B.1] also considers the thermal expansion (∆R) of the liner into account, as 

( )aR s T T                                             (B.2) 

where α is the thermal expansion coefficient of the liner, T is the linear surface 

temperature and Ta is the ambient temperature. The simple thermal expansion Eq. (B.2) 

is implemented into the current model as a change in bearing or pad clearance. 

Kuznetsov et al. [B.1] analyze the effect of liner flexibility on the static performance 

of a plain journal bearing. Table B.1 lists the geometry and lubrication properties of the 

bearing in Ref. [B.1], and Figure B.1 shows a schematic view of the plain journal 

bearing.  
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Table B.1 Parameters of a plain journal bearing in Ref. [B.1] 
 

Rotor diameter, D 198.5 mm 
Bearing length, L 200 mm 
Bearing cold clearance, C 237 µm 
Bearing supply groove width 29.22° 
Supply oil temperature 65oC 
Oil viscosity (at 40oC) 0.033 Pa.s 
Oil viscosity (at 100oC) 0.0056 Pa.s 
Oil density 864.7 kg/m3 
Oil heat capacity 2008.5 J/(kg.K) 
Oil thermal conductivity 0.13 W/(mK) 
Unit load, W/(LD) 504-6,297 kPa 
Journal speed 900 rpm 
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Figure B.1 Schematic view of plain journal bearing with a liner, as per Ref. [B.1] 
 

Table B.2 lists the properties of the PTFE liner. Note that Ref. [B.1] does not inform 

on the ambient temperature. The current predictions assume the ambient temperature 

(Ta) to equal the the supply temperature 65°C.  
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Table B.2 PTFE liner properties in Ref. [B.1]. 

Elastic modulus, E 0.11 GPa 
Poisson ratio, ν 0.46 
thickness, s 2 mm 
thermal expansion coefficient, α 1.35×10-4 K-1 

 

Ref. [B.1] also accounts for the thermal expansion of the shaft and bearing housing. 

Current predictive model offers a function to estimate the thermal expansion of the shaft 

as well. The equation to estimate the thermal expansion of the shaft is 

( )shaft shaft aR R T T                                             (B.3) 

where αshaft is the thermal expansion coefficient of the shaft, Tshaft is the temperature in 

shaft, and R is the shaft radius. In the current predictions, αshaft is 1.11×10-5 K-1 for a steel 

jounal.  

Two cases are analyzed and predictions compared to the results in Ref. [B.1] (see 

Table B.3). Note that the deformation of the PTFE liner contains both the thermal 

expansion and mechanical deformation. 

 

Table B.3 Cases to assess effect of liner flexibility on the performance of a 
plain journal bearing. 

 
Case 1 Bearing with rigid liner 
Case 2 Bearing with PTFE liner 

 

Figure B.2 shows the fluid film thickness predicted by the current model for a 122 

kN static load applied on the bearing (W/(LD)=3,073 kPa). For both cases (rigid bearing 

and bearing with PTFE liner), the fluid film thickness predicted by the current model 

correlates well with that presented in Ref. [B.1]. The flexibility of PTFE liner tends to 

reduce the film thickness. 
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Figure B.2 Fluid film thickness at the bearing mid-plane. Static load W/(LD)=3,073 
kPa, rotor speed Ω=900 rpm. Current predictions and data from Ref. [B.1]. 

 

  Figure B.3 shows the fluid film pressure at the bearing mid-plane; the current 

predictions show good correlation with those in Ref [B.1]. For a rigid bearing, the 

current model predicts a larger peak pressure. The peak fluid film pressure including the 

elasticity of the PTFE liner is 27% smaller than that assuming a rigid liner. 

 

 
Figure B.3 Fluid film pressure at the bearing mid-plane. Static load W/(LD)=3,073 

kPa, rotor speed Ω=900 rpm. Current predictions and data from Ref. [B.1]. 
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Figure B.4 depicts the maximum pressure, minimum fluid film thickness and 

eccentricity ratio versus unit load. The current predictions of maximum pressure and 

minimum fluid film thickness show good agreement with the results in Ref.[B.1]. The 

current model delivers a larger eccentricity ratio (=eccentricity/cold clearance) than that 

in Ref. [B.1]. The current predictions for the maximum temperature correlate well with 

the data in Ref. [B.1] at a low loads, W/(LD)<2.5 MPa; but are larger at high loads, 

W/(LD)>4 MPa. The PTFE liner tends to reduce the maximum film pressure and journal 

eccentricity ratio. The effect of PTFE liner flexibility (with thickness s=2 mm) on the 

minimum film thickness and maximum temperature is not significant.  

  
         (a) maximum pressure                            (b) minimum film thickness 

  
     (c) eccentricity ratio (e/C)                         (d) maximum temperature 

 
Figure B.4 (a) Maximum pressure, (b) minimum fluid film thickness and (c) 
eccentricity ratio and (d) maximum temperature at different load. 504 
kPa<W/(LD)<6,297 kPa. Ω=900rpm. Current predictions and data from Ref. [B.1]. 
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