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EXECUTIVE SUMMARY

In moderately loaded to heavily loaded TPJBs (>1.7 MPa specific load), pad surface de-

formations due to both mechanical pressure and thermally induced stresses affect the operating

film thickness, thus producing a bearing performance with excessive temperature rises and a

likely drop in damping force coefficients. These deformations effectively change the pad curva-

ture and increase its machined preload. This work extends earlier analyses in Refs. [1, 2, 3] to

include a thermo-elasto-hydrodynamic model (TEHD) coupling the film pressure generation to

the pads’ structural mechanics and including pivot elastic displacements, both due to pressure

and temperature changes.

The authors performed a thorough thermo-elasticity analysis of typical bearings pads sub-

ject to thermal gradients and used a commercial finite element (FE) software to calculate 3D

pad deformation fields. The theoretical analysis along with physically sound assumptions led

to a simple formula for prediction of the thermally induced deformation as a function of the

temperature difference between the inner and back surfaces, both circumferentially averaged.

The simple equation delivers results in agreement with the FE model for a number of cases. The

simplicity of the model allowed its implementation in the existing predictive tool (XLTPJB®)

avoiding a cumbersome iterative procedure and complexity.

Predictions are benchmarked against test data for two distinctive bearings. In the first case,

Hagemann et al. [4] measure the dynamic and static characteristics of a large size (shaft radius

of 0.5 m) 5 pad TPJB with load between pad (LBP) configuration under heavy loads (specific

loads of 1 to 2.5 MPa). The current TEHD model predicated the temperature of pad inner

surface, hydrodynamic pressure, and film thickness with a good agreement to the test data.

The TEHD model reduces the discrepancy of thermo-hydrodynamic (THD) prediction and test

data for peak pressure by 14%, maximum temperature by 11%, and film thickness by 56%. A

[K,C,M] analysis from the current model showed to excellent agreement between predictions

and test data.

The second case from Coghlan and Childs [5, 6, 7] studies the effect of various direct

lubrication methods on the performance of a 4 pad spherical seat TPJB with load between

pad configuration under specific loads between 0.7 and 2.9 MPa and surface speeds between



38 and 85 m/s. The predicted pad inner surface temperatures were consistently larger (no

more than 18% difference) than the measured ones. The predicted hot clearances were closely

predicted with maximum difference of 6% for a specific load of 2.9 MPa and various shaft

speeds. Predicted direct stiffness had a very good agreement with the test data, with a maximum

difference of 27%. The TEHD model improves THD predictions for stiffness coefficients,

especially at lower specific load (0.7 MPa). The predicted direct damping coefficients were

consistently smaller than the measured ones for analysis. The predictions from TEHD model

differed with the test data in a range between 27% and 52%.

Including mechanical and thermally induced deformation of the pad along with thermal

expansion of shaft and housing increases peak hydrodynamic pressure and maximum film tem-

perature; however, it reduces the minimum film thickness, bearing clearance, and journal eccen-

tricity along the load direction. Pad thermally induced deformations increase the pad clearance

due to the pad thermal warping and reduce the bearing clearance due to thermal expansion of

pad, shaft, and housing. Thus, increasing the pad preload during the operation.
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NOMENCLATURE

Cb Bearing radial clearance [m]
Cp Pad radial clearance [m]
C′b Estimated hot bearing radial clearance [m]
C′p Estimated hot pad radial clearance [m]
Cxx,Cyy Bearing direct damping coefficients in horizontal and vertical directions [N·s/m]
Cxy,Cyx Bearing cross coupled damping coefficients [N·s/m]
D Shaft diameter [m]
E Material elastic modulus [N/m2]
e Journal eccentricity [m]
G Material shear modulus [N/m]
h Heat transfer coefficient [W/m2K]
H Fluid film thickness [m]
Kxx,Kyy Bearing direct stiffness coefficients [N/m]
Kxy,Kyx Bearing direct stiffness coefficients [N/m]
L Bearing length [m]
N Journal rotational speed [RPM] N = Ωπ/30
m Bearing preload [-], m = 1−Cb/Cp
p Pressure field on pad surface [Pa]
Q Lubricant flow [LPM]
Rb Bearing radius [m]
Rback Pad outer surface radius [m], Rback = Rs + t +Cp
Rh Housing inner radius [m]
Rp,Rin Pad inner surface radius [m], Rin = Rp = Rs +Cp
Rs Shaft outer radius [m]
T Fluid film average temperature [°K]
T̄ Circumferentially averaged temperature in pad [°K]
Tre f Reference (cold) temperature [°K]
Tin Pad inner surface temperature [°K]
T̄in Average pad inner surface temperature [°K]
Tout Pad outer surface temperature [°K]
T̄out Average pad outer surface temperature [°K]
Tsump Oil sump temperature [°K]
Tsupply Supply (inlet) oil temperature [°K]
t Pad thickness [m]
U ,V ,W Bulk flow velocities [m/s]
u Pad thermal deformation along radial direction [m]
v Pad thermal deformation along circumferential direction[m]
W Load [N]
W/(LD) Specific load [Pa]
∆Rh Housing thermal expansion [m]
∆Rs Shaft thermal expansion [m]
δp Pad tilt angle [rad]



ηpivot Pad transverse displacement [m]
ξpivot Pad radial displacement [m]
θpad Pad arc length [rad]
θpivot Angle from pad pivot to pad leading edge [rad]
θp Pivot angular position starting from −x axis [rad]
Φ heat flow [W/m2]
φ Attitude Angle [deg]
Ω Shaft angular speed [rad/s]
ω Excitation frequency [rad/s]
σr,σθ̂

Normal strain in pad local coordinate [-]
τrθ̂

Shear stress in pad local coordinate [-]
εr,εθ̂

Normal strain in pad local coordinate [-]
γrθ̂

Shear strain in pad local coordinate [-]
µ Lubricant viscosity [mPa·s]

Subscripts

back Pad back (outer) surface
h Housing
in Pad inner surface
sump Region enclosed by back of the pad and bearing housing
s Shaft
supply Supply (inlet) oil

Coordinate Systems

(x,y,z) Cartesian coordinates, origin at bearing center
(r,θ ,z) Cylindrical coordinates, origin at bearing center
(r, θ̂ ) Pad local polar coordinates, origin at pivot location on pad inner surface

Abbreviations

EHD Elastohydrodynamic
ID Inner Diameter
OD Outer Diameter
LBP Load between Pads
LOP Load on Pad
TPJB Tilting Pad Journal Bearing
TEHD Thermoelastohydrodynamic, includes pressure and thermally induced deformations
THD Thermohydrodynamic
RHS, LHS Right and left hand side



INTRODUCTION

Tilting-Pad Journal Bearings (TPJB) have received substantial attention towards their im-
proved design and analysis methods due to their advantage in rotordynamic stability when com-
pared to rigid surface bearings. With the continuous improvement of turbomachines, TPJBs
need to withstand heavier loads while operating at higher surface speeds. Accurate predictions
of bearing stiffness and damping coefficients are paramount to the dynamics of a rotating ma-
chine. In addition, an energy efficient TPJB would operate with a lower lubricant flow while
still operating with cold oil temperature.

In a hydrodynamic fluid film bearing, the dominant flow is shear driven by the spinning
journal which enables it to carry a load. The load carrying capacity is strongly dependent on
the fluid viscosity, which is a strong function of the film temperature that raises due to the
mechanical shear power loss. Thus, an ideal bearing design strives to minimize the power
loss without demanding excessive lubricant supply flow. Moreover, in heavily loaded bearings
the mechanical deformation of the bearing elements (i.e. pads, shaft, and housing) due to
both pressure and temperature greatly affects the overall bearing performance by changing the
operating pad clearance and film temperature.

1. REVIEW OF PAST WORK

In 1980, Ettles [8] develops a thermoelastohydrodynamic (TEHD) analysis for TPJBs. Et-
tles includes the pad deformations using a one-dimensional beam theory, and calculates the
deflected radius of the pad as a function of load distribution and temperature difference across
the pad thickness. To find the temperature difference across the pad thickness, Ettles assumes
that only a portion of the mechanical power loss is carried away by the flowing lubricant, and
the rest is conducted through the pad and journal. The author concludes that including these de-
formations in the analysis improves the agreement with experimental measurements, reducing
the predicted bearing damping and increasing the imbalance response amplitude.

In 1983, Ferron et al. [9] compare measurements of bush internal surface temperature
(within 0.5 mm to the bearing wall), film pressure, and journal eccentricity on a plain journal
bearing to predictions from a three-dimensional physical model that finds the pressure field and
temperature distribution in the film, shaft, and bush. Predictions of pressure field show good
agreement with the measurements. However, film temperature predictions are generally lower
than the measured magnitudes. The authors note a large discrepancy on the operating journal
eccentricity, and conclude that thermally induced deformations of both shaft and bush and
dissimilar thermal expansion due the to their different material must be considered in modeling
journal bearings.
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Three years later, Boncompain et al. [10] extend their early work to study thermal effects in
more detail, accounting for the thermoelastic induced displacements of the shaft and bush. The
authors calculate axisymmetrical shaft expansion as an increase in shaft radius, and bush ther-
moelastic displacements in the mid-plane of the bearing by a two-dimensional finite element
method. Boncompain et al. assume that thermal deformations only change the radial clearance
and journal eccentricity, and modify the film thickness based on the new radial clearance and
journal eccentricity in an iterative manner. The modified film thickness, alters the temperature
and pressure fields, and the process stops when, on the boundary between the film and bush,
the difference of temperature and pressure between two successive iterations is less than 0.1
percent.

In 1987, Lund and Pedersen [11] develop an approximate thermoelastohydrodynamic (TEHD)
method to avoid the high computation time needed for a full TEHD analysis. The approximate
method assumes that the pad expansion modifies the clearance along the radial direction only.
The method incorporates an implicit contribution of thermally induced deformations based on
an average temperature difference across the pad thickness. However, the authors do not in-
clude the thermal expansion of either the journal or the bearing housing in the analysis. As
per the mechanical deformations, Lund and Pedersen assume that the pad is a curved beam; a
pressure distribution acts as a bending moment to deform the pad and changes its clearance.
Also, the pivot stiffness and equilibrium force determine the radial motion of the pad. By
including the thermal and mechanical deformations of the pad, Lund and Pedersen note a de-
crease in bearing stiffness, damping, and load carrying capacity of which the damping is the
most evident. Finally, the authors determine that pivot flexibility alone reduces the mentioned
characteristics as much as thermal and mechanical deformations.

In 1989, Brugier and Pascal [12] study the thermal and mechanical deformation of pads and
pivots for a large sized TPJB (shaft diameter of 0.75 m and bearing length of 0.56 m). Their
TEHD model includes thermal effects in the lubricant as well as pad and pivot deformations
using a general structural mechanics program. The deformations are due to both hydrodynamic
pressure and thermal gradient in the pads. Axially-averaged thermal and mechanical deforma-
tions modify the film thickness . The authors observe that including mechanical deformations
alone reduces the film temperature; however, when including both thermal and mechanical
deformations, the temperature profiles only slightly change. Brugier and Pascal believe that
including the mechanical and thermally induced deformations reduces the minimum film thick-
ness and the maximum pad temperatures slightly. On the other hand, the authors conclude that
including deformations reduces the bearing damping coefficient between 10% and 25%, and
increases the bearing stiffness coefficient for small loads (specific load between 1.1 MPa and
1.9 MPa) while reducing it for large loads (specific load between 1.9 MPa and 4.7 MPa). The
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authors explain the stiffness coefficient behavior by primarily pressure deformation for large
loads, and primarily temperature deformation for small loads.

In 1990, Wilcock and Booser [13] investigate the thermal behavior of TPJBs by including
heat transfer from fluid film to the shaft and pad, and thermal and pressure deformation of the
pad. The model assumes either no net heat transfer to the shaft or a constant shaft temperature.
The back of the pad and the leading and trailing edges are exposed to calm lubricant at the
cavity temperature. For pad thermal expansion, the model uses a simple expansion formula
to find the change in thickness. To calculate pad thermal warping, the authors divide the pad
into circumferential segments and find the local radius of curvature for each one. This study
does not include thermal expansion of the shaft or the bearing housing. To calculate the pad
pressure deformation, Wilcock and Booser apply an equivalent bending moment on each cir-
cumferential segment. Assuming very small distortions, the pressure deformations accumulate
as from an initially flat surface. Finally, the pressure and thermally induced deformations of
the pad modify the film thickness. Wilcock and Booser believe that the pad thermal expan-
sion and warping increases the effective preload of the pad. Their results show that accounting
for the deformations reduces the mechanical shear power loss, temperature, and eccentricity
ratios slightly, but increases the attitude angles. The effect of including deformations on film
temperature and minimum film thickness is negligible.

In the same year, Fillon et al. [14] account for the mechanical deformation of the pad and
thermally induced deformation of all the bearing components (i.e. pad, shaft, and housing)
in a theoretical analysis of TPJBs. The authors study these deformations in the mid-plane of
the bearing, neglecting any axial variations. The model uses Finite Element Method to find
pad inner surface displacements due to mechanical and thermal loads, and as a constraint, the
pivot displacement is set to zero. The model calculates the shaft and housing expansion from
a simple formula. For a 4 pad TPJB with journal surface speed of 21 m/s under specific loads
up to 1.4 MPa , the authors observe that the pad maximum radial displacement happens at
the pivot circumferential location, pressure deformation is only about 10 to 20% of thermally
induced deformation, and the expansion of the shaft, pad, and housing reduces the bearing
clearance by 25%. Including the deformations also reduces the minimum film thickness on the
loaded pads, and substantially decreases the film thickness of unloaded pads. The pressure and
thermally induced deformations increase the maximum pressure on all pads about 35%. Fillon
et al. observe that neglecting the deformations can cause up to 10 °C discrepancy between pad
inner surface temperature predictions and measurements.

In 1991, Brockwell and Dmochowski [15] develop a two dimensional model that accounts
for thermal and mechanical deformation effects. In the model, the mean shaft temperature is
set equal to sump temperature, and the temperature field in the housing is defined as a hollow
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cylinder bounded to the sump oil and ambient air. The authors calculate pad thermal expan-
sion by assuming an average temperature in the radial direction across the pad thickness. A
one dimensional beam model that accounts for bending moment, shear forces, and tempera-
ture distribution in the pad determines the pad thermal and mechanical distortions. Brockwell
and Dmochowski compare the predictions to test data for a 5 pad TPJB with a shaft diame-
ter of 0.076 m operating in LPB configuration, under specific loads between 0.4 MPa and 2.4
MPa. The authors observe that neglecting the radial expansion of the bearing elements (shaft,
pad, and housing) over-estimates the eccentricity, and considering them significantly improves
the agreement of the predicted eccentricity with measured magnitudes. Brockwell and Dmo-
chowski also find that including the thermal deformations increases the preload in higher loads.

In 2003, He [16] develops a comprehensive two dimensional TEHD model for TPJB anal-
ysis that accounts for the pad mechanical and thermal deformations. A two dimensional finite
element, in Cartesian coordinates which neglects the pad curvature, determines the pad defor-
mation. A simple thermal expansion formula determines the changes in the shaft and housing
radii. The journal temperature can be selected as the average film temperature, an imposed
temperature, or resultant temperature from assuming nil net heat flow to the shaft. The housing
temperature is set equal to the sump temperature, which is determined from the conservation
of energy in the whole bearing, assuming that lubricant absorbs 90% of the mechanical shear
power loss. He observes that the temperature maximizes shortly after the minimum film thick-
ness location and subsequently declines. Contrary to pad mechanical deformation, thermally
induced deformation of the pad decreases the effective bearing clearance, thus leading to an
increase in the pad temperature due to a reduced film thickness. The author concludes that the
shaft and housing deformations are important, but lacking accurate thermal boundary condi-
tions, must be approached cautiously.

In 2013, Hagemann et al. [4, 17] present a series of measurements conducted on a large
size TPJB (diameter of 0.5 m) subject to a high surface speed (up to 79 m/s) and a heavy load
(specific load up to 2.5 MPa), and compare them to the predictions. The prediction model is
based on a two-dimensional Reynolds equation and a three-dimensional energy equation for
the fluid film and solid elements respectively. The authors note the importance of accurately
modeling the oil delivery process, and implement one that establishes an effective supply tem-
perature by accounting for the heat fluxes in the feed groove region. While the authors explain
the model, they do not include respective boundary conditions used for the predictions. The
computational program is coupled with a commercial structural mechanics software in which
the pressure and temperature fields act as boundary conditions to the pad structure to calcu-
late its resultant elastic deformation. A simple formula for one dimensional shaft expansion
and pad surface deformation modify the film thickness to determine updated film pressure and
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temperature fields. Hagemann et al. account for pad deformation along its axial direction as
it is critical to calculating an accurate film thickness. Along the axial plane, the pad warping
increases the film thickness at the pad edges relative to the film thickness at the pad mid-plane,
thus making an arcuate shape. Similar to an earlier three-dimensional analysis by Desbordes et
al. [18], Hagemann et al. [4] conclude that the design, the manufactured size, and the load on
the bearing determines the complexity of the analysis. The authors show that for a smaller size
bearing (diameter of 0.12 m) operating with similar surface speed and bearing load to the large
bearing, the predictions from a simplified model do not have a considerable discrepancy to the
sophisticated model. Hagemann et al. argue that using complex and more time consuming
model is not indispensable for analysis of a small TPJB (diameter of 0.12 m).

In 2015, Suh and Palazzolo [19] develop a three-dimensional TEHD model for the hydro-
dynamic fluid film, including the heat conduction and thermally induced elastic deformation
in both the shaft and bearing pads. The pad surface deformation and shaft thermal expansion
along the radial direction are added to the film thickness formula. In the second part of their
work, Suh and Palazzolo [20] compare predictions to selected test data from Kulhanek and
Childs [21] for a 5-pad TPJB (rotor diameter of 0.01 m) operating with a surface speed be-
tween 37 to 85 m/s, and under a specific load up to 2.4 MPa. The authors note that the bearing
stiffness coefficients delivered by the TEHD model are larger than those from EHD models due
to a tighter clearance caused by the thermal expansion of both the shaft and pads. Also, the
journal eccentricity and average film thickness from the TEHD analysis are lower than corre-
sponding magnitudes from an EHD analysis. Although the pads are hotter than the shaft, the
shaft thermal expansion is more than twice the average pad expansion. The authors show that
thermal expansion of both the shaft and bearing pads reduces the film thickness, thus increas-
ing the bearing stiffness, even after the reduction in lubricant viscosity due to operation at a
hotter temperature. However, the model does not account for the bearing housing expansion.
Suh and Palazzolo model predicts higher stiffness coefficients and lower damping coefficient
“with 20% maximum error of stiffness coefficients and 30% maximum error of damping co-
efficient.” (although the presented comparisons show larger discrepancies). The authors also
analyze three bearing configuration with different pad thicknesses. Their model predicts that
both mechanical and thermal deformation act to raise the pad mechanical preload. With a thick
pad, the preload increases predominantly due to thermally induced deformations. While with
a thin pad, the preload increases primarily due to pressure induced warping. Moreover, the
reduction of the damping coefficient for a smaller pad thickness is more pronounced than the
reduction of the stiffness coefficient.

In 2013, San Andrés and Tao develop a TPJB analysis program (XLTPJB®) based on ther-
mohydrodynamic bulk flow model for calculation of film temperature and pressure fields. The
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model accounts for pivot stiffness, and predicts frequency independent rotordynamic coeffi-
cients ([K,C,M] model). Later, San Andrés and Li [2] extend the model to account for pressure
induced deformation on each bearing pad. A finite element pad structural model couples to the
analysis program that determines the pad deformation due to the hydrodynamic pressure field.
The predictions show that including the pad mechanical deformations reduces the predicted
stiffness and damping coefficients up to 20%. The authors note that including pivot flexibility
for pivots stiffer than the fluid film has only a slight influence on the TPJB force coefficients
([K,C,M]). However, for pivots that are substantially more flexible than the fluid film, the bear-
ing stiffness becomes a strong function of the pivot stiffness. Generally, pivot flexibility acts to
reduce the damping coefficients more distinctly than the stiffness coefficients.

The scope of this work is to extend the physical model in Refs. [1, 2, 3] to include the
thermally induced elastic deformation of the bearing elements (pads, shaft, and housing). Pre-
dictions for pad thermally induced deformation add to pressure induced deformation explained
in Refs. [2, 3]. Also, expansion of the shaft and the bearing housing changes the pads’ operat-
ing clearances. Addition of above thermal expansions and pad thermally induced deformation
modifies the film thickness and constructs a full TEHD analysis that predicts performance of
TPJBs, such as temperatures of bounding solids and fluid film, minimum film thickness, journal
eccentricity, and the dynamic force coefficients.
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2. ANALYSIS FOR THERMALLY INDUCED PAD ELASTIC
DEFORMATIONS

Figure 1 shows the geometry of a tilting pad along with the definition of variables used through-
out this section. Here, analytical methods are derived which closely approximate a three-
dimensional FEM for thermally induced deformation of a pad. The major assumptions for
the derivation are (1) only radial heat transfer occurs through the pad thickness, (2) negligible
thermally induced stresses in the pad, (3) superimposed radial deformation calculated sepa-
rately for the axial and circumferential cross sections. The following explains the governing
equations and derivation of pad deformation equation.

Shaft

Pad Leading

Edge

Pivot

Pad Trailing 

Edge

Op

Rp

Rb

Rs

Ω

Ob

θpad

θpivot

Ω Shaft rotational
speed

Op Pad Center
Ob Bearing Center
Rp Pad Radius
Rb Bearing Radius
Rs Shaft Radius

Cb = Rb−Rs Bearing Clearance
Cp = Rp−Rs Pad Clearance

m = 1−Cb/Cp Nondimensional
Preload

θpivot Pivot Arc Angle
θpad Pad Arc Angle

Figure 1: Geometry of one tilting pad and nomenclature.

Deformation of bearing components alters the film thickness and influences the bearing
static and dynamic load performance. These deformations consist of mechanical deformation
due to hydrodynamic pressure and thermally induced deformation due to temperature raise on
the pad, shaft, and bearing housing. San Andrés and Li [3] modeled pad mechanical deforma-
tion using a three-dimensional finite element structure. The current work extends their model
to include thermally induced deformations of a pad in TPJB.

Unlike mechanical deformation produced by the hydrodynamic pressure field on a pad,
the thermal deformation depends on the boundary conditions of temperature and heat flow
surrounding a pad and that greatly affect the pad ensuing deformed shape. Figure 2 shows the
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boundary conditions around a whole pad consisting of fluid film temperature (T(θ ,z)) on the pad
surface, and the heat flows (Φ) between the pad and the lubricant surrounding it. In addition,
shaft and bearing housing temperatures are necessary to determine their thermal expansion
along the radial direction.

ΦSides

θ

0°

y

x

z

Figure 2: Fluid film temperature on pad surface and heat fluxes (φφφ) on a bearing pad.

Researchers have assumed magnitudes for the heat transfer coefficients on a pad leading
edge, trailing edge, sides, and back surface that considerably influence the heat flow to these
surfaces while increasing the complexity of a computational model. For example, Wodtke et
al. [22] show that for a large size tilting-pad thrust bearing, none of the major assumptions
customarily used for the heat convection coefficients provide a satisfactory agreement between
a predicted temperature field and test data. These assumed heat convection coefficients vary
greatly from 100 W/m2K to 2,840 W/m2K. In short, one cannot expect to increase the accu-
racy of a physical model by increasing the model complexity while using inadequate boundary
conditions.

The following explains briefly the physical model to determine the pressure field in a hy-
drodynamic film and the temperature field in the fluid film and bounding solids.

2.1. REYNOLDS EQUATION

San Andrés and Tao [1] state an extended Reynolds equation governing the generation of
the pressure field (p) in a laminar flow TPJB. On a pad, this equation is

1
R2

s

∂

∂θ

(
H3

12µ

∂ p
∂θ

)
+

∂

∂ z

(
H3

12µ

∂ p
∂ z

)
=

∂H
∂ t

+
Ω

2
∂H
∂θ

+
ρH2

12µ

∂ 2H
∂ t

(1)
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where the lubricant viscosity (µ) is a function of the temperature field (T ), (θ ,z) are the cir-
cumferential and axial coordinates on the plane of the bearing. The film thickness (H) is

H(θ ,z) = δ(θ ,z)+ Cp,hot + ex cosθ + ey sinθ

+
[
ξpivot−Cp,hot +Cb,hot

]
cos(θ −θp)+ [ηpivot−Rbackδp]sin(θ −θp) (2)

where ex,ey are the journal center displacements, (ξpivot ,ηpivot) are the pad radial and transverse
displacements in pad pivot local coordinates. Above, Rback is the sum of the pad machined
radius and pad thickness at the pivot position, δp is the pad tilt angle, and θp is the pivot
angular position starting from x axis. Above, Cp,hot ,Cb,hot are hot pad clearance and hot bearing
clearances defined from cold pad clearance (Cp) and cold bearing clearance (Cb) as,

Cp,hot =Cp−∆Rs +∆Rh and Cb,hot =Cb−∆Rs +∆Rh (3)

The elastic deformation field for each pad (δ(θ ,z)) is added to the film thickness separately.
δ(θ ,z) is along the radial direction and includes both thermally induced and pressure induced
deformations.

2.2. BULK FLOW ENERGY TRANSPORT EQUATION

Ref. [23] implements a steady-state bulk flow energy transport equation for a steady state
condition and an incompressible fluid. The conservation of energy states that the energy cannot
be created or destroyed. Hence, Eq. (4) shows the balance between the energy disposed (LHS)
and the energy generated (RHS). The energy is disposed through convection and diffusion in
the fluid film, and the generated energy is due to dissipation.

Cp

[
∂ (ρHUT )

∂x
+

∂ (ρHWT )
∂ z

]
+Φ =H

ΩR
2

∂ p
∂x

+ (4)

µ

H

[
kx

(
W 2 +U2 +

UΩR
2

)
+ kJΩR

(
ΩR
4
−U

)]
where Cp is the fluid specific heat, and kx,kJ are turbulent flow shear parameters, which are local
functions of the Reynolds number (Re = (ρH

√
U2 +W 2)/µ) [23]. TPJBs generally operate in

a laminar flow condition; for Re<1000 the shear parameters kx = kJ = 12, and substituting the
pressure gradient term Eq. (4) becomes

Cp

[
∂ (ρHUT )

∂x
+

∂ (ρHWT )
∂ z

]
+Φ =

12µ

H

(
W 2 +U2−UΩR+

Ω2R2

2

)
(5)
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where U ,W ,T are bulk flow (primitive) variables for circumferential speed, axial speed, and
temperature, respectively. They express the average magnitudes across the film thickness. Let
Ũ ,W̃ , T̃ be circumferential speed, axial speed, and temperature with variations across the film
thickness, the bulk flow variables are the defined as

U =
1
H

∫ H

0
Ũdy′, W =

1
H

∫ H

0
W̃dy′, T =

1
H

∫ H

0
T̃ dy′ (6)

Figure 3 shows the journal and a single pad subjected to convection from the fluid film
on its inner surface and sump oil on its back surface, and also conduction through its thick-
ness. An analogy between thermal resistance and electrical resistors illustrates the heat transfer
coefficients in the bearing.

Ts

Tsump

T

hsump

kpad

hin
hp

hs

Ω

Φshaft

Φpad

Figure 3: Lumped parameter thermal model accounting for radial conduction and convection to
the pad and journal.

In Eqs. (4) and (5), the heat flowing form the film to pad and journal surfaces is

Φ = hp(T −Tsump)︸ ︷︷ ︸
Φpad

+hs(T −Ts)︸ ︷︷ ︸
Φshaft

(7)

where as shown in Figure 3, hp is the equivalent heat transfer coefficient between the sump
region (with temperature Tsump) and the film. hs in the heat transfer coefficient between the film
and shaft surface (with temperature Ts).

Following the method implemented by San Andrés and Kim [24] for a lumped parameter
thermal model, the equivalent heat convection coefficients for the whole pad (hp) is regarded
as series elements,

1
hp

=
1

hin
+

Rin

kpad
ln
(

Rback

Rin

)
+

Rin

Rbackhsump
(8)

where kpad is the pad thermal conductivity, and Rin,Rback are the pad inner surface and
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back surface radii, respectively. Above, hin,hs are determined from an empirical correlation for
thermally developing laminar flow (constant wall temperature) by Hausen [25]. Since the flow
in the sump region is turbulent due to the oil churning, the heat transfer coefficient for the sump
is determined from an empirical correlation for turbulent flow in concentric annular ducts by
Gnielinski [26].

Note that this using the empirical correlations generate convection coefficients that are a
function of the actual geometry and operating condition of the bearing, such as clearance, shaft
diameter, shaft speed, and pad arc length. However, more assumptions still remain (for example
the Reynolds number for the sump region). Fortunately, the heat convection coefficients are not
very sensitive to the assumed magnitudes in the confines of a typical bearing operation. This
method contrasts with the routine practice of assuming a single convection coefficient for the
analysis.

2.3. TEMPERATURE DISTRIBUTION IN A PAD

The current model assumes the pad sides are adiabatic (no heat flow, Φ = 0) due to lacking
of established heat transfer coefficients for these regions. Hence, in a pad the temperature
only varies along the radial direction in a pad, thus allowing for incorporation of the empirical
heat convection coefficients. For a film temperature that is only a function of angle (T(θ)), the
circumferentially averaged temperature (T̄f ilm) is defined as

T̄f ilm =
1

θpad

∫
T(θ)dθ (9)

The differential equation for one-dimensional radial heat conduction in the cylindrical co-
ordinate system

d
dr

(
r

dT̄
dr

)
= 0 (10)

Integrating for a pad with inner radius of Rin, the temperature field (T̄ (r)) is defined by

T̄(r) = a ln
(

r
Rin

)
+b (11)

where a,b are the calculated from the heat flux condition at the inner surface and back surface,
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namely

−Kpad
dT̄
dr

∣∣∣
r=Rin

= hin
[
T̄(Rin)− T̄f ilm

]
(12a)

−Kpad
dT̄
dr

∣∣∣
r=Rback

= hsump
[
T̄(Rback)−Tsump

]
(12b)

Substituting T̄ from Eq. (11), Eq. (12) are written as,

−Kpad
a

Rin
= hin

[
b− T̄f ilm

]
(13a)

−Kpad
a

Rback
= hsump

[(
a ln
(

Rback

Rin

)
+b
)
−Tsump

]
(13b)

With simple algebraic manipulations, a,b are expressed as,

a =
Tsump− T̄f ilm

Kpad
Rinhin

− ln
(

Rback
Rin

)
− Kpad

Rbackhsump

(14a)

b = T̄f ilm−Kpad
a

Rinhin
(14b)

Substituting the constants a,b in Eq. (11), the circumferntially averaged temperature distribu-
tion across the pad thickness (T̄(r)) is determined. The circumferentially averaged temperatures
on inner surface and back surface are calculated from T̄in = T̄(Rin) and T̄back = T̄(Rback), respec-
tively.

2.4. LUBRICANT MIXING AT A FEED GROOVE

Figure 4 shows the lubricant supplied into the bearing at a known supply temperature
(Tsupply) and mixed with the hot lubricant leaving the upstream pad with temperature Ti and
flow rate Qi.

Cold Supply Flow

Ω

Qsupply Tsupply

Figure 4: Mixing of hot oil from the upstream pad with cold supply flow in a feed groove region.
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A simple hot oil mixing model determines the inlet supply flow rate (Qsupply) and temper-
ature at the leading edge of the downstream pad (Ti+1),

Qsupply = Qi+1−λQi (15a)

Ti+1 =
QsupplyTsupply +λQiTi

Qi+1
(15b)

where λ is a lubricant thermal mixing coefficient. λ is an empirical parameter that depends
on the lubrication feed arrangement. The model is simple and does not account for the heat
transfer from the pads and oil churning in the groove region. In brief, it is not adequate for
some lubricant feeding arrangements. For instance, a single orifice lubricant delivery method
ejects the lubricant through the bearing housing, so the cold lubricant mixes with the sump oil
before reaching the hot flow from the trailing edge of the upstream pad. On the other hand,
a leading edge groove delivers the cold lubricant directly on the leading edge of the pads,
minimizing the mixing of supply oil. The model in Eq. (15) is most appropriate for a spray-bar
lubrication method.

2.5. PAD THERMALLY INDUCED DEFORMATION

The total strain at each point of a heated body consists of two parts. The first part is a
uniform expansion proportional to the temperature rise ∆T̄ = (T̄ − Tre f ). This expansion is
identical in all directions for an isotropic body, hence only a normal strain and no shearing
strain arise. The normal strain in any direction equals to (α ×∆T̄ ), with α as the material
coefficient of thermal expansion. The second part consists of the strains that maintain the
continuity of the body as well as those that arise because of external mechanical loads [27].

A curved beam of constant rectangular cross section models the pad subject to the radial
temperature distribution across its thickness. Figure 5 shows the local polar coordinate system
defined for a pad. The angle (θ̂ ) is similar to the angle in bearing cylindrical coordinates (θ ),
except that it starts from the pivot location on each pad.
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0°
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u
v

r=Rin

r=Rback

u=v=dv/d 𝜽=0

Op0° x

y

𝜽

Figure 5: Definition of a pad local coordinate system and deformations (u, v ) along radial and
circumferential directions.

Let u and v be the deformation of a body in the radial and circumferential directions, re-
spectively. Timoshenko and Goodier [28] define the strain components (εr,εθ̂

,γrθ̂
) in the polar

coordinates as,1

εr =
∂u
∂ r

(16a)

ε
θ̂
=

u
r
+

∂v
r∂ θ̂

(16b)

γrθ̂
=

∂u
r∂ θ̂

+
∂v
∂ r
− v

r
(16c)

These expressions for the strain component can be substituted into the generalized equations of
Hooke’s law for plane stress2 as,

εr =
1
E
(σr−νσ

θ̂
)+α∆T̄ (17a)

ε
θ̂
=

1
E
(σ

θ̂
−νσr)+α∆T̄ (17b)

γrθ̂
=

1
G

τrθ̂
(17c)

Note that no shearing stress arises due to a change in temperature.
Unlike the strength of materials theory that assumes plane sections must remain plane, the

method by Boley and Barrekette [29] calculates the thermal stresses for a one-dimensional
temperature distribution T̄(r) using theory of elasticity with no simplifying assumption. The
method in Ref. [29] was applied to an arbitrary curved beam with various slenderness ratios
(L/D) and temperature boundary conditions. The resultant stresses were compared against

1This section follows the general method to find the displacements for symmetrical stress distribution in Ref.
[28], page 77.

2This method holds for both plane stress and plane strain assumptions since the thermal stresses are neglected.
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those from a commercial FE simulation with a similar radial temperature distribution.
It was determined that the magnitude of strain due to the stress terms in Eq. (17) are at

least three orders of magnitude3 smaller than the strains due to thermal expansion term (α∆T̄ ).
Thus, neglecting the strain terms induced by internal stresses, Eq. (17) reduces to,

εr = α∆T̄ (18a)

ε
θ̂
= α∆T̄ (18b)

γrθ̂
= 0 (18c)

where the circumferentially average temperature rise (∆T̄ ) is the temperature rise from a refer-
ence ‘cold’ temperature (Tre f ) along the radial direction across the pad.

∆T̄ = T̄(r)−Tre f = a ln(r/Rin)+
[
b−Tre f

]︸ ︷︷ ︸
b′

(19)

Above, a and b are constants determined from the heat convection boundary condition, defined
in Eq. (14). Substituting the radial and circumferential strains from Eq. (18) into Eq. (16) and
integrating yields,

u(r,θ̂) =
∫

εrdr+ f1(θ̂) = αr
(

a ln
(

r
Rin

)
−a+b′

)
+ f1(θ̂) (20a)

v(r,θ̂) =
∫

(rε
θ̂
−u)dθ̂ + f2(r) = αarθ̂ −

∫
f1(θ̂)dθ̂ + f2(r) (20b)

in which f1(θ̂) is a function of θ̂ only, and f2(r) is a function of r only. Substituting Eq. (20) into
Eq. (16c) and noting that γrθ̂

is nil, then,

d f2(r)

dr
− 1

r
f2(r) =−

1
r

d f1(θ̂)

dθ̂
− 1

r

∫
f1(θ̂)dθ̂ (21)

The above equation can only be obtained for symmetrical stresses4. For a non-symmetric stress
distribution (i.e. a point load at one end) terms that are function of both r and θ̂ would not cancel
out and the following method, namely separation of variables, cannot be used. In the current
method, as explained in Appendix A, the stresses are taken as zero, hence symmetric.

3Appendix A provides the formulation of the thermal stresses and a numerical example.
4Both σr and σθ must be independent of θ , and only a function of r.
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Since f1(θ̂) and f2(r) are respectively functions of r and θ̂ only, Eq. (21) is written as,

d f2(r)

dr
− 1

r
f2(r) = A0 (22a)

−1
r

d f1(θ̂)

dθ̂
− 1

r

∫
f1(θ̂)dθ̂ = A0 (22b)

Solving the ordinary differential equations above yields,

f2(r) = A0 (lnr+A1)r (23a)

f1(θ̂) = A0 +A2 sin θ̂ +A3 cos θ̂ (23b)

where the end conditions of the curved beam determine the constants A0,A1,A2, and A3. By
representing the pivot as a fixed point, one can use a local polar coordinate for each pad with
θ̂ = 0 at the pivot. Thus, the boundary conditions become

at the pivot θ̂ = 0 and r = Rback: u = v =
∂v
∂ r

= 0 (no deformation)

Applying these boundary conditions to Eq. (20), the constants become

A3 = αRback

[
a ln
(

Rback

Rin

)
−a+b′

]
, and A0 = A1 = A2 = 0

Hence, the radial and circumferential displacements (u,v) of a pad are

u(r,θ̂) =−α

[
aRback ln

(
Rback

Rin

)
cos θ̂ −ar ln

(
r

Rin

)
+(r−Rback cos θ̂)(a−b′)

]
(24a)

v(r,θ̂) = α

[
aRback ln

(
Rback

Rin

)
sin θ̂ −Rback(a−b′)sin θ̂ +arθ̂

]
(24b)

where a and b′ are constants specified from the thermal boundary conditions as

a =
Tsump− T̄f ilm

Kpad
Rinhin

− ln
(

Rback
Rin

)
− Kpad

Rbackhsump

b′ = T̄f ilm−Kpad
a

Rinhin
−Tre f

Recall, the radial deformation of the inner surface at the mid-plane is u(Rin,θ̂).
Figure 6 shows a schematic view of the deformation of pad along the pad length (axial

direction). Existing analyses customarily neglect pad thermal warping along the axial direction
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in a two dimensional deformation analysis. The following explains an approximate method to
account for the axial deformation of a pad.

y

z

x
z=L/2z=-L/2

u′(z)

cantilevered beam

Rin

t

Figure 6: Definition of an assumed cantilevered beam to approximate pad warping along the
axial direction.

A pad does not have a curvature along the axial (z) direction, so it is modeled by an Euler
beam, cantilevered at the mid plane, subjected to the stated temperature boundary condition
(T̄in, T̄back). The reference temperature is equal to the pad average temperature (Tre f = (T̄in +

T̄back)/2) since the expansion of the pad is already considered for the mid-plane deformation
via Eq. (24). Thus, the thermal deformations only produce bending in the axial direction. The
assumed beam length is 50% of the pad length (L/2).

Using the general method in Ref. [30], the axial thermal warping as a function of axial
distance (z) to the mid-plane becomes,

u′(z) = α
T̄in− T̄back

2t
z2 for

−L
2
< z<

L
2

(25)

Finally, the deflection of the inner surface of the pad (δ(θ̂ ,z)) along the radial direction is defined
as the superposition of deformation in the circumferential and axial cross sections,

δ(θ̂ ,z) = u(Rin,θ̂)+u′(z) (26)

Figure 7 shows the radial deformation of pad inner surface from this method in comparison
with the full results from a three-dimensional structural FE pad model. The geometry of the
pad is taken from Coghlan, Ref. [5]. The inner radius of the pad (Rin) is 0.051 m, the outer
radius (Rback) is 0.07 m, and the pad axial length (L) is 0.061 m. The pad material thermal
expansion coefficient (α) is 1.3×10−5 1/°C, and the temperature boundary conditions for the
inner and back surfaces are respectively T̄in = 80◦C, T̄back = 72◦C. The reference temperature
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is Tre f = 21◦C. One can observe that the results from the analytical model approximates the
three dimensional deformation field closely.

However, note that the FEM results are for a pad with a radial temperature distribution,
and the deformation due to three-dimensional temperature distribution in the pad might differ
slightly.
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Figure 7: Pad inner surface thermally induced deformation. Comparison of results from the
current analytical method (right) versus 3D FEM (right). Reference geometry taken from Ref. [7]

2.6. SHAFT EXPANSION AND HOUSING EXPANSION

Accurate modeling of the journal thermally induced deformation requires the solution of
the temperature field for the entire shaft. Similarly, the bearing housing installation type and
the operating conditions determine the temperature field in the bearing housing. Therefore,
the thermal expansion of shaft OD and housing ID is modeled using a simple one-dimensional
formula, i.e.,

∆Rs = αsRs(Ts−Tre f ) (27a)

∆Rh = αhRh(Th−Tre f ) (27b)

where αs and αh are the shaft and housing material thermal expansion coefficient. Above, the
subscripts s and h denote shaft OD and housing ID, respectively.

The shaft temperature is either imposed or calculated as the average of film temperature
throughout the bearing. The temperature measurements from Coghlan [5] show that the hous-
ing temperature is very close to the oil discharge temperature. Presently, the model takes the
sump (discharge) temperature as the housing temperature (Tsump).

Contrary to the shaft that only expands outward, the housing expansion or contraction is
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dependent on its installation condition. If the housing is free (such as in some test rigs), it
expands outward. Alas for most practical cases, the housing contracts as it is firmly affixed or
press inserted into a pedestal, for example.

2.7. HOT CLEARANCE ESTIMATION

A geometric model estimates the change in the pad clearance and bearing clearance due to
both mechanical and/or thermally induced deformations. After the calculation of pad deforma-
tions a new origin (O′p) is found for the deformed pad. New pad clearance is based on new pad
radius (R′p) and expansion of the shaft and bearing housing.

Figure 8 (left) shows the circumcenter of a triangle5 on a pad inner surface formed by the
leading edge, pivot location, and trailing edge points. Each side of this triangle is a chord
of the circumcircle. Figure 8 (right) shows the thermally induced deformed shape of a pad.
The model finds the midpoint of the line segments that connect the trailing edge and leading
edge to the pivot. Then it determines the slopes of these segments, and the slopes of their
perpendicular bisectors. This gives enough information to state the geometric relation of the
two perpendicular bisectors. The intersection of these lines is the deformed pad arc center, and
the new pad radius (R′p) is calculated with respect to this point.

Rp

Leading

Edge
Trailing 

Edge

Op

Pivot Location

Circumcircle

Circumcenter

Perpendicular

bisectors

Rp

Op

O′p

R′p

Trailing 

Edge

Leading

Edge
Pivot Location

Deformed (hot) shape

Figure 8: Left: Circumcenter of a pad, Right: Thermal deformation of a pad, includes the effects
of thermal expansion and warping.

The new bearing radius (R′b) is the difference between the deformed pivot location on the

5The point at which the perpendicular bisectors of the sides of a triangle intersect and which is equidistant from
the three vertices. The perpendicular bisector of a segment is a line that is perpendicular to the segment, and
intersects with the midpoint of the segment.
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inner surface and the bearing origin. New pad and bearing clearances with the contributions of
the pad, shaft, and housing deformations are

C′p = R′p−Rs−∆Rs +∆Rh (28a)

C′b = R′b−Rs−∆Rs +∆Rh (28b)

Thus the new preload becomes,

m′ =
C′p−C′b

C′p
=

R′p−R′b
R′p−Rs−∆Rs +∆Rh

(29)

Note that the pad clearances calculated from this method are larger than the actual deformed
shape clearance because of the assumption that deformed pad inner surface remains circular.
To calculate the film thickness (Eq. (2)) the deformation field of the pad surface (δ(θ̂ ,z)) and
changes in shaft and housing radius (∆Rs,∆Rh) are used separately.
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3. COMPARISON OF PREDICTIONS AGAINST TEST DATA

3.1. LARGE SIZE TPJB UNDER HIGH SURFACE SPEED AND HEAVY LOAD

Table 1 outlines the geometry, lubricant properties, and operating conditions of a large size
test bearing. Figure 9 shows a schematic view of the bearing and the load direction. The
measurements and predictions from the computational model in Ref. [4, 17] are compared
against the predictions obtained using the current model.

Table 1: Characteristics of a TPJB tested by Hagemann et al. [4]
Bearing properties

Load orientation LBP
Number of pads 5
Shaft diameter [mm] 500
Pad thickness [mm] 72.5
Bearing axial length [mm] 350
Pad arc length 56°
Pivot offset 0.6
Pad clearance [µm] 300
Preload 0.23
Pad mass∗ [kg] 55.9
Pad moment of inertia about pivot point∗ [kg·m2] 0.44
Pivot Stiffness∗ [N/m] 5×109

Operating condition
Load [kN] 175–438
Specific Load W/(LD) [MPa] 1–2.5
Shaft rotational speed [RPM] 500–3000
Shaft surface speed ΩR [m/s] 13–79
Lubricant supply temperature [°C] 50
Lubricant flow rate [LPM] 210 / 420

Fluid properties
Lubricant ISO VG32
Viscosity at supply temperature∗ [mPa·s] 22.4
Viscosity temperature coefficient∗ [1/°C] 0.0297
Density [kg/m3] 844
Specific heat capacity [kJ/(kg·K)] 2.17
Thermal conductivity [W/(m·K)] 0.13
Lubricant supply method Spray-bar

Thermal properties
Pad and journal thermal conductivity [W/(m·K)] 45
Sump temperature [°C ] 65
Housing direction of expansion∗ Outwards
Thermal mixing coefficient λ ∗ 0.8 (3 kRPM)

0.5 (1.5 kRPM)
∗Assumed or calculated based on the available data.
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Figure 9: Schematic view of a five-pad TPJB in Ref. [4].

Hagemann et al. [4] use a test rig designed for large size turbine bearings with a diameter
of 500 mm and maximum length of 500 mm. The driving power (1.2 MW) enables a operating
shaft speed up to 4000 RPM. The authors equip the hollow shaft with two piezoelectric pressure
sensors and two capacitive displacement sensors. Subsequently, the test procedure shifts the
shaft axially during the measurement with a speed of 500 mm/min, which enables capturing
the whole film thickness and pressure distribution with a high resolution. Hagemann et al.
determine the dynamic force coefficients of the test bearing from relative displacement between
shaft and bearing.

The maximum applied load on this bearing (by pulling the test bearing) is 1 MN. Yet, due
to the large size of the bearing, the specific load is between 1 MPa and 2.5 MPa. Also, the large
diameter of the rotor gives a high surface speed (between 13 m/s and 79 m/s) for shaft speeds
between 500 RPM and 3,000 RPM. For this test bearing, the length to diameter (L/D)=0.7 and
clearance to radius ratio (Cp/Rs)=0.0012. Rocker pivots, with an arch in the axial direction,
enable the pads to tilt in the axial and circumferential directions. Based on the descriptions in
Ref. [17], the pivot stiffness is taken as 5×109 N/m.

The computational model in Ref. [4] is based on a two-dimensional Reynolds equation
and a three-dimensional energy equation for the fluid film and solid elements coupled with a
commercial structural software that calculates the mechanical and thermal deformations of the
pad.

Table 2 compares the journal eccentricity along the load direction (ey) obtained for the
TEHD and THD predictions. Predicted journal eccentricity in orthogonal direction (ex) and the
journal attitude angle (φ = tan−1(ex/ey)) are very small and not shown. Hagemann et al. [4]
do not report these magnitudes. Predicted journal eccentricity from TEHD analysis is smaller
in the load direction compared to the predictions from THD analysis. The maximum difference
between TEHD and THD prediction is 13% for W/(LD)=1 MPa.
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Table 2: TEHD and THD predictions for journal eccentricity in the load direction (ey) for various
specific loads. (N=3000 RPM)

W/(LD) [MPa] 1 1.5 2 2.5
THD ey [µm] -125.6 -169.6 -202.3 -231.0

TEHD ey [µm] -111.0 -155.1 -187.9 -218.3

Figure 10 shows6 the hydrodynamic pressure in the mid-plane of the bearing. The TEHD
analysis, including thermal and mechanical deformations, shows very good agreement with
the measurements in Ref. [4]. However, observe that not including the thermally induced
deformation leads to under-predicting the pressure, in particular its peak magnitude. Note the
peak pressure TEHD prediction is 8%7 larger than the measured magnitude, whereas the THD
prediction is 22% smaller. Observe that the pad pressure has a substantial discrepancy with the
test data for the lighter loaded pads (1, 2, 5). The TEHD predictions are only slightly improved
from the THD predictions.
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Figure 10: TEHD and THD predictions for mid-plane film pressure compared against test data
from Ref. [4]. Star symbol (F) shows the location of minimum film thickness. (N=3000 RPM,
W/(LD)=2.5 MPa)

Figure 11 shows the temperature rise relative to the supply temperature (50°C) on the inner
surface of the pads operating with a journal speed of 3,000 RPM and under a specific load
of 2.5 MPa. The measured pad temperatures are recorded using thermocouples located 5 mm
behind the pad inner surface [4]. The predictions show the film temperature.

6In the following figures, ‘TEHD’ denotes thermoelastohydrodynamic, and ‘THD’ notation represents thermo-
hydrodynamic analysis, that neglects both the thermally and mechanically induced deformation in the bearing
components.

7The percentage of prediction error compared to measured magnitudes throughout this work is calculated from:
%Error=(Measured-Predicted)/Measured.
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The predicted temperatures are in good agreement with the measured ones for the highest
loaded pads (3, 4). Accounting for both pressure and temperature induced elastic deformations
of the pad improves the agreement between the temperature predictions and the test data. The
maximum temperature (on pad 3) from the THD analysis is 8.6°C lower than the corresponding
temperature, in a TEHD analysis.

On the other hand, film temperature for the lighter loaded pads (1, 2, 5) shows substantial
discrepancy with the test data. For the highest loaded pads (3, 4) the maximum difference
between the TEHD predictions and the measurements for pad inner surface temperature is 5%,
while for the lighter loaded pads (1, 2, 5) the maximum difference is about 70%.

The prediction model finds the temperature field assuming that all of the pads are fully
lubricated. Hagemann et al. [4] state that the inlet flow rate during the test was reduced by
sealing baffles which influence a flooded lubrication. The predicted lubricant flow rate (658
LPM) is 56% higher than the test condition (420 LPM), which suggests that the lighter loaded
pads (1, 2, 5) are not fully wetted. Hence, the higher flow rate on the lighter loaded pads (1, 2,
5) is responsible for the discrepancy between predictions and test data.
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Figure 11: Predicted and measured film temperature rise relative to supply temperature (50°C).
TEHD and THD predictions compared against test data from Ref. [4]. (N=3000 RPM, W/(LD)=2.5
MPa, and λ=0.8)

Figure 12 shows the predicted thermal and pressure deformations on the bearing pads.
The total deformation adds to the film thickness, and modifies the performance of the TPJB.
Observe that the thermal deformations are generally negative, which means the pads expand
toward the center of the bearing. However, the thermally induced deformation is either positive
or negative with a smaller absolute magnitude at the leading edge and trailing edge (due to the
thermal warping of the pad). For a typical pad, the thermal expansion and warping are closely
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related to the pad thickness and arc length. Thicker and shorter pads tend to expand more while
slender and longer pads predominantly warp under a given thermal gradient.

In Figure 12, mechanical deformations are always positive due to the opening up of the
pad curvature under the pressure. For the highest loaded pads (3, 4) the total deformation is
considerable, the maximum deformation is slightly more than the 20% of the cold pad clearance
(Cp = 300 µm). Pivot offset (0.6) causes an asymmetry in the deformations, with their minimum
at the pivot location.
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Figure 12: Predicted pads’ inner surface deformation along the radial direction. Positive denotes
(outward) expansion, while negative magnitude denotes (inward) contraction. (N=3000 RPM,
W/(LD)=2.5 MPa)

Figure 13 shows the film thickness at the mid-plane of the bearing. The TEHD predic-
tions, which include the pressure and thermally induced elastic deformations, generally deliver
a lower film thickness compared to that from the THD model. In addition, TEHD predictions
have a better agreement with test data for the minimum film thickness. On pad 3, the minimum
film thickness in the TEHD prediction is 18 µm larger than the measured magnitude, while
for the THD prediction it is 34 µm larger. Relative to minim film thickness, the TEHD model
improves agreement of the THD predictions to test data by 56%. However, compared to maxi-
mum film thickness these differences are under 5%. In addition, the THD analysis considerably
under-predicts the film thickness at the leading edge of the highest loaded pads (3, 4). This is
directly due to the pressure deformation (opening up) of these pads due to the applied load.

Note the predicted minimum film thicknesses on pad 1 and 5 are larger than the measured
magnitudes. As mentioned above, this phenomena is due to the fact that the test bearing was
operating under a starved condition, but the current model predicts the performance of a flooded
bearing.
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Figure 13: TEHD and THD predictions for mid-plane film thickness compared against test data
from Ref. [4]. Star symbol (F) shows the location of peak pressure. (N=3000 RPM, W/(LD)=2.5
MPa)

Figure 14 shows the axial variation of the film pressure at the circumferential location of
peak pressure on the most loaded pad (3). Including the thermally induced deformation causes a
considerable increase in peak pressure, and a better agreement with test data. The peak pressure
develops shortly before the minimum film thickness, at θ = 62◦ on pad 3 (see F in Figure 10)
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Figure 14: Predicted and measured film pressure at the circumferential location of peak pressure
(θθθ=62°, see Figure 10). TEHD and THD predictions compared against test data from Ref. [4].
(N=3000 RPM, W/(LD)=2.5)

Figure 15 shows the axial variation of the film at its minimum thickness location, shortly
downstream of the peak pressure location (θ=74°, see F in Figure 13). While prior research
typically neglects the axial deformation of a pad, the test data show that this deformation is
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significant. The one-dimensional cantilever beam in the current method approximates well the
axial deformation. The TEHD predictions for film thickness at z =-1⁄2L, 0 , 1⁄2L are about 8,
20, 17 µm lower than the measured magnitudes. When compared to the cold pad clearance
(300 µm), these differences are very small.
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Figure 15: Predicted and measured film thickness in the circumferential location of the minimum
film thickness (θθθ=74°, see Figure 13). Measured results from Ref. [4]. (N=3000 RPM, W/(LD)=2.5
MPa)

Figure 16 shows the predicted (TEHD) direct stiffness coefficients for the test bearing com-
pared to the measurements and predictions in Ref. [17]. Kukla et al. [17] use the [K,C] model
to describe the dynamic coefficients of the TPJB, thus the predictions shown are reduced syn-
chronous with speed. Predicted cross-coupled stiffnesses from the current model are much
smaller compared to the measured magnitudes and not shown. The direct stiffnesses (Kxx,Kyy)
depend on the applied load; and for a given shaft speed they increase with an increase in load.
Note the pivot stiffness (5000 MN/m) us of the same order of magnitude as the bearing direct
stiffness coefficients.

The current predictions and those from Ref. [17] are greater than the measured coeffi-
cients. The predicted stiffnesses for N = 3,000 RPM are slightly larger than the predicted
ones for N = 1,500 RPM; however, the test data show that stiffnesses reduce substantially
for N = 3,000 RPM compared to N = 1,500 RPM. The prediction and measurements show
Kyy > Kxx. This stiffness orthotropy in the test data increases when rotor speed increases from
N = 1,500 to 3,000 RPM. This is not reflected by the predictions. The current model and Ref.
[17] predict that the direct stiffness orthotropy reduces for the high shaft speed (3,000 RPM).

The agreement of the current TEHD predictions and the test data in the load direction (Kyy)
is better; for N = 1,500 RPM, the difference is between 12% and 38%, while in the orthogonal
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direction (Kxx) the difference is between 29% and 60%. For the high speed (N = 3,000 RPM),
the difference between prediction and test data (Kyy) is between 20% and 34%, and for (Kxx) it is
between 113% and 154%. The predictions in Ref. [17] have a substantially larger discrepancy
with the test data for the high speed (3,000 RPM).
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Figure 16: Direct stiffness coefficients (KKK yy ,,,KKK xx ) versus specific load for operation at two shaft
speeds. TEHD prediction and test data from Ref. [17]. (Synchronous excitation; Left: N=1500
RPM, λ=0.5; Right: N=3000 RPM, λ=0.8)

Figure 17 shows the predicted direct damping coefficients (Cxx,Cyy) compared to the mea-
surements and predictions in Ref. [17]. The predictions and measurements show Cyy > Cxx.
Predicted cross coupled terms are much smaller than the test data and not shown. The pre-
dicted direct damping coefficients are consistently smaller than the measurements. Contrary
to the measurements and prediction in Ref. [17], the current model predicts that the damping
coefficients decrease with an increase in load.

The agreement of the current prediction and test data in the load direction (Cyy) is better;
for N = 1500 RPM the difference is between 1% and 16%, while in orthogonal direction (Cxx)
the difference is between 1% and 23%. The predictions in Ref. [17] have a substantially larger
discrepancy for the low speed (1500 RPM). For the high speed (N = 3000 RPM), the difference
between prediction and test data for Cyy is between 35% and 49%, and for Cxx it is between 33%
and 41%.
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Figure 17: Direct damping coefficients (CCCyy ,,,CCCxx ) for operation at two shaft speeds. Prediction
and test data from Ref. [17]. (Synchronous excitation; Left: N=1500 RPM, λλλ=0.5; Right: N=3000
RPM, λλλ=0.8)

The results above (Figures 16 and 17) are of interest due to the large deviation between the
predictions and the test results. Kukla et al. [17] believe that no fundamental error occurred in
the analysis or test procedure. The authors state the key problem of the test procedure,

“The dynamic force component is gathered from the fluid film while the force itself is
applied externally. Thus, it is assumed that the bearing force is equal to the fluid force in
every time step. This is only correct if pad inertia effects have no significant influence on the
pad movement.” Kukla et al. also believe that neglecting the axial shifting of the shaft in the
support bearings, and its dynamic behavior might have been responsible for the discrepancies.

Based on the available geometry in Ref. [17], the pad mass and moment of inertia are
calculated as 55.9 kg and 0.44 kg·m2, respectively. The virtual mass term in [K,C,M] prediction
model is very large and reduces the stiffness coefficients. The predicted damping coefficients
do not noticeably differ in the [K,C,M] and [K,C] model. These results, however, cannot be
compared with the test data in Ref. [17] since Kukla et al. used a [K,C] model for the test data.
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3.2. SPHERICAL SEAT TPJB UNDER HEAVY SPECIFIC LOAD AND HIGH
SPEED

Recently, Coghlan and Childs [5, 6] conducted an extensive test program to study the effects
of various lubrication (oil feed) configurations on the static and dynamic force performance of a
spherical seat TPJB. Table 3 shows the characteristics of the test bearing in Ref. [5] and Figure
18 shows a schematic view of the bearing and the load direction.

Table 3: Characteristics of a TPJB tested by Coghlan and Childs [5]
Bearing properties

Load orientation LBP
Number of pads 4
Shaft diameter [mm] 101.59
Pad thickness [mm] 190
Bearing axial length [mm] 61
Pad arc length 72°
Pivot offset 0.5
Pad clearance [µm] 134
Preload 0.3
Pad mass∗ [kg] 0.6
Pad moment of inertia about pivot point∗ [kg·m2] 4.6×10−4

Pivot Stiffness [N/m] 4.12×108

Operating condition
Load [kN] 4.3 - 17.7
Specific Load W/(LD) [MPa] 0.7–2.9
Shaft rotational speed [RPM] 7000–16000
Shaft surface speed ΩR [m/s] 38–85
Lubricant supply temperature [°C] 48.9
Lubricant flow rate [LPM] 38 (flooded) / 42 (evacuated)

Fluid properties
Lubricant ISO VG46
Viscosity at supply temperature [mPa·s] 25.6
Viscosity temperature coefficient 0.0431 1/°C
Density [kg/m3] 843.5
Specific heat capacity [kJ/(kg·K)] 2.084
Thermal conductivity [W/(m·K)] 0.1243

Thermal properties
Pad and journal thermal conductivity [W/(m·K)] 52
Sump temperature [°C ] 51–64
Housing direction of expansion∗ Outwards
Shaft thermal expansion coefficient [1/°C] 1.23×10−5

Pad thermal expansion coefficient [1/°C] 1.30×10−5

Thermal mixing coefficient λ ∗ 0.5 (7 kRPM), 0.6 (10 kRPM)
0.7 (13 kRPM), 0.8 (16 kRPM)

∗Assumed based on the available data.
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Figure 18: Schematic view of the four-pad TPJB in Ref. [5]

The test bearing is measured various lubrication delivery methods,
1. Flooded single-orifice (SO)
2. Evacuated leading edge groove (LEG)
3. Evacuated spray-bar (SB)
4. Evacuated spray-bar blocker (SBB)
The authors compare their test results with THD predictions obtained from XLTPJB® [1],

including the pivot deformation. However, their predictions do not account for the mechanical
and thermal elastic deformations (only approximation of hot clearances).

The predictions of the current model are compared to the test results in Ref. [5] for an
evacuated spray-bar bearing. Figure 19 shows that spray-bar lubrication method is similar to
the model for lubricant mixing at a feed groove (section 2.4). A single-orifice feed type is less
appropriate because the effects of supply oil churning and heat convection from the pads are
not fully modeled.

Pad

Housing

Spherical seat Pivot

Mixing

Lubricant

Flow Path

Figure 19: Geometry of spray bar feed type. Original Figure taken from [7].
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The thermal mixing coefficient (λ ) for the predictions varies with the operating conditions,
namely shaft rotational speed. At a high rotor speed, the resistance to supply flow increases
and as result the portion of hot oil that is carried over from trailing edge of an upstream pad
to leading edge of downstream pad increases. Hence, λ must be modified accordingly. In the
following predictions, λ = 0.5,0.6,0.7,0.8 for operating conditions with rotor speed of 7, 10,
13, 16 kRPM,8 respectively.

Figure 20 shows the predicted journal eccentricity in the load direction (−y) and orthogonal
direction (x) compared to the measurements in Ref. [5]. In the load direction, the agreement
between prediction and test data worsens by increasing the load and shaft speed. The maximum
difference between prediction and test data is 19, 37, and 43 µm for specific loads of W/(LD) =

0.7, 2.1, and 2.9 MPa, respectively. The measured journal eccentricities in the orthogonal
direction are larger than the predicted magnitudes; however, the differences are smaller than 20
µm.
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Figure 20: Journal eccentricities (−−−eeeyyy ,,,eeexxx ) versus rotor speed and operation with three specific
loads. Predictions and test data in Ref. [5].

Table 4 compares the journal eccentricity along the load direction (ey) obtained for the
TEHD and THD predictions. Predicted journal eccentricity in orthogonal direction (ex) and
the journal attitude angle (φ = tan−1(ex/ey)) are very small and not shown. Predicted journal
eccentricity from TEHD analysis is smaller in the load direction compared to the predictions
from THD analysis. The TEHD predictions are about 25% smaller than the THD predictions,
and correlate better with the test data.

8Surface speeds of 38, 53, 69, 85 m/s.
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Table 4: TEHD and THD predictions for journal eccentricity in the load direction (eeeyyy ) for various
specific loads. Predictions compared to test data from Ref. [7]

W/(LD) 0.7 MPa 2.1 MPa 2.9 MPa
N [RPM] THD TEHD Test THD TEHD Test THD TEHD Test

7000 57.3 45.0 40.3 113.3 96.6 78.6 134.2 115.8 93.1
10000 54.2 39.9 29.3 110.0 91.1 64.4 131.2 110.4 77.6
13000 54.9 38.6 20.9 108.6 88.1 55.3 130.0 107.4 68.5
16000 55.6 38.0 18.4 108.7 85.8 48.2 130.3 105.0 61.1

Figure 21 shows the predicted film temperature rise compared to measured temperature rise
on the inner surface of the bearing pads for operation with shaft speed at 16 kRPM in Ref. [5]
with an specific load of 0.7, 2.1, and 2.9 MPa. The authors selected (based on industrial prac-
tice) the location to measure the maximum temperature at 75% of the pad arc length. Correctly,
test results show that the maximum temperatures at this location is greater than the temperature
on the pad trailing edge. This is due to the heat convection with the churning cooler oil in
the groove region and circumferential heat flow in the pads. Note that the sensor measures the
temperature of the solid (pad), not the fluid film. The current prediction model only takes into
account the radial heat flow in the pads, hence the maximum temperature prediction happens
at the trailing edge.

The agreement of the predictions (TEHD) and the measurements is moderate, the maxi-
mum temperature difference is no more than 23%, 27%, 21% for W/(LD) =2.9, 2.1, 0.7 MPa,
respectively. As expected, the loaded pads are hotter for operation with a large specific load
(2.9 MPa). conversely, the unloaded pads (3, 4) are hotter when operating with a small specific
load (0.7 MPa). This phenomena appears both in measurements and predictions. For pads 1
and 2, the predicted temperatures are generally higher than the measurements; conversely, the
measured temperatures on pads 3 and 4 are higher than the predictions.
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Figure 21: Predicted and measured pad inner surface temperature rise relative to supply tem-
perature (48.9°C). Measured results from Ref. [5]. (N=16,000 RPM, W/(LD)=2.9, 2.1, 0.7 MPa, and
λλλ=0.8)

For a low rotor speed (7000 RPM), Figure 22 shows the predicted film temperature for
the loaded pads is larger than the measured magnitudes, but the predictions for unloaded pads
shows a good agreement with test data. For N = 7000 RPM the discrepancy is generally smaller
than N = 16000 RPM.
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Figure 22: Predicted and measured pads’ inner surface temperature rise relative to supply tem-
perature (48.9°C). Measured results from Ref. [5]. (N=7,000 RPM, W/(LD)=2.9, 2.1, 0.7 MPa, and
λ=0.5)

To further study the dependency of the film temperature on the shaft speed, Figure 23
compares the maximum predicted temperature to the measured one for operation under three
specific loads. The temperatures increase with an increase in rotor speed and specific load. The
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predicted temperatures are larger than the measured ones, but as the specific load decreases the
agreement improves. In other words, the agreement of prediction and test data for W/(LD) =

0.7 MPa is better than that for 2.1 MPa, which is better than that for 2.9 MPa.
Figure 23 also shows that the predicted maximum pad inner surface temperature increases

steadily for higher rotor speeds. The test data follow the same trend, however not as linear. The
predicted maximum inner pad temperature for W/(LD) = 0.7,2.1,2.9 are higher than the test
data by 2.8, 9.1, 9.1 °C, respectively.
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Figure 23: Pad maximum inner surface temperature versus rotor speed and operation with vari-
ous specific loads. Predictions and test data in Ref. [5]. (W/(LD)=2.9, 2.1, 0.7 MPa)

To explain the above trend, Figure 24 shows the predicted flow rate versus the constant
flow rate used in the tests (42 LPM). Since the temperature rise is inversely proportional to the
flow rate, one can expect higher predicted temperatures when the predicted flow rate is lower
than the actual flow rate. The predicted flow rate is mostly below the flow rate used in the tests
which justifies the higher predicted temperatures.
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Figure 25 shows the predicted flow on each pad. The majority of the inlet flow is predicted
to enter the bearing via the feeding groove on pad 3. Due to the high flow rate of cold (supply)
flow, lighter loaded pads (3, 4) remain relatively cold. On the other hand, the amount of flow
exiting pad 4 (λQ4) to enter pad 1 is larger than the predicted leading edge flow (Q1), so for
the equation (15) to hold inlet flow (Qsupply) must become negative.

Negative supply flow rate takes place when a steep pressure gradient on the loaded pads
induces a more dominant pressure flow than the shear flow, and a portion of lubricant flows
in the opposite direction of the shaft rotational speed. This phenomena, however, cannot be
explained with the simple model, so in this case the supply flow is set to be zero. No cold
supply flow means that all flow that enters pad 1 is warm lubricant from pad 4 which causes
over-prediction of its maximum temperature.

In addition, a more uniform pad flow rate for a lower specific load (i.e. 0.7 MPa) explains
the better agreement of test data and predictions for a lower specific load in Figure 23.
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Figure 25: Predicted flow rate on each pad for operation at N=7000 and N=16000 under various
specific loads. ((W/(LD)=2.9, 2.1, 0.7 MPa)

Coghlan and Childs [5] measured the hot bearing clearance by rolling the shaft on the pads
right after shutting down the rotor from a steady state operation. The predicted hot clearances
in the (x,y) directions (Cx,Cy) are defined as,

Cx = Op,x +
(
Rin +u(Rin,θ)−Rs−∆Rs +∆Rh

)
cosθ (30a)

Cy = Op,y +
(
Rin +u(Rin,θ)−Rs−∆Rs +∆Rh

)
sinθ (30b)

Figure 26 shows the predicted hot clearance on each pad surface in agreement with results
from Ref. [5]. The agreement between prediction and test data is satisfactory. The clearance
of the test bearing has a square shape, the midpoint of each side shows the minimum clearance
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(bearing clearance). The corners of the square do not show the hot pad clearance. Observe that
the predicted minimum clearance is smaller than the measurement for the loaded pads. Since
the loaded pads are hotter they have a more pronounced expansion compared to the unloaded
pads. The expansion of the pads towards the center of the bearing along with expansion of the
journal reduce the bearing clearance.
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Figure 26: Predicted hot clearance in x, y coordinate system compared to test data from Ref. [5].
(W/(LD)=2.9 MPa; Left: N=7000, Right: N=16000 )

Figure 27 shows the mean value of the predicted hot bearing clearance versus shaft speed
compared to measured estimates. Predictions include thermally and pressure induced pad de-
formations. Note that pressure deformation does not influence the bearing clearance substan-
tially because the pressure induced deformation of the pad is minimum at the pivot location,
and the bearing radius is measured at this point. The predictions show a good agreement with
test data, with a maximum difference of 6%.
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Figure 28 show the predicted increase in preload (m = (Cp−Cb)/Cp) of the pads during
the operation. The pad clearance (Cp) increases while the bearing clearance (Cb) decreases
(due to the expansion of pad and shaft). The housing installation condition (and direction of
expansion) influences the hot preload. Predictions account for both thermally and pressure
induced deformation of the pads, and the housing is assumed to expand outwards. The preload
for loaded pads (1, 2) increases about 100%, and for the unloaded pads (3, 4) it increases about
30%. The higher pressure and higher temperature on the pad 3 and 4 induces a larger pad
warping compared to pad 1 and 2.
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Figure 28: Predicted hot pad preload versus rotor speed for an operation under a specific load
of 2.9 MPa

In Ref. [6], Coghlan and Childs use a frequency independent ([K,C,M]) model to extract
the bearing static stiffness [K], damping [C], and virtual mass [M] coefficients from curve fits
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to the experimentally derived complex stiffnesses [Z].

ℜ(Z) = K−ω
2M , and ℑ(Z) = ωC (31)

The measured excitation frequency range is 10 to 250 Hz. Hz. Figures 29 and 30 compare the
test data against the THD and TEHD predictions for operation of 7000 RPM and 16000 RPM.
The THD prediction only considers pivot flexibility. The right side of the Figures shows the
real part of the bearing direct complex stiffnesses (ℜ(Z)), and the left part shows the imaginary
part of the bearing direct complex stiffness (ℑ(Z)) versus excitation frequency. The results are
obtained for operation at three specific loads, W/(LD)=0.7, 2.1, 2.9 MPa.

In general, TEHD predictions improve the agreement with the test data, except for the case
with N = 16000 RPM and W/(LD) = 0.7 MPa. Since the predictions are the same along x and
y directions, and under-predict the test data, they correlate best with real and imaginary part of
Zxx. The agreement of the imaginary part of the bearing direct complex stiffness (ℑ(Z)) is best
for lowest specific load (0.7 MPa) for both shaft speeds (7000 and 16000 RPM). Conversely,
the agreement of the real part of the bearing direct complex stiffness (ℜ(Z)) is best for highest
specific load (2.9 MPa) for both shaft speeds (7000 and 16000 RPM).
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Figure 29: Imaginary (left) and Real (right) part of complex bearing stiffness versus excitation
frequency for operation at various specific loads. TEHD and THD predictions compared to mea-
surements in Ref. [6] for operation of N=16000, and W/(LD)=0.7, 2.1, and 2.9 MPa
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Figure 30: Imaginary (left) and Real (right) part of complex bearing stiffness versus excitation
frequency for operation at various specific loads. TEHD and THD predictions compared to mea-
surements in Ref. [6] for operation of N=7000, and W/(LD)=0.7, 2.1, and 2.9 MPa

41



As per the rotordynamic coefficients, Figure 31 and 32 show predicted synchronous speed
reduced force coefficients from a [K,C,M] model. TEHD predictions for Kyy,Kxx are in a very
good agreement with the measurements with a maximum difference less than 27%. However,
the current model predicts isotropic stiffness for the bearing, but the test data show stiffness
orthotropy which is not expected for the LBP configuration as much as for a LOP configuration.

In addition, observe that at the specific load of 0.7 MPa, the TEHD predictions are larger
than THD predictions, but at 2.1 MPa the TEHD predictions become smaller than THD pre-
dictions. At a low specific load (0.7 MPa), the thermally induced deformation is dominant
and the thermal expansion of the bearing components reduces the film thickness and makes
the bearing stiffer. At a high specific load (2.9 MPa), the pressure induced pad deformation
is dominant, and the elastic opening of the pad slightly increases the film thickness, and the
stiffness becomes slightly lower than that of the THD prediction.
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Figure 31: Direct stiffness coefficients (KKK yy ,,,KKK xx ) versus specific load for operation at four shaft
speeds. TEHD and THD prediction and test data from Ref. [6] (Synchronous speed excitation)

42



Figure 32 shows predicted damping coefficients (Cxx,Cyy) in comparison with the estima-
tion from test data. Compared to stiffness, the predicted damping shows a more considerable
discrepancy with the measurements. In a [K,C] model, including the thermally and pressure
induced deformations reduces the predicted damping [12]. However, current predictions (with
a [K,C,M] model) show that, although not significant, TEHD analysis predicts a higher damp-
ing and has a better agreement with test results compared to THD predictions. The difference
between TEHD predictions and test data range between 27% and 52%.
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Figure 32: Direct damping coefficients (CCCyy ,,,CCCxx ) versus specific load for operation at four shaft
speeds. TEHD and THD prediction and test data from Ref. [6] (Synchronous speed excitation))
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CONCLUSION

The aim of the presented work is to implement a method to include thermal effects on tilting
pad journal bearings (TPJBs) in a predictive tool (XLTPJB®). An important objective of the
project is to have a fast and reliable predictive tool that can help design and analyze TPJBs
with accuracy. In order to do so, authors preformed an extensive literature review to study the
practiced methods that account for the thermally induced deformations of TPJB components,
with a focus on deformation of the pads.

Due to a lack of accurate knowledge of the thermal boundary conditions on a TPJB pad,
authors decided to pursue a simple but physically sound model for temperature as opposed to
complex finite element methods that would heavily rely on assumptions for boundary condition
. The temperature field in a pad is considered to be solely a function of radius across the
pad thickness, which allows for using existing empirical correlations to find the convection
coefficients on inner surface and back of the pad. These convection coefficients will determine
the heat flow in and out of the pad and are paramount to calculation of inner surface and back
surface temperatures.

The early computational models calculate the pad thermally induced deformation by as-
suming the pad as a straight or a curved beam. Subsequently, apply a moment equivalent to
the temperature gradient on the pads to find their thermal warping. To find the expansions, the
models use a simple linear expansion formula for the pad thickness. More recent models use
FEM to find the thermoelastic deformations of a pad given the temperature field in the pad.

The current work pursue basic methods from theory of elasticity to derive an explicit for-
mula for the pad mid-plane thermal deformation than works as well as a 2D finite element
model for the same (radial) temperature field. The radial and circumferential deformation vec-
tors of a pad are found from the thermally induced strains in a pad, neglecting the thermally
induced stresses. Thermal stresses are shown to be not important to the resultant deformation.

For the axial warping of the pad, a simple beam cantilevered at the mid-plane represents
the pad in the axial direction. The deformation field along the radial direction then can be
expressed by super-imposing the deformation of circumferential and axial cross sections which
approximates 3D FEM result for the same temperature field with less than 20% difference.
Note that in the current model 3D effects are not accounted for, and the deformation of the mid
plane is identical to 2D FEM results.

To check the accuracy of the model, the authors compare the predictions with the measure-
ments of two independent, recent (2013, 2014) test programs for evaluating the performance
characteristics of TPJBs. In the first case, Hagemann et al. [4] measure the dynamic and static
characteristics of a large size (shaft radius of 0.5 m) 5 pad LBP TPJB under heavy loads (spe-
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cific loads of 1 to 2.5 MPa). The current TEHD model predicts the temperature of pad inner
surface, hydrodynamic pressure, and film thickness with a good agreement to the test data. The
TEHD model reduces the discrepancy of THD prediction and test data for peak pressure by
14%, maximum temperature by 11%, and minimum film thickness by 56%. Along the axial
direction, the simple beam model provides good correlation for film thickness and pressure
distribution.

The current model predicts [K,C] direct rotordynamic coefficients that have a smaller dis-
crepancy with the test data compared to the predictions by Hagemann et al. [4]. The predicted
rotordynamic coefficients along the load direction have a better agreement with test data with
difference between 12% and 34% for Kyy and betweem 1% and 49% for Cyy. Hagemann et al.
[4] believe that the major reason for their prediction discrepancy is neglecting inertia in their
analysis.

The second case from Coghlan and Childs [5, 6, 7] studies the effect of various direct
lubrication methods on the performance of a 4 pad LBP TPJBs. This test program provides
very detailed measurements to compare the predictions against test data for a spherical seat
TPJB with spray bar lubrication under specific loads between 0.7 and 2.9 MPa and surface
speeds between 38 and 85 m/s.

The predicted pad inner surface temperatures are consistently larger (no more than 18%
difference) than the measured ones which is related to the fact that the tests are performed in
over-flooded bearing condition (as recommended by the test bearing OEM). The predicted shaft
eccentricities has a moderate agreement with the measured ones, the predictions are larger in
the load direction and smaller in the orthogonal direction. The predicted hot clearances are
closely predicted with maximum difference of 6% for a specific load of 2.9 MPa and various
shaft speeds. The predicted hot pad preload can increase up to 100% during the operation.

Coghlan and Childs [6] measure complex impedances of the bearing to study the frequency
dependency of this bearing, and use a [K,C,M] model to represent the stiffness, damping,
and inertia of the bearing. The predicted stiffness with the [K,C,M] model has a very good
agreement with the test data, with a maximum difference of 27%. The TEHD model improves
THD predictions for stiffness coefficients, especially at lower specific load (0.7 MPa). The
predicted damping coefficients are consistently smaller than the measured ones for analysis.
The predictions from TEHD model differed with the test data in a range between 27% and
52%, and had a slightly better agreement with the measured ones compared to the prediction
from THD model.

The authors observed a similar trend in both comparison cases which relates the bearing
flow rate and predicted temperatures. The current model in XLTPJB® assumes that the bearing
is flooded. However, in the first case the bearing is starved, leading to a considerable under-
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prediction of film temperature for unloaded pads, and in the second case the bearing is over-
flooded leading to over-prediction of film temperature for loaded pads. It is vital to be able to
impose the flow rate used in the test rig or industrial practice to get accurate film temperature,
which effects the TPJB performance substantially through modifying lubricant viscosity.
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A. APPENDIX: THERMAL STRESSES

This appendix briefly explains the method in Ref. [29] adjusted for a bearing pad. Consider
a curved beam of rectangular cross section and with constant properties, under a temperature T̄

varying only in the radial direction. Thermal stress in local radial (σr) and circumferential (σ
θ̂

)
from theory of elasticity is [29]

σr =
A1

r2 +
A2

Rin
2 (2 ln(r/Rin)+1)+2

A3

Rin
2 −

Eα

r2

∫ r

Rin

T̄ rdr (A.1a)

σ
θ̂
=−A1

r2 +
A2

Rin
2 (2 ln(r/Rin)+3)+2

A3

Rin
2 −Eα

[
T̄ − (1/r2)

∫ r

Rin

T̄ rdr
]

(A.1b)

Let r0 = Rout/Rin, in Eq. (A.1) the constants N,A1,A2,A3 are specified as [29]

N =4r2
0(lnr0)

2− (r2
0−1)2 (A.2a)

A1 =
Eα

N

([
2r2

0 ln(r0)[2ln(r0)−1]+ r2
0−1

]∫ Rout

Rin

T̄ rdr−4r2
0 ln(r0)

∫ Rout

Rin

T̄ r ln(r/Rin)dr
)

(A.2b)

A2 =
Eα

N

([
2r2

0 ln(r0)− r2
0 +1

]∫ Rout

Rin

T̄ rdr−2[r2
0−1]

∫ Rout

Rin

T̄ r ln(r/Rin)dr
)

(A.2c)

A3 =
Eα

N

(
−2r2

0[ln(r0)]
2
∫ Rout

Rin

T̄ rdr+
[
2r2

0 ln(r0)+ r2
0−1]

]∫ Rout

Rin

T̄ r ln(r/Rin)dr
)

(A.2d)

For the following Figures, the geometry and temperature boundary conditions are the same
as those used for Figure 7. The inner radius of the pad (Rin) is 0.051 m, the outer radius (Rout)
is 0.07 m. The pad thermal expansion coefficient (α) is 1.3× 10−5 1/°C, and temperature
boundary conditions for inner and outer surfaces are respectively T̄in = 80◦C, T̄out = 72◦C.

Figure 33 shows the radial and circumferential stresses due to the temperature gradient
across the thickness for the test pad in Ref. [5]. Note that circumferential stresses are much
larger than the radial stresses.
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Figure 33: Thermally induced stress along the circumferential and radial direction for a test pad
in Ref. [5].

The strains from the generalized Hooke’s law read,

εr =
−ν σ

θ̂
+σr

E
+α ∆T̄ (A.3a)

ε
θ̂
=
−ν σr +σ

θ̂

E
+α ∆T̄ (A.3b)

For the steel pads, the elasticity modulus is very large, so the first term on the right hand side
of Eq. (A.3) which is due to the thermal stresses is negligible. For the example test bearing in
Ref. [5], elasticity modulus (E) is 2.05×1011, so on the right hand side, the order of magnitude
for the first term is 10−7, while for the second term it is 10−4.

Figure 34 shows that the thermal stress contribution to strains in radial and circumferen-
tial directions are negligible, and justifies neglecting the stress terms, allowing the use of the
separation of variables method in section 2.5.

51



0.00065

0.00067

0.00069

0.00071

0.00073

0.00075

0.00077

0.00079

0.05 0.055 0.06 0.065 0.07
Radius (m)

sigma_theta

sigma_r

eps_temp

𝝐𝒓
S

tr
a
in

 
(-

)

𝝐 𝜽

Rin Rout

𝜶∆ 𝑻

𝝐 𝜽

𝝐𝒓

𝜶∆ 𝑻

Figure 34: Comparison of thermal strain with and without considering thermally induced stress
along the circumferential and radial direction for a test pad in Ref. [5].

Figure 35 illustrates the pad inner surface deformation along the radial direction versus pad
local angle (θ̂ ), and compares the current method result to 2D FEM. The deformation from the
current method is almost identical to the FEM result which includes the thermal stress. This
justifies the accuracy of the assumption to neglect the stresses.
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Figure 35: Pad inner surface deformation along the radial direction versus pad local angle (θ̂).
Current method results compared to 2D FEM for a test pad in Ref. [5].
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