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Second Order Mechanical Translational System: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fundamental equation of motion about equilibrium position (X=0) 
   

  

2

( )2X ext t D K

d X
F M F F F

d t
     

  D

d X
F D

d t
    : Viscous Damping Force 

  kF K X     : Elastic restoring Force 
 

 ( M, D ,K ) represent the system equivalent mass, viscous damping coefficient, 

and stiffness coefficient, respectively. 
 

 equation of motion   

2

( )2 ext t

d X d X
M D K X F

d t d t
    

 

+ Initial Conditions in velocity and displacement;  at t=0:     

        

(0) (0)o oX X and X V   



 

MEEN 459/659 Notes 1a © Luis San Andrés (2019) 

 

1-3 

Second Order Mechanical Torsional System: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fundamental equation of motion about equilibrium position, θ=0 

   

  ( ) ;ext t D K

d
Torques I T T T

d t
 


       

  Tθ D = D    : Viscous dissipation torque 

 

  T θ K = K    : Elastic restoring torque  

  

( I, D ,K ) are the system equivalent mass moment of inertia, rotational viscous 

damping coefficient, and rotational (torsional) stiffness coefficient, respectively. 
 

Equation of motion     

2

( )2 ext t

d d
I D K T

d t d t
 

 
    

+ Initial Conditions in angular velocity and displacement at t=0: 

   (0) (0)ando o        
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(a) Free Response of Second Order SDOF 
Mechanical System 

 
Let the external force Fext=0 and the system has an initial displacement Xo 
and initial velocity Vo.  EOM is 
 

2

2
0

d X d X
M D K X

d t d t
        (1) 

 
Divide Eq. (1) by M and define:     
      

n
K

M
  : natural frequency of system 

cr

D

D
   : viscous damping ratio,  

where  2crD K M  is known as the critical damping magnitude. 

 
With these definitions, Eqn. (1)  
 

2
2

2
2 0n n

d X d X
X

d t d t
         (2) 

 
The solution of the Homogeneous Second Order Ordinary Differential 
Equation with Constant Coefficients is of the form: 
 

( ) stX t Ae        (3) 
where  A  is a constant found from the initial conditions. 
 
Substitute Eq. (3) into Eq. (2) and obtain: 
 

 2 22 0n ns s A          (4) 
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A is not zero for a non trivial solution. Thus, Eq. (4) leads to the 
CHARACTERISTIC EQUATION of the SDOF system: 
 
 

 2 22 0n ns s          (5) 
 
The roots of this 2nd order polynomial are:  
 

 
1/ 22

1,2 1n ns          (6) 

 
 

The nature of the roots (eigenvalues) depends on the damping ratio   (>1 

or < 1).  Since there are two roots, the solution is  
 

1 2

1 2( )
s t s t

X t A e A e       (7) 

 
A1, A2 determined from the initial conditions in displacement and velocity. 
 
 
From Eq. (6), differentiate three cases: 
 

Underdamped System:     0 <   < 1,   D < Dcr  

 

Critically Damped System:      =  1,     D = Dcr  

 

Overdamped System:        > 1,    D > Dcr  

 
 

Note  that   1 n   has units of time; and for practical purposes, it is 

akin to an equivalent time constant for the second order system. 
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Free Response of Undamped 2nd  Order System          
 

For an undamped system,  = 0, i.e., a conservative system without 
viscous dissipation, the roots of the characteristic equation are imaginary: 
 

1 2;n ns i s i                     (8)  

where  1i     

 

Using the complex identity  eiat = cos(at) + i sin(at), renders the 

undamped response as: 
 

   1 2( ) cos sinn nX t C t C t                  (9.a) 
 

where  n
K

M
    is the natural frequency of the system. 

 
At time t = 0, apply the initial conditions to obtain 

   0
1 0 2and

n

V
C X C


                   (9.b) 

 
Eq. (9.a) can be written as: 

 

         ( ) cosM nX t X t                     (9.c)                  

 

where 

2
2 0
0 2M

n

V
X X


  and   0

0

tan
n

V

X



  

 
XM is the maximum amplitude response. 

 
Notes:   

In a purely conservative system ( = 0), the motion never dies. Motion 
always oscillates about the equilibrium position X = 0 
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Free Response of Underdamped 2nd  Order System  
For an underdamped system, 0 <   < 1, the roots are complex conjugate  

(real and imaginary parts), i.e. 
 

   
1/ 22

1,2 1n ns i         (10) 

 
 
Using the complex identity     eiat = cos(at) + i sin(at), the response is: 
 

    1 2( ) cos sinn t

d dX t e C t C t
   

    (11) 

 

where    
1/ 221d n     is the system damped natural frequency. 

 
 
At time t = 0, applying initial conditions gives   
 

  0 0
1 0 2and n

d

V X
C X C

 




     (11.b) 

 
Eqn. (11) can be written as: 
 

         ( ) cosn t

M dX t e X t
   

           (11.c)                  

 

where 
2 2

1 2MX C C    and   2

1

tan
C

C
   

Note that as  t ,  X(t)  0, i.e. the equilibrium position only if   > 0; 

 

and XM is the largest amplitude of response only if  =0 (no damping). 
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Free Response  of Underdamped 2nd Order System:   
initial displacement only    damping ratio varies 
 

Xo = 1,  Vo = 0,         ωn = 1.0  rad/s           = 0,  0.1,  0.25 

 

Motion decays exponentially for    > 0  

 
Faster system response as    increases, i.e. faster decay 

towards equilibrium position X=0 

 
 

Free response Xo=1, Vo=0, wn=1 rad/s
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Free Response of Underdamper 2nd Order System: 
Initial velocity only      damping varies 

 

Xo = 0,  Vo = 1.0           ωn = 1.0 rad/s;       = 0,  0.1,  0.25 

 

Motion decays exponentially for      >  0 

 
Faster system response as    increases, i.e. faster decay 

towards equilibrium position X=0 
                                                          Note the initial overshoot 
 

 

Free response Xo=0, Vo=1, wn=1 rad/s
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Free Response of Overdamped 2nd  Order System 

For an overdamped system,    > 1, the roots of the characteristic equation 

are real and negative, i.e.,   

 

   
1/ 2 1/ 22 2

1 21 ; 1n ns s               
   

  (12) 

 
 
The free response of an overdamped system is: 
 

    1 * 2 *( ) cosh sinhn t
X t e C t C t

   
   (13) 

where   
1/ 22

* 1n     has units of 1/time. Do not confuse this term 

with a frequency since the response of motion is NOT oscillatory. 
 
 
At time t = 0, apply the initial conditions to get   
 

         0 0
1 0 2

*

and nV X
C X C

 




                (14) 

   
Note that as  t ,  X(t)  0, i.e. the equilibrium position.  

 
Note: An overdamped system does to oscillate. The larger the damping 

ratio  >1, the longer time it takes for the system to return to its equilibrium 

position. 
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Free Response of Critically Damped 2nd  Order System 

For a critically damped system,    = 1, the roots are real negative and 

identical, i.e.    

      1 2 ns s         (15) 

 

The solution form X(t) = A est   is no longer valid.  For repeated roots, the 

theory of ODE’s dictates that the family of solutions satisfying the 
differential equation is 

 

             1 2( ) n t
X t e C tC


      (16) 

 
At time t = 0, applying initial conditions gives   
 

Then    1 0 2 0 0and nC X C V X      (17) 

 

Note that as  t ,  X(t)  0, i.e. the equilibrium position.  

 
A critically damped system does to oscillate, and it is the fastest to damp 
the response due to initial conditions. 
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Free Response of 2nd order system: 
Comparison between underdamped, critically damped and 
overdamped systems  
 
initial displacement only 
 

Xo = 1,  Vo = 0     ωn = 1.0 rad/s          = 0.1,   1.0,   2.0 

 

Motion decays exponentially for     >  0 

Fastest response for   = 1;  i.e. fastest decay towards 

equilibrium position X = 0 
 

 

Free response Xo=1, Vo=0, wn=1 rad/s
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Free Response of 2nd order System: 
Comparison between underdamped, critically damped and 
overdamped systems  
 
Initial velocity only 
 

Xo = 0,   Vo = 1.0,       ωn = 1.0  rad/s         =  0.1, 1.0, 2.0 

 

Motion decays exponentially for     >  0 

Fastest response for      =  1.0, i.e. fastest decay towards 

equilibrium position X=0. 
              note initial overshoot  

 

Free response Xo=0, Vo=1, wn=1 rad/s
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E X A M P L E: 
A 45 gram steel ball (m) is dropped from rest through a 
vertical height of h=2 m.  The ball impacts on a solid steel 
cylinder with mass M = 0.45 kg.  The impact is perfectly 
elastic.  The cylinder is supported by a soft spring with a 
stiffness K = 1600 N/m.  The mass-spring system, initially at 

rest, deflects a maximum equal to  = 12 mm, from its static 
equilibrium position, as a result of the impact. 
(a)   Determine the time response motion of the mass- 
       spring system.  
(b)  Sketch the time response of the mass-spring system.   
(c)  Calculate the height to which the ball will rebound.   

 
(a)  Conservation of linear momentum before impact =  just after impact: 
  

_         omV mV M x     (1) 

                              

where _ 2V gh   =  6.26 m/s  is the steel ball velocity before impact 

              V+ = velocity of ball after impact;  and ox :  initial mass-spring velocity. 

Mass-spring system EOM:    +     0M x K x      (2)  with   59.62 rad/sn

K

M
    

(from static equilibrium), the initial conditions are (0) 0 and (0) ox x x    (3) 

                             

(2) & (3) lead to the undamped free response:  ( )  sin  ( )  sin  ( )o
n n

n

x
x t t t  


    

given   δ = 0.012 m  as the largest deflection of the spring-mass system.  

Hence, o nx    = 0.715 m/s            

 
(c)  Ball velocity after impact: from Eq. (1))               (b)  Graph of motion  
       

 
M m m

 6.26 7.15 0.892 
m s s

oV V x        

(upwards)                                          
 
and the height of rebound is 
 

2

    
2

V
h

g


 

 
 
 

=  41 mm  
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The concept of logarithmic decrement for estimation of 

the viscous damping ratio from a free-response vibration test 

  

The free vibration response of an underdamped  2nd order viscous 

system (M,K,D) due to an initial displacement  Xo  is a decay oscillating 

wave with  damped natural frequency (ωd). The period of motion is  Td 

= 2/ ωd (sec). The free vibration response is 
 

 d( ) cos  n t

ox t X e t
 

        (11.c)        

 

where       / ,   2 cr crD D D K M   ;       2/1 2
nd

2/1 
n 1   ;M/K    

  

 

Consider two peak amplitudes, say  X1 and X1+n, separated by  n  

periods of decaying motion.  These peaks occur at times, t1  and 

Free response of underdamped viscous system
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0.5

1

1.5

0 10 20 30 40

time (sec)

X
(t

)

damping ratio=0.1

Td

X1

X1+n

t1 t1+n

X2

t



 

MEEN 459/659 Notes 1a © Luis San Andrés (2019) 

 

1-16 

(t1+nTd), respectively.  The system response at these two times is from 

Eq. (1):   
 

 1

1 1 d 1( ) cos  n t

oX x t X e t
  

  ,  

 
and  
 

     1-

1 1 1     cos     ,n d

d

t nT

n nT o d d dX x t X e t n T


 


     

 

Or, since  .2Tdd    

 

       1 1

1 d 1 1 cos 2   cos n d n dt nT t nT

n o o dX X e t n X e t
   

  
   

     (18)  

 

Now the ratio between these two peak amplitudes is: 
 

  
      

 
1

1

11

- -
11

--
1 1

   cos  
 

   cos  2  

n
n

n d

n dn d

t t
o d nT

t nTt nT
n o d

X e tX e
e

X eX e t

 






 




  


 (19) 

 

Take the natural logarithm of the ratio above: 
 

 
   

1 1 1/ 2 1/ 22 2

2 2
ln /          

1 1
n n d n

n

n
X X n T n n

  
   

  
     

 

   (20) 

 

Define the logarithmic decrement as:   
 

 
1

1/ 22
1

1 2
  ln     

1-n

X

n X

 




 
  

 
         (21) 

 

Thus, the ratio between peak response amplitudes determines a useful 

relationship to identify the damping ratio of an underdamped second 

order system, i.e., once the log  dec (δ)  is determined then,  
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 
 1/22 2 2




 

 
 

   (22),   

 

and for small damping ratios,  ~
2





. 

 

The logarithmic decrement method to identify viscous damping ratios 

should only be used if: 

 

a) the time decay response shows an oscillatory behavior (i.e. vibration) 

with a clear exponential envelope, i.e. damping of viscous type, 

b) the system is linear, 2nd order and underdamped, 

c) the dynamic response is very clean, i.e. without any spurious signals 

such as noise or with multiple frequency components, 

d) the dynamic response X(t) 0 as t. Sometimes measurements are 

taken with some DC offset. This must be removed from your signal 

before processing the data. 

e) Strongly recommend to use more than just two peak amplitudes 

separated n periods. In practice, it is more accurate to graph the 

magnitude of several peaks in a log scale and obtain the log-

decrement () as the best linear fit to the following relationship  

[see below Eq. (23)]. 
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From Eq. (18), 

  

     

   

1

1

1 1 1

1 1

cos   ,

where cos 

n d n d

n

t nT nT

n o d

t

o d

X X t e X e

X X t e

  

 





  





 


 

 
 

1 1

1 1

ln( ) ln ln( ) 

ln , where ln ;

n dnT

n

n d

X X e

X T A n A X

 

  



   

   
 

 

1ln( )nX A n      (23) 

 

i.e., plot the natural log of the peak magnitudes versus the period 

numbers (n=1,2,…) and obtain the logarithmic decrement from a straight 

line curve fit. In this way you will have used more than just two peaks 

for your identification of damping.  

 

Always provide the correlation number (goodness of fit = R2) for the 

linear regression curve (y=ax+b), with y=ln(X) and x=n as variables. 

 

The log-dec is a most important concept widely used in the 

characterization of damping in a mechanical system (structure, pipe 

system, spinning rotor, etc) as it gives a quick estimation of the 

available damping in a system.  

 

In rotating machinery, API specifications provide the minimum 

value of logdec a machine should have to warrant its acceptance  in 

a shop test as well as safe (and efficient) operation in the film. 
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E X A M P L E 
 
A wind turbine is modeled as a concentrated mass 

(the turbine) atop a weightless elastic tower of 

height L.  To determine the dynamic properties of 

the system, a large crane is brought alongside the 

tower and a lateral force F=200 lb is exerted along 

the turbine axis as shown.  This causes a horizontal 

displacement of 1.0 in. 

    The cable attaching the turbine to the crane is 

instantaneously severed, and the resulting free 

vibration of the turbine is recorded.  At the end of 

two complete cycles (periods) of motion, the time 

is 1.25 sec and the motion amplitude is 0.64 in. 

    From the data above determine: 

(a)  equivalent stiffness K (lb/in)      

(b)  damping ratio       

(c)  undamped natural frequency  ωn (rad/s)      

(d)  equivalent mass of system (lb-s2/in)     
 

a)  
static   force 200  

200  lb/in
static   deflection 1.0 in

lb
K          

 

b)  cycle    amplitude     time         Use log dec  to find the viscous damping  ratio 

       0         1.0 in         0.0 sec 

       2         0.64 in      1.25 sec 
                                                      

  

2

1 1 1.0
 ln  ln  0.2231

2 0.64
ox

n x


   
    

  

         

2 2 2

2
 ;        ~  0.035

21 4

  
 

 
  

 

     

          

underdamped system with 3.5% of critical damping.  
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c)  Damped period of motion,   Td =  sec/cyc  .
cyc

s.
6250

2

251
  

    Damped natural frequency, 
2

10.053
sec

d

d

rad

T


    

    Natural frequency,         

21

d
n





 



rad
10.059

sec
    

d) Equivalent mass of system:   

from     n K M       

 

2

2 2   1
sec

200 /in

10.059n

K lb
M


      = 1.976  lb/ sec

2
/in 

 

E X A M P L E 
A loaded railroad car weighing 35,000 lb is rolling 

at a constant speed of 15 mph when it couples with 

a spring and dashpot bumper system.  If the 

recorded displacement-time curve of the loaded 

railroad car after coupling is as shown, determine 

(a)  the logarithmic decrement     

(b)  the damping ratio  ζ     

(c)  the natural frequency  ω n  (rad/sec)      

(d)  the spring constant K of the bumper system 

(lb/in)    

(e)  the damping ratio ζ of the system when the 

railroad car 

    is empty. The unloaded railroad car weighs 

8,000 lbs.   
 

(a)  logarithmic decrement   
1

4.8
1.1631

1.5

ox
n n

x


   
     

  
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(b)  damping ratio   

 
2 1/ 22 2

2
       

1 2

 
 

  
  

  
 

        0.1820 

 

(c)  Damped natural     period:   Td = 0.38 sec.     

          and frequency         
22

16.53 1
sec

d n

d

rad

T


     

   

 

    The natural frequency is   

2
16.816

sec1

d
n

rad



 



 

 

(d)  Bumper stiffness, 

2 2

car 2 2

1 35,000   lb 
 M 16.816  25612.5

sec 386.4 in/sec
n

lb
K K

in


 
   

  

   

 

(e)  Damping ratio when car is full:  

full

0.182
2  M

D

K
  

  

 

Note that the physical damping coefficient (D)  does not change whether car is 

loaded or not, but  does change. 

    Damping ratio when car is empty   

2  
e

empty

D

K M
       

 

   The ratio  
1/ 2

e

35,000
     0.182 

8,000

empty full

e full empty

M M

M M


 



 
     

 

 

          

 e    0.381  
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INSERT examples of identification of system damping ratio 



 0.305


1

n
ln

Xo

Xn









Log-dec is derived from ratio:

Xn 0.05 ftperiodsn 5after Xo 0.23 ft

Select two amplitudes of motion (well spaced) and count number od periods in between

(c) Determine damping ratio from log-dec:

d 41.888
rad

sec


d
2 
Td

(b) Determine damped natural frequency:

Td 0.15 sec
Td

0.6 sec
4

 from 4 periods of 
damped motion

(a) Determine damped period of motion: 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.25

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

0.25

time (s)

X
 [

ft
)

DISPLACEMENT (ft) vs time (sec)

The figure below shows the free response (amplitude vs. time) of a simple 
mechanical structure. Prior tests determined the system equivalent 
stiffness Ke=1000 lbf/in. 
From the measurements determine:
a)  damped period of motion Td (s)

b) damped natural frequency d (rad/s)

c) Using the log dec () concept, estimate the system damping ratio.
d)  the system equivalent mass Me (lbm)
e) the system equivalent damping coefficient De (lbf.s/in)

 

LSA(c) 2012Identification of parameters from transient response

1

lsanandres
Oval

lsanandres
Oval

lsanandres
Line



 0.05C 2.4 lbf
sec

in
M 220lb

Note:
Actual values of parameters are

De 2.314 lbf
sec

in


De  2 K Me 0.5
(f) system damping coefficient:

Me 219.526 lb
Me

K

n
2



and from the equation for natural frequency, the equivalent system mass is

K 1 10
3

lbf

in
Static tests conducted on the structure show its stiffness to be 

(e) system equivalent mass:

a little higher than the damped frequency (recall damping ratio is small)

n 41.937
rad

sec


n
d

1 
2

 0.5


(d) damped natural frequency:

is a very good estimation of damping 

ratio



2 
0.049Note that approximate formula:

 0.049




4 
2

 
2

 .5



2  

1 
2

 0.5
=

from log-dec formula

 

2



 0.217


1

n
ln

Xo

Xn









Log-dec is derived from ratio:

Xn 0.0776 ftperiodsn 5after Xo 0.23 ft

Select two amplitudes of motion (well spaced) and count number od periods in between

(c) Determine damping ratio from log-dec:

d 41.888
rad

sec


d
2 
Td

(b) Determine damped natural frequency:

Td 0.15 sec
Td

0.6 sec
4

 from 4 periods of 
damped motion

(a) Determine damped period of motion: 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.25

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

0.25

time (s)

X
 [

ft
)

DISPLACEMENT (ft) vs time (sec)

The figure below shows the free response (amplitude vs. time) of a simple 
mechanical structure. Prior tests determined the system equivalent 
stiffness Ke=1000 lbf/in. 
From the measurements determine:
a)  damped period of motion Td (s)

b) damped natural frequency d (rad/s)

c) Using the log dec () concept, estimate the system damping ratio.
d)  the system equivalent mass Me (lbm)
e) the system equivalent damping coefficient De (lbf.s/in)

 

LSA(c) 2012Identification of parameters from transient response

1

lsanandres
Oval

lsanandres
Oval

lsanandres
Line



Note large difference in damping - 
WHY?

 0.05C 2.4 lbf
sec

in
M 220lb

Note:
Actual values of parameters are

De 1.649 lbf
sec

in


De  2 K Me 0.5
(f) system damping coefficient:

Me 219.781 lb
Me

K

n
2



and from the equation for natural frequency, the equivalent system mass is

K 1 10
3

lbf

in
Static tests conducted on the structure show its stiffness to be 

(e) system equivalent mass:

a little higher than the damped frequency (recall damping ratio is small)

n 41.913
rad

sec


n
d

1 
2

 0.5


(d) damped natural frequency:

is a very good estimation of damping 

ratio



2 
0.035Note that approximate formula:

 0.035




4 
2

 
2

 .5



2  

1 
2

 0.5
=

from log-dec formula

2



δ 0.49=
δ

1

n
ln

Ao

An

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=Log-dec is derived from ratio:

An 1.03−:=periodsn 4:=after Ao 7.34−:=

Select two amplitudes of motion (well spaced) and count number od periods in between

(c) Determine damping ratio from log-dec:
ωd 344.28

rad

sec
=

ωd
2 π⋅
Td

:=
(b) Determine damped natural frequency:

Td 0.02sec=

Td
80 7−
4 1000⋅

sec⋅:=(a) Determine damped period of motion: from 4 periods of 
damped motion

0 16 32 48 64 80 96 112 128 144 160
8

6

4

2

0

2

4

6

8

10

time (mili-sec)

ac
ce

le
ra

ti
on

 (
vo

lt
)

Measurements of acceleration due to impact load

l-sanandres
Oval

l-sanandres
Oval

l-sanandres
Line



from log-dec formula

δ
2 π⋅ ξ⋅

1 ξ
2

−( )0.5
=

ξ
δ

4 π
2

⋅ δ
2

+( ) .5
:=

ξ 0.08=

Note that approximate formula:
δ

2 π⋅
0.08= is a very good estimation of damping 

ratio

(d) Determine damped natural frequency:
ωn

ωd

1 ξ
2

−( )0.5
:=

ωn 345.33
rad

sec
=

a little higher than the damped frequency (recall damping ratio is small)
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 (b) Forced Response of 2nd Order Mechanical System 
 

Step Force or Constant Force 
A force  with constant magnitude Fo is suddenly applied at t=0. Besides the 
system had initial displacement X0 and velocity V0.  EOM is: 
 

2

2 o

d X d X
M D K X F

d t d t
        (24) 

   
 
Using     
      

n
K

M
  : natural frequency of system 

cr

D

D
   : damping ratio, where  2crD K M  = critical damping 

Eqn. (1) becomes: 
 

2
2 2

2
2 o o

n n n

F Fd X d X
X

d t d t M K
         (25) 

 
 

The solution of the ODE is (homogenous + particular): 
 

 1 2

1 2( ) s t s t o
H P

F
X t X X A e A e

K
                        (26) 

Where  A’s  are constants found from the initial conditions        

and  XP=Fo/K  is the particular solution for the step load.     

          

Note:  Xss=Fo / K is 
equivalent to the static 
displacement if the 
force is applied very 
slowly. 
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The roots of the characteristic Eq. for the system are  
 

 
1/ 22

1,2 1n ns          (6) 

 
From Eq. (6), differentiate three cases: 
 

Underdamped System:     0 <   < 1,   D < Dcr  

 

Critically Damped System:      =  1,     D = Dcr  

 

Overdamped System:        > 1,    D > Dcr  
 

Step Forced Response of Underdamped 2nd  Order System     

 

For an underdamped system, 0 <   < 1, the roots are complex conjugate 

( real and imaginary parts), i.e. 
 

   
1/ 22

1,2 1n ns i          

The response is: 
 

    1 2( ) cos sinn t

d d ssX t e C t C t X
   

    (27) 

where   
1/ 221d n     is the system damped natural frequency. 

 

and   ss oX F K   

 
At time t = 0, applying the initial conditions gives   

    0 1
1 0 2and n

ss

d

V C
C X X C

 




      (28) 

 

Note that as  t ,  X(t)  Xss = Fo/K for    > 0,   
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i.e. the system response reaches the steady state (static) equilibrium 
position. 
 

The largest the damping ratio  ( 1) , the fastest the motion will damp to 

reach the static position Xss. In addition, the period of damped natural 

motion will increase, i.e., 

 
1/22

2 2

1
d

d n

T
 

  
  


 

 

Step Forced Response of Undamped 2nd Order System:  

For an undamped system, i.e., a conservative system,    = 0, and the 

response is just 

    1 2( ) cos sinn n ssX t C t C t X              (29)       

 

with Xss = Fo/K, C1 = (X0 – Xss) and  C2 = V0 /ωn   (30) 
 

if the initial displacement and velocity are null, i.e. X0 = V0 = 0, then  

   
 

            ( ) 1 cosss nX t X t             (31) 

 
 

Note that as  t ,  X(t) does not approach Xss for   = 0. 

The system oscillates forever about the static equilibrium position Xss 

and, the maximum displacement is 2 Xss, i.e. twice the static displacement 

(F0/K).  

 

The observation reveals the great difference in response for a force slowly 

applied when compared to one suddenly applied. The difference explains 

why things break when sudden efforts act on a system. 
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Forced Step Response  of Underdamped Second Order System:   
 

damping ratio varies 

Xo = 0,  Vo = 0,         ωn = 1.0  rad/s           = 0,  0.1,  0.25 
 
zero initial conditions 

Fo/K = Xss =1;    
 

faster response as   increases; i.e. as t   , X   Xss for 

   >  0 

 
 

Step response Xss=1, Xo=0, Vo=0, wn=1 rad/s

0

0.5

1

1.5

2

2.5

0 10 20 30 40

time (sec)

X
(t

)

damping ratio=0.0

damping ratio=0.1

damping ratio=0.25
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Forced Step Response of Overdamped 2nd  Order System 

     

For an overdamped system,   > 1, the roots of the characteristic eqn. are 

real and negative, i.e. 
 

   
1/ 2 1/ 22 2

1 21 ; 1n ns s               
   

  (32) 

 
The forced response of an overdamped system is: 
 

    1 * 2 *( ) cosh sinhn t

ssX t e C t C t X
   

    (33) 

where    
1/ 22

* 1n    . Response or motion is NOT oscillatory. 

 
and 

    0 1
1 0 2

*

and n
ss

V C
C X X C

 




      (34) 

 

Note that as  t ,  X(t)  Xss = Fo/K for     > 1, i.e. the steady-state 

(static) equilibrium position. 
 
An overdamped system does not oscillate (or vibrate). 
 
The larger the damping ratio    , the longer time it takes the 

system to reach its final equilibrium position Xss. 
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Forced Step Response of Critically Damped System 
 

For a critically damped system,    = 1, the roots are real negative and 

identical, i.e.    

      1 2 ns s               (35) 

 
The step-forced response for a critically damped system is 
 

             1 2( ) n t

ssX t e C tC X


           (36) 

 

with     1 0 2 0 1andss nC X X C V C           (37) 

 

Note that as  t ,  X(t)  Xss = Fo/K for     > 1, i.e. the steady-state 

(static) equilibrium position. 
 
A critically damped system does not oscillate and it is the fastest to reach 

the steady-state value Xss. 
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Forced Step Response  of Second Order System:    
Comparison of Underdamped, Critically Damped and 
Overdamped system responses     

Xo = 0,  Vo = 0,         ωn = 1.0  rad/s           = 0.1,1.0,2.0 
zero initial conditions 
 

Fo/K = Xss =1;   (magnitude of s-s response) 
 

Fastest response for   = 1. As t  , X   Xss  for     > 0 

 
 

Step response Xss=1, Xo=0, Vo=0, wn=1 rad/s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40

time (sec)

X
(t

)

damping ratio=0.1

damping ratio=1

damping ratio=2
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EXAMPLE: 
 

The equation describing the motion and initial 

conditions for the system shown are: 
2( / )  , (0) (0) 0M I R X D X K X F X X     

 

Given M=2.0 kg, I=0.01  kg-m2, D=7.2 N.s/m, 

K=27.0 N/m, R=0.1 m; and F =5.4 N (a step 

force),   

a)  Derive the differential equation of motion for the 

system (as given above).       

b)  Find the system natural frequency and damping 

ratio           

c)  Sketch the dynamic response of the system X(t)  

d)  Find the steady-state value of  the response  Xs-

s.      

 
(a)  Using free body diagrams:     Note that    θ= X/R   is a kinematic constraint.                                                         

The EOM's are:     

    

GM X F K X D X F         (1)    

       

                           GI F R      (2) 

 

    Then from (2)   
2G

X
F I I

R R


    (3) ; 

    (3) into (1) gives 

             

                                             2
            F

I
M X D X K X

R

 
    

 
             (4) 

 

or  Using the Mechanical Energy Method: 

 

(system kinetic energy):
2 2 2

2

1 1 1
      

2 2 2

I
T M X I M X

R


 
     

       (5) 

(system potential energy): 
21

 
2

V K X  
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(viscous dissipated energy)
2    DE D X dt  , and External work:     FW dX   

Derive identical Eqn. of motion (4) from         0
d

d
T V E W

dt
         (6) 

 

 

(b)  define 
2

3  Kgeq

I
M M

R
   ,  K = 27 N/m, D =  7.2 N.s/m 

 

and calculate the system natural frequency and viscous damping ratio:          
1/ 2

rad
 3 

sec
n

eq

K

M


 
  
 

;  0.4
2  

D

K M
   ,  underdamped system 

 

2  1- 2.75
sec

d n

rad
    , and 

2
2.28  secd

d

T



    is the  damped period 

of motion 
 

 

(c)  The step response of an underdamped system with I.C.'s  (0) (0) 0X X   is: 

 

 

 
 
 
 
 
 
 

(d)  At steady-state, no motion occurs, X = XSS, and 0,     0X X   

 

Then 

5.4 N

N
27

m

ss

F
X

K
     0.2 mssX    

   
2

( ) 1 cos sin
1

n t

ss d dX t X e t t
  

 



  

    
    
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ME459/659 Notes# 1b (pp. 32-46) 

 

Dynamic Response of 
SDOF Second Order 
Mechanical System: 

Viscous Damping 

 

( )tM X D X K X F    
 

Periodic Forced Response to   

F(t) = Fo sin( t) and F(t) = M u 2 sin(t) 

 
Frequency Response Function of Second Order 
Systems 
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(c) Forced response of 2nd order mechanical 
system to a periodic force excitation 
 

Let the external force be PERIODIC with frequency    (period T=2/) 
and amplitude Fo . The EOM is: 

 

 
2

2
sino

d X d X
M D K X F t

d t d t
        (38) 

with initial conditions  (0) (0)ando oX V X X     

 

 
 

The solution of the non-homogeneous ODE (38) is 
 

   1 2

1 2( ) cos sin
s t s t

H P c sX t X X A e A e C t C t           (39)        

 
where XH  is the solution to the homogeneous form of (38) and such that 
(s1, s2) satisfy the characteristic equation of the system: 

 

 2 22 0n ns s           
 

The roots of this 2nd order polynomial are:  
1/ 22

1,2 1n ns      (*) 

 

where n
K

M
  is the natural frequency, and

cr

D

D
   is the 

viscous damping ratio. Recall 2crD K M is the critical damping 

coefficient. 
 
The value of damping ratio  determines whether the system is 

underdamped ( <1), critically damped ( =1), overdamped ( >1). 
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Response of 2nd Order Mechanical System to a Periodic Loading:   

 
And the particular solution is   

     cos sinP c sX C t C t       (40) 

 

Substitution of Eq. (40) into Eq. (38), and after some algebra, gives  
 

 

 

2

2

1 0

1

c

s o

M K D K C

C F KD K M K

      
     
       

      (41a) 

Substitute above   n
K

M
   ; 

n

K MD D M

K K D K

  


    

 

and Xss = Fo/K, a “pseudo” static displacement  

 

 

 

2 2

2 2

1 0

1

n n c

s ssn n

C

C X

  

  

      
     
       

 (41b) 

Define the frequency ratio    
n

f


  (42) 

 

that relates the (external) excitation frequency (Ω) to the natural 

frequency of the system  (ωn);  i.e.  when 
 

1n f  ,  the system operates below its natural frequency 

 

1n f  , the system operates above its natural frequency 

 
With this definition, write Eq. (41b) as: 
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 

 

2

2

1 0

1

c

s ss

f f C

C Xf f





     
     
       

   (43) 

  
Solve Eq. (50) for the coefficients Cs and Cc: 
  

      

   

 

   

2
2

2 22 22 2

12  
;

1 2  1 2  
c ss s ss

ff
C X C X

f f f f



 


 

   
 (44) 

 

Response of 2nd Order Mechanical System to a Periodic Load:   

For an underdamped system,  0 <     <  1,  the homogeneous solution 

(free response) is 
 

    ( ) 1 2cos sinn t

H t d dX e C t C t
   

    (45) 

 

where   
1/ 221d n    is the system damped natural frequency. 

 

By superposition, the complete response is ( ) H PX t X X  = 

 

        ( ) 1 2cos sin cos sinn t

t d d c sX e C t C t C t C t
   

       (46) 

 
with Cs and Cc  Eq. (44). 
 
At time t = 0, apply the initial conditions and obtain  
 

  0 1
1 0 2and n s

c

d

V C C
C X C C

 



  
      (47)  

 

As long as   > 0, the homogeneous solution (also known as the 
TRANSIENT or free response) will die as time elapses, i.e.,  
for t >>0 then XH  0. 
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Thus, after all transients have passed, the dynamic response of the system 

is just the particular response XP(t) .  

 

Steady State – Periodic Forced Response of Underdamped 
System 

The steady-state (or quasi-stationary) response is given by: 
 

     ( ) cos sin sint c sX C t C t C t          (48) 

 

where  (Cs, Cc)   Eq. (44).  Define    cos ; sins cC C C C    ; 

where   is a phase angle; then  

 

 
 2

2
tan

1

c

s

C f

C f





 


   (49) 

and  
2 2  S C ssC C C X A   , where   

   
2 22

1
;

1 2  

A

f f



 
= amplitude ratio  (50) 

(a dimensionless quantity) 
 
Thus, the steady-state system response is just 

 

 ( ) sint ssX X A t       (51) 

 
Note there “steady-state” implies that, for excitation with a constant 

frequency , the system response amplitude C and the phase angle  
are constant or time invariant  
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Amplitude and Phase Lag of  Periodic Force Response  
 

   ( ) ( )sin for        sint ss t oX X A t F F t      

 

FRF 2nd order system

Periodic force: Fo sin(t)
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Regimes of Dynamic Operation: 

 

1n f  ,  the system operates below its natural frequency 

 

   21 1; 2  0 1 0f f A        

 

 ( ) sinssX t X t       i.e. similar to the “static” response 

 
 

1n f    ,  the system is excited at its natural frequency 

   2 1
1 0; ; 90

2 2
f A





      

( ) sin
2 2

ssX
X t t





 
   

 
      

  

if      < 0.5, the amplitude ratio A > 1 and a  resonance is 

said to occur. 
 

1n f  , the system operates above its natural frequency 

     21 1; 2  0 0 180f f A        

 

    ( ) sin sinss ssX t X A t X A t      

 

  A <<< 1, i.e. very small,    
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Steady State – Periodic Forced Response of 2nd Order 
system:  Imbalance Load 
 
Imbalance loads are typically found in rotating machinery. In operation, due 
to inevitable wear, material build ups or assembly faults, the center of mass 
of the rotating machine does not coincide with the center of rotation (spin). 
Let the center of mass be located a distance (u) from the spin center, and 
thus, the load due to the imbalance is a centrifugal “force” with magnitude 
Fo = M u Ω2 and rotating with the same frequency as the rotor speed (Ω). 
This force excites the system and induces vibration1. Note that the 
imbalance force is proportional to the frequency2 and grows rapidly with 
shaft speed.  
 
 
 
 
 
 
 
 
Ne that although in practice the offset distance (u) is very small (a few mil), 
the system response or amplitude of vibration can be quite large affecting 
the performance and integrity of the rotor assembly. 
 
For example if the rotating shaft & disk has a small imbalance mass (m) 
located at a radius (r) from the spin center, then it is easy to determine that 
the center of mass offset (u) is approximately equal to (m r/M). Note that 
u<<r. 
 

 
r m

u M m r m u
M

    

 
 
 

                                                 
1 The current analysis only describes vibration along direction X. In actuality, the imbalance force induces 

vibrations along the planes (X,Y) and the rotor whirls in an orbit around the center of rotor spinning. For 

isotropic systems, the motion in the X plane is identical to that in the Y plane but out of phase by 90o. 

 
M 

u 

Ω 
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The equation of motion for the system with an imbalance force is 
 

   
2

2

2
sin sino

d X d X
M D K X F t M u t

d t d t
      

 

 

then      

2 2

2

o
ss

n

F M u
X u u f

K K 

 
      

 

with nf  . The “steady-state” system response  is  

 

     2

( ) sin sint ssX X A t u A t           

 

 ( ) sintX u B t     (52) 

 
 

where   is a phase angle,  
 2

2
tan

1

f

f


 


, and 

 
       

        

   

2

2 221 2  

f
B

f f



 
      (53)  

is the amplitude ratio (dimensionless quantity). 
 
 
 

Educational video – watch UNBALANCE RESPONSE demonstration 
https://www.youtube.com/watch?v=R2hO--TIjjA 

 
 
 
 

https://www.youtube.com/watch?v=R2hO--TIjjA
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Amplitude B and phase lag () for response to an imbalance (u) 

 

   2

( ) ( )sin for        sint tX u B t F M u t     

 

FRF 2nd order system

Imbalance force: M u ^2sin(t)
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Regimes of Dynamic Operation: 

 

1n f  , rotor speed is below its natural frequency 

 

   2 21 1; 2  0 0 and 0f f B f         

 

 2( ) sin 0X t u f t        i.e. little motion or response 

 
 

1n f    , rotor speed coincides with natural frequency 

   2 1
1 0; ; 90

2 2
f B





      

 ( ) sin cos
2 2 2

u u
X t t t



 

 
     

 
      

  

if      < 0.5, amplitude ratio B > 1 and a  resonance is said to occur. 

Damping is needed to survive passage through a natural frequency 
(critical speed). 

 

1n f  , the rotor speed is above its natural frequency 

 
 

2

2 2

1 2  
1 ; 0 1 180

f f
B

f f


 

  
     

 
 

 

    ( ) sin sinX t u t u t      

 

B ~ 1, at high frequency operation, the maximum amplitude of vibration 

(Xmax) equals the unbalance displacement (u). 
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Note: API demands that the operating speed of a rotor system is not too 
close to the natural frequency to avoid too large amplitudes that could 
endanger the life of the system. A rotor speed cannot operate (but for 
very short times) 20% above and below the natural frequency.    
 

EXAMPLE: 

 

A cantilevered steel pole supports a small 
wind turbine. The pole torsional stiffness is 
K (N.m/rad) with a rotational damping 
coefficient C (N.m.s/rad).   
 
The four-blade turbine rotating assembly 
has mass mo , and its center of gravity is 
displaced distance  e [m]  from the axis of 
rotation of the assembly.   
 
Iz (kg.m2) is the mass moment of inertia 
about the z axis of the complete turbine, 
including rotor assembly, housing pod, and 
contents.  
 
The total mass of the system is  m (kg).  
The plane in which the blades rotate is 
located a distance   d  (m) from the z axis 
as shown.   
 

For a complete analysis of the vibration characteristics of the turbine system, determine: 
 
a) Equation of motion of torsional vibration system about z axis. 

b) The steady-state torsional response  (t) (after all transients die out). 

c) For system parameter values of k=98,670 N.m/rad, Iz=25 kg.m2, C = 157 N.m.s/rad, and  mo 

= 8 kg, e = 1 cm, d = 30 cm, present graphs showing the response amplitude (in rads) and 
phase angle as the turbine speed (due to wind power variations) changes from 100 rpm to 
1,200 rpm. 

d) From the results in (c), at what turbine speed should the largest vibration occur and what is 
its magnitude? 

e) Provide a design recommendation or change so as to reduce this maximum vibration 
amplitude value to half the original value. 

 
Neglect any effect of the mass and bending of the pole on the torsional response, as well as any 
gyroscopic effects. 

 
(a) derive the drive torque and EOM 
 The torque or moment induced by the mass imbalance is 

 

Z

m
0

e

d

X
Y

t

M
e

0

 
 

 
 
 
2

m
0

d

X

Z Y

k

M e cos    t
0   

   2  

c

k=  Torsional Tiffness

e=  Torional Damping coeffic ient
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T(t) = d x Fu =  

)(T

2
 d e om



 cos(ωt),  i.e., a function of frequency 

          
The equation for torsional motions of the turbine-pole system is: 

 

 2

( )  cos  t T  cos tz oI C K m e d         
  (e.1) 

 

Note that all terms in the EOM represent moments or torques. 
 

(b) The steady state periodic forced response of the system: 
 

 
   

  1/ 22 22

cos

1 2 

sst t

f  f


  



 
  
 

    (e.2) 

 

but   

2
( ) 2   

  o oz
ss

z z

T m ed m edI
f

K K I I

 


 
   

 
    (e.3) 

 

 with   ; ;
2

n

n z z

K C
f

I K I


 


   , and  

1

2

2
tan

1

f

f


   
  

 
    (e.4) 

 

  
(e.3) in (e.2) leads to 
 

   

2

 1/ 22 22

 
( )  cos  ( - )

1 2  

o

z

m ed f
t t

I
f f

  




  
 

   (e.5) 

 

Let  o

z

m ed

I
        (e.6)       

   

2

 1/ 22 221 2  

f
B

f f


  
 

       (e.7) 

 

and rewrite (e.5) as:   ( )  cos  ( )t B t       (e.8) 
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 (c) for the given physical values of the system parameters: 

K = 98,670 N.m/rad   
rad

sec
62.82 n

z

K

I
    

Iz = 25 kg   m2    0.05
2 z

C

K I
    

C  =  157. N.m.s/rad 
 

-58 0.01 0.3 0.024
96 10 rad

25 25

o

z

m ed

I


 
     

 
And the turbine speed varies from 100 rpm to 1,200 rpm, i.e. 
  

= rpm /30 =  10.47 rad/s to 125.66 rad/s, i.e. 
 

n

f



 =  0.167  to  2.00,  

 
thus indicating the system will operate through resonance. 
 

Hence, the angular response is    5( ) 96.4 10 rad cos  ( )t B t      

 
(d) Maximum amplitude of response: 
since  << 1,  the maximum amplitude of motion will occur when the 

turbine speed coincides with the natural frequency of the torsional system, 

i.e., at  f = 1  1
2

B


 and
1

( ) cos
2 2

t t


  




 
   

 
 

the magnitude is θMAX = max

-2
 rad0.964 x 10

2





  , i.e. 10 times larger 

than  . 
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The graphs below show the amplitude (radians) and phase angle 
(degrees) of the polo twist vs. turbine speed (RPM) 
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(e) Design change:  DOUBLE DAMPING but first BALANCE ROTOR! 



Ψ r( ) atan
2− ζ⋅ r⋅

1 r
2

−









:=Yop r( ) a
Mrotor

M
⋅

r
2

1 r
2

−( )2
2 ζ⋅ r⋅( )2

+






.5
⋅:=

a 2.5 10
3−⋅ in⋅:=The system response (amplitude and phase) for imbalance excitation

are:

r 0.884=
r

ω
ωn

:=ω 188.496
rad

s
=

ω RPM
2 π⋅
60

⋅
rad

s
⋅:=

RPM 1800:=and operating frequency ratio (r) for rotor speed:

little dampingζ 0.011=ωn 213.125
rad

s
=

ζ
C

2 M⋅ ωn⋅
:=ωn

K

M




.5

:=

calculate the system natural frequency and damping ratio:

M 8.5 10
3

× lb=

C 100 lbf⋅
sec

in
⋅:=M Mrotor Mplatform+:=

Mplatform 7750 lb⋅:=Mrotor 750 lb⋅:=K 10
6 lbf

in
⋅:=Given

System excitation due to rotating imbalanceKEY:

c
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a

k
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�����������������������������������������������������

The rotor of an electric generator weights 750 lb and is attached to a platform weighing 7750 lb. 

The motor has an imbalance eccentricity (a) of 2.5 mils. The platform can be modeled as shown 

in the figure. The equivalent stiffness (K) of the platform is 1 million-lb/in, and the equivalent 

damping is C=100 lb-s/in. The operating speed of the generator is 1800 rpm. 

(a) determine the response of the platform (amplitude and phase) at the operating speed.

(b) determine the response of the platform (amplitude and phase) if the rotor spins  with a speed 

coinciding with the system natural frequency. 

(c) if the platform stiffness is increased by 25%, determine the allowable amount of imbalance (a) 

that will give the same amplitude of motion as determined in (a). Assume that the mass of the 

platform and  the damping do not change appreciably by performing the stiffening.
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K 1.25 K⋅:= to maintain Yoper 7.894 10
4−× in=

calculate the NEW system natural frequency and damping ratio:

ωn
K

M




.5

:= ζ
C

2 M⋅ ωn⋅
:=

ωn 238.281
rad

s
= ζ 9.531 10

3−×= small change in damping ratio

and operating frequency ratio (r) for rotor speed: RPM 1800:=

ω RPM
2 π⋅
60

⋅
rad

s
⋅:=

ω 188.496
rad

s
=

r
ω
ωn

:=
r 0.791=

from relationship:

Yop r( ) a
Mrotor

M
⋅

r
2

1 r
2−( )2

2 ζ⋅ r⋅( )2
+







.5
⋅:=

determine the (new) allowable imbalance:

a
Yoper

Mrotor

M

r
2

1 r
2−( )2

2 ζ⋅ r⋅( )2
+







.5
⋅









:=

a 5.354 10
3−× in=

i.e. ~ twice as original imbalance 

(eccentricity) displacement, 

Thus, at r 0.884= <1

Yop r( ) 7.894 10
4−× in= Ψ r( )

180

π
⋅ 4.947−= [degrees]

Let: Yoper Yop r( ):=

(b) If the rotor should spin with a speed coinciding with the system natural frequency,

r 1:=

ω ωn:=

RPM ω
60

2 π⋅
⋅

s

rad
⋅:=

RPM 2.035 10
3×=

the system response is

Yop 1( ) 0.01 in= Ψ 90−:= degrees Yop 1( )

Yoper
13.111=

also determined from:

a
Mrotor

M
⋅

1

2 ζ⋅
⋅ 0.01 in=

(c) If the platform increases K by 25%, Koriginal K:=



C 2 103× s
N

m
=

ωd ωn 1 ζ
2

−( ).5
⋅:= fd

ωd

2 π⋅
:=

Td
1

fd
:=

Td 0.063s=
damped natural period

Set frequencies and amplitudes of the excitation z(t) are:

a1 0.05 m⋅:= a2 0.05 m⋅:= a3 0.05 m⋅:=

ω1

ωn

2
:= ω2 ωn

9

10
⋅:= ω3 2.2 ωn⋅:=

assemble: z t( ) a1 cos ω1 t⋅( )⋅ a2 sin ω2 t⋅( )⋅+ a3 cos ω3 t⋅( )⋅+:=

0 0.051 0.1 0.15 0.2 0.25
0.2

0

0.2
excitation displacement

time (s)

z(
t)

 [
m

]

4 periods of damped 

natural motion

Example: system response due to multiple frequency inputs

Consider a 2nd order system described by the following EOM L San Andres (c) 2008

M
2t
Y

d

d

2
⋅ C

t
Y

d

d
⋅+ K Y⋅+ K z t( )⋅= where

z t( ) a1 cos ω1 t⋅( )⋅ a2 sin ω2 t⋅( )⋅+ a3 cos ω3 t⋅( )⋅+:=

is an external excitation displacement function

Find the forced response of the system, i.e, find Y(t)

Given the system parameters M 100 kg⋅:= K 106 N

m
⋅:= ζ 0.10:=

calculate natural frequency
and physical damping

ωn
K

M
⎛⎜
⎝

⎞⎟
⎠

0.5

:=
fn

ωn

2 π⋅
:= fn 15.915Hz=

C 2 M⋅ ωn⋅ ζ⋅:=



SYSTEM RESPONSE is: Y t( ) ai H⋅ cos ωi t⋅ φi+( )⋅:=

The system frequency response function: amplitude and phase angle are

H r( )
1

1 r2−( )2
2 ζ⋅ r⋅( )2+⎡⎣ ⎤⎦

.5
:= φ r( ) φ atan

2 ζ⋅ r⋅

1 r2−

⎛
⎜
⎝

⎞
⎟
⎠

−←

φ φ π−← r 1>if

φreturn

:=

graphs of frequency response function

Amplitude and phase lag as a function of r
ω

ωn
= frequency ratio

0 0.5 1 1.5 2 2.5 3
0
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5

6
Amplitude of FRF

Frequency ratio

A
m
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ud
e 

H
(r

)

Q factor−

1

2 ζ⋅
5=
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180
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45

0
Phase angle of FRF

Frequency ratio

P
ha
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ng
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 (
de

gr
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)



φ2
180

π
⋅ 43.452−= degreesY2 0.191m=

for third excitation: r3

ω3

ωn
:= φ3 φ r3( ):= r3 2.2=H r3( ) 0.259=

Y3 a3 H r3( )⋅:= φ3
180

π
⋅ 173.463−= degreesY3 0.013m=

Assemble physical response:

Y t( ) Y1 cos ω1 t⋅ φ1+( )⋅ Y2 sin ω2 t⋅ φ2+( )⋅+ Y3 cos ω3 t⋅ φ3+( )⋅+:=

Now graph the response Y(t) and the excitation z(t):

0 0.051 0.1 0.15 0.2 0.25
0.4

0.2

0

0.2

0.4

Z
Y

excitation & response

time (s)

z(
 &

 Y
(t

) 
[m

]

Note: The response Y 

shows little motion at the 
highest excitation 
frequency (ω3).

There is an obvious 
amplification of motion 
with second frequency 
(ω2 ~ ωn).

To understand better,
let's plot the actual FRF:

Td 0.063s=

The response of the system is given by the superposition of individual responses, i.e

Y t( ) Y1 cos ω1 t⋅ φ1+( )⋅ Y2 sin ω2 t⋅ φ2+( )⋅+ Y3 cos ω3 t⋅ φ3+( )⋅+:=

where

r1

ω1

ωn
:= r1 0.5=for first excitation: φ1 φ r1( ):=H r1( ) 1.322=

Y1
K

K
a1⋅ H r1( )⋅:= φ1

180

π
⋅ 7.595−= degreesY1 0.066m=

for second excitation: r2

ω2

ωn
:= φ2 φ r2( ):= r2 0.9=H r2( ) 3.821=

Y2 a2 H r2( )⋅:=



0 0.5 1 1.5 2 2.5 3
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a1 0.05m=

r1 0.5= Y1 0.066m=

r2 0.9= Y2 0.191m=

r3 2.2=

Y3 0.013m=

Note how response amplitude for 
largest frequency is largely 
attenuated

Y3 a3<

while amplitudes for first two 
frequencies are amplified, in 
particular for ω2 which is close to 

the natural frequency
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1.322=



MEEN 459/659 Notes 1c © Luis San Andrés (2019) 1-47 

ME459/659 Notes# 1c (pp. 47-55) 

 

Dynamic Response of 
SDOF Second Order 
Mechanical System: 

Viscous Damping 
 

 
 

( )tM X D X K X F  
 

 

 

Transmissibility: Forces transmitted to base or 
foundation 
 

Response to Periodic Motion of Base or Support 
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TRANSMISSIBILITY: transmitted force to base or 
foundation 

 
Needed to calculate stresses on the structural supports as well as 
to verify the isolation characteristics of the system from its base or 
support frame. 
 
The EOM for a SDOF (K,D.M) system excited by a periodic force 
of constant magnitude Fo and frequency (Ω) is: 
 

 
2

2
sino

d X d X
M D K X F t

d t d t
   

         (54) 

 

with solution    ( ) sinssX t X A t           (55)  

 
 where        
      

   

-1

1/2 222

1 2  
    ;      ;    tan  

11- 2  

o
ss

F f
X A

K ff f






 
    

   
 

 

 
  (56) 

 

with nf  as the ratio of the excitation frequency to the 

system natural frequency. 
 
The dynamic force transmitted to the base or  
foundation is         
  

    B D KF F F D X K X           (57)   

 
Substitution of Eq. (55) into Eq. (57) gives, 
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      sin 2  cosB oF F A t f t              (58) 

 

Let       
2 2

1 2   
cos   ;   sin

1 (2   ) 1 (2  )

f

f f


 

 
 

 
 

 
And after manipulation rewrite Eq. (58) as: 
 

   sinB o T TF F A t   
    (59) 

 

where  

 

   

 

1/2
2

1/2
22

-1 -1

2

1 2  
=  ;    ;

1- 2  

2  
tan ; tan 2  

1

T T

f
A

f f

f
f

f


  




  

 
   

 
 

 
  

 

 

 

 

  (60) 

 

The transmissibility (T) is the ratio of force transmitted to base 

or foundation |FB| to the (input) excitation force |F0 sin(t)|, i.e., 
 

 

2

 
2 2 2

1 (2  )
       

(1 ) (2  )

B
T

o

fF
T

F f f
A 




  

 
  (61) 

 

Regimes of operation: 

 

at low frequencies: 

0 1n Tf A      

 

at high frequencies: 

2n Tf A f      
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at resonance: 

21 4
1

2
n Tf A







    

 

 

NOTES:  

At low frequencies,  < 2 ,  the transmitted force (to base) is larger than 

external force, i.e. T>1 
 

At  = 2 , the system shows the same transmissibility, independent of 

the damping coefficient or . 
 

Operation above  > 2  determines the lowest transmitted forces, 
i.e. mechanical system is ISOLATED from base (foundation). A 
desirable operating condition 

 

When operation is at large frequencies,  > 2  , viscous damping causes 

transmitted forces to be larger than w/o damping. Damping is NOT 
desirable for operation at high frequencies. 

 

FRF 2nd order system

Periodic force: Fo sin(t)
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Response to Periodic Motion of Base or Support 
 
Consider the motion of a (K, D,M) system with its 
base (or support) moving with a known periodic 

displacement Z(t) = b cos (t).  
 
The dynamic response of this system is of particular 
importance for the correct design and performance of 
vehicle suspension systems. Response to earthquake 
excitations as well.  

 
For motions about a static equilibrium,Y=Z=0.The EOM is: 
 

 ( ) ( ) 0M Y K Y Z D Y Z        (62a) or 

 M Y DY K Y K Z DZ      (62b) 

 
 
Since  cos ( t)Z b   is prescribed, then 

   sin ( t)Z b       

 
 
Substitution of Z and dZ/dt into eqn. (62b) gives 
 

       cos 2  sinM Y DY K Y K b t f t          (63)  

 

Let :    
2 2

1 2   
cos   ;   sin

1 (2   ) 1 (2  )

f

f f


 

 
 

 
 

 
  
and write Eq.(63) as: 
 
 

     
2

  1 2  cos cosoM Y DY K Y K b f t F t           (64) 
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After all transients die due to damping, the system periodic 
steady-state response or motion is: 

 ( )   cost B BY b A t  
                (65) 

 

where  

 

   

 

1/2
2

1/2
22

-1 -1

2

1 2  
=  ;    ;

1- 2  

2  
tan ; tan 2  

1

B B

f
A

f f

f
f

f


  




  

 
   

 
 

 
  

 

 

 

 
   (66) 

NOTE that AB  is identical to the amplitude of FRF for transmitted force, i.e. the 

transmissibility ratio 
 

FRF 2nd order system

Support motion: z=b cos(t)
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EXAMPLE: 
A 3000 lb (empty) automobile with a 10’ wheel-base has wheels which weigh 70 lb 

each (with tires).  Each tire has an effective stiffness (contact patch to ground) of 1000 
lb/in.  A static test is done in which 5 passengers of total weight 800 lb climb inside and 
the car is found to sag (depress toward the ground) by 2”. 
(a)  From the standpoint of the passenger comfort, what is the worst wavelength (in 

feet) [sine wave road] which the car (with all 5 passengers) could encounter at 65 
mph? 

(b)  For the worst case in (a) above, what percent of critical damping is required to keep 
the absolute amplitude of the vertical heaving oscillations less than ½ of the 
amplitude of the undulated road? 

(c) What is the viscous damping coefficient required for the shock absorber on each 
wheel (assume they are all the same) to produce the damping calculated in (b) 
above?  Give the physical units of your answer. 

(d) State which modes of vibration you have neglected in this analysis and give 
justifications for doing so. 

 
 
 
 
 
 
 
 

 
Let 

 

The wavelength is equal to  = v T, with  T  as the 

period  of motion. And the frequency () of the forced 

motion is: 
 

2 2  
 

v

T

 



   

 
The system mass is: 
 

g

)70x48003000(

g

W
M eq


  

 

2

800  lb lbf 3,520  lbf
400 ;        

2  in in 386.4  in/sec
eqK M    

2 sec
 9.12 

lbf

in
  

 



MEEN 459/659 Notes 1c © Luis San Andrés (2019) 1-54 

Hz) 05.1(  
sec

rad
 2.6   

2/1

M

K
  

eq

n 













  

 

(a) For passenger comfort, the worst wavelength (in feet) which the car could encounter 

at 65 mph is when the excitation frequency coincides with the system natural 

frequency, i.e.  = n. Thus from 

 

n

2 2
 .

v

T

 
 


    Then 

5,280 /
2  65   

2 3,600 sec/

6.62 
sec

n

ft mile
mph

v hour

rad







 
  
    =  = 90.47 ft = (0.0171  miles) 

 
 

(b) For the worst case what percent of critical damping is required to keep the absolute 

amplitude of the vertical heaving oscillations less than ½ of the amplitude of the 

undulated road? i.e. What value of damping ratio () makes n

1
    at     ?
2

Y

b
      

 

Recall  that at   =n, the amplitude of the support FRF is from eqn. (77):  

 
1/2

2

2

1 (2 ) 1
   

(2 ) 2B
A 



 
  
 

  ?  
2

1 3

4 4
   

 

The solution indicates that the damping ratio () is imaginary! This is clearly impossible. 

Note that the amplification ratio AB > 1 at  f =  1, i.e. the amplitude of motion |Y| for the 
system will always be larger than the amplitude of the base excitation (b), regardless of 
the amount of damping. 

 
(c) What is the viscous damping coefficient required for the shock absorber on each 
wheel (assume they are all the same) to produce the damping calculated in (b) above? 

 

No value of viscous damping ratio () is available to reduce the amplitude of motion. 

However, if there should be one value, then  

4

2  2  

eq

eq n eq n

D D

M M


 
  ; then  

lb1
       

2 in/sec

f

eq nD M 
 

  
 
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(d) State which modes of vibration you have neglected in this analysis and give 
justifications for doing so. 

 
Heaving (up & down) motion is the most important mode and the one we have studied. 

In this example, pitching motion is not important because the road wavelength    is 

large. We have also neglected yawing which is not important if the car cg is low.  
 
One important mode to consider is the one related to “tire bouncing”, i.e. the tires have 
a mass and spring coefficient of their own, and therefore, its natural frequency is given 
by 
 

1,000
  74.25

70 / 386.4 sectiren

rad
      

 
However, the car bouncing natural frequency is 6.62 rad/sec is much lower than the tire 
natural frequency, i.e. 

ncar = 6.62 rad/s  < < n tire = 74.25 rad/sec 

 
Therefore, it is reasonable to neglect the “tire” bouncing mode since its frequency is so 
high that it can not be excited by the road wavelength specified.  
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Dynamic Response of 
SDOF Second Order 
Mechanical System: 

Viscous Damping 
 

 
 

( )tM X D X K X F    

 
DYNAMIC RESPONSE OF A SDOF SYSTEM TO 
ARBITRARY PERIODIC LOADS 
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DYNAMIC RESPONSE OF SDOF SYSTEM TO 
ARBITRARY PERIODIC LOADS 
 

Fourier Series 
Forces acting on structures 

are frequently periodic or can 
be approximated closely by 
superposition of periodic 
loads.  

 
As illustrated , the 

function F(t) is periodic but 
not harmonic.  

 
Any periodic function, however, can be represented by a 

convergent series of harmonic functions whose frequencies 

are integer multiples of a certain fundamental frequency .  
 
The integer multiples are called harmonics. The series of 

harmonic functions is known as a FOURIER SERIES, written 
as  

 

0

1 1

( ) cos( ) sin( )
2

n n

n n

a
F t a n t b n t

 

 

        (67) 

 

with ( ) ( )t T tF F   and T=2/ is the fundamental period. an, bn 

are the coefficients of the nth harmonic, and related to F(t) by 
the following formulas 
 

F

t

0 0.2 0.4
20

10

0

10

20
fundamental period=0.236 s

tim e (sec)

fo
rc

e
 (

N
)

T 0.236s

T 
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2
( )cos( ) , 0,1,2,. . . . . .

2
( )sin( ) , 1,2,. . . . . . ..

t T

n
t

t T

n
t

a F t n t dt n
T

b F t n t dt n
T





   

   





                                                                                                          (68) 

 
each representing a measure of the participation of the 

harmonic content of cos(nt) and sin(nt), respectively. All 
the a0, bm, cm have the units of force. 
 
Note that (½ a0) is the period averaged magnitude of F(t) . 

 
In practice, F(t) can be approximated by a relatively small 
number of terms. Some useful simplifications arise when 
 

If F(t) is an EVEN fn., i.e., F(t) = F(-t) then,  bn = 0 for all n 

 

If F(t) is an ODD   fn., i.e., F(t) = -F(-t) then,  an = 0 for all n 

 
The Fourier series representation, Eq. (67), can also be 
written as  
 

0

1

( ) cos( )
2

n n

n

a
F t c n t 





       (69) 

 

where  
1/2

2 2 1and tan , 1,2,. . . . .n
n n n n

n

b
c a b n

a
        

 
 

are the magnitude and phase angle, respectively, of the nth 

harmonic frequency (n). 
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RESPONSE OF UNDAMPED SYSTEM   
 
For an undamped SDOF system, the steady state 
response (w/o the transient solution) produced by each sine 
and cosine term in the harmonic load (Fourier series) is  

 ( ) 2
sin

1

m

m t

m

b
KXs m t
f

 


 ,  ( ) 2
cos

1

m

m t

m

a
KXc m t
f

 


    m=1,2, (70) 

 

where ,m n
n

m
f K M




  . For the constant force a0, the 

s-s response is simply
01

0 2

a
X

K
 . 

   
Using the principle of superposition, gives the system 
response as the sum of the individual components: 
 

 
 0

( ) 2
1

1 1
cos( ) sin( )

1
t m m

m m

a
X a m t b m t

K 2 f





 
     
 
 

  (71) 

 

Note when nm    , i.e., there is a harmonic frequency equal 

to the natural frequency of the system, then the system 
response will (theoretically) be UNBOUNDED (the system 
will fail!). 
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PERIODIC FORCED RESPONSE OF A DAMPED SDOF  

In a damped SDOF system, the steady-state response 
produced by each sine and cosine term in the harmonic load 
series is  

  

   

   

2

( ) 2 22

1 cos( ) 2 sin( )

1 2

m m
m

m t

m m

f m t f m ta
Xc

K f f





    
 

  
  

 (72a) 

 

  
   
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Superposition gives the total system response as 
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m
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Example - square waveDefine periodic excitation function:
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Find Fourier Series coefficients for excitation z(t)
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Example: system response due to periodic function

Consider a 2nd order system described by the following EOM L San Andres (c) 2008
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d
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⋅ C
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Y

d

d
⋅+ K Y⋅+ K z t( )⋅= where

z (t) is an external periodic excitation function

Given the system parameters M 100 kg⋅:= K 106 N

m
⋅:= ζ 0.10:=

calculate natural frequency
and physical damping

ωn
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Ycm cos m Ω⋅ t⋅(⋅( ) Ysm sin m Ω⋅ t⋅( )⋅+⎡⎣ ⎤⎦∑
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+:=SYSTEM RESPONSE is: 

Find the forced response of the system, i.e, find Y(t)
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Build z(t) as a Fourier series
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(b) build denominator denm 1 fm( )2−⎡⎣ ⎤⎦
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Now graph the response Y(t) and the excitation (Fourier) z(t):
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Note: obtain response for inputs with increasing frequencies (periods 
decrease)
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Example: system response due to periodic function

Consider a 2nd order system described by the following EOM L San Andres (c) 2013
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Design Issues: SDOF FRF - Luis San Andrés © 2013 1

Important design issues and engineering 
applications of SDOF system Frequency response 
Functions 
 
The following descriptions show typical questions related to the 
design and dynamic performance of a second-order mechanical 
system operating under the action of an external force of 
periodic nature, i.e. F(t)=Fo cos(Ωt) or F(t)=Fo sin(Ωt) 
 

The system EOM is:   cosoM X D X K X F t      
 
Recall that the system response is governed by its parameters, 
i.e. stiffness (K), mass (M) and viscous damping (D) 
coefficients. These parameters determine the fundamental 

natural frequency, 
n

K
M  , and viscous damping ratio,  

,with 2
c

D
D cD KM    

 
In all design cases below, let r=( Ω /n) as the frequency ratio. 
This ratio (excitation frequency/system natural frequency) 
largely determines the system periodic forced performance.  
 
 
 
 
 
 
 
 
 
 
 



 

Design Issues: SDOF FRF - Luis San Andrés © 2013 2

PROBLEM TYPE 1 
Consider a system excited by a periodic force of magnitude Fo 
with external frequency Ω.  
a) Determine the damping ratio   needed such that the 

amplitude of motion does not ever exceed (say) twice the 
displacement (Xs=Fo/K) for operation at a frequency (say)  
20% above the natural frequency of the system (=1.2n). 

b) With the result of (a), determine the amplitude of motion for 
operation with an excitation frequency coinciding with the 
system natural frequency. Is this response the maximum ever 
expected? Explain. 

Recall that system periodic response is      

   ( )( ) cos( )s rX t X H t     

 
Solution. From the amplitude of FRF 
 

 
( ) 22 2

1

1 (2 )
r

s

X
H

X r r
 

 
 

 
Set r=ra = 1.2   and |X/Xs|=Ha=2. 
Find the damping ratio  from the algebraic equation: 
 

  
 

22 2 2

22 2
2

1 (2 ) 1

1
(2 ) 1

a

a

a a

a
a

H r r

r r
H





  

  
   

1
2

22
2

1 1
1

2
a

a a

r
r H


 

   
 

=0.099 

 
Finally, calculate the viscous damping coefficient D= Dc  
 
For excitation at the natural frequency, i.e., at resonance, then 
r=1, |X/Xs|=1/(2) = Q. Thus |X|=Q Xs 
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The maximum amplitude of motion does not necessarily occur 
at r=1. In actuality, the magnitude of the frequency ratio (r*) 

which maximizes the response, 0s

X

X
r





 
 

 
 

, is (after some 

algebraic manipulation): 
 

 
 

2
* 2

max

1 1
1 2 ; and

2 1s

X
r

X


 
  


 Corrected 2/19/13 

 

Note that for small values of damping 
max

1

2s

X

X 
  
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PROBLEM TYPE 2 
Consider a system exited by an imbalance (u), giving an 
amplitude of force excitation equal to Fo=M u Ω2. Recall that 
u=m e/M, where m is the imbalance mass and e is its radial 
location  

 2cosM X D X K X M u t       
 
Recall that system periodic response is      

   ( )( ) cos( )rX t u J t     

 
a) What is the value of damping  necessary so that the system 

response never exceeds (say) three times the imbalance u for 
operation at a frequency (say) 10% below the natural 
frequency of the system (=0.9n). 

b) With the result of (a), determine the amplitude of motion for 
operation with an excitation frequency coinciding with the 
system natural frequency.  

 
Solution From the fundamental FRF 
amplitude ratio 
 

 

2

( ) 22 21 (2 )
r

X r
J

u r r
 

 
 

 
Set r=0.9 and |X/u|=Ja=3. Calculate the damping ratio   from 
the algebraic equation. 
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  
1

24
22

2

1
1

2

a

a

a a

r
r

r J


 
   

 
=0.107 

 
Finally, calculate the viscous damping coefficient, D= Dc. 
 
Note that for forced operation with frequency = natural 
frequency, i.e., at resonance,   
 

r=1, |X/u|=1/(2) = Q. Thus |X|=Q u 
 
The maximum amplitude of motion does not occur at r=1. The 
value of frequency ratio (r*) which maximizes the response is 
obtained from 

 0
X
u

r





 
 

 
 then   

 

   * 2 2
max

1 1 1
; and

21 2 1

X
r

u  
 

 
 corrected 2/19/13 

 
 

Note that for small values of damping 
max

1

2

X

u 
  
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PROBLEM TYPE 3 
Consider a system excited by a periodic force of magnitude Fo 
and frequency Ω. Assume that the spring and dashpot connect to 
ground.  
a) Determine the damping ratio needed such that the 

transmitted force to ground does not ever exceed (say) two 
times the input force for operation at a frequency (say) = 75% 
of natural frequency (=0.75n).  

b) With the result of (a), determine the transmitted force to 
ground if the excitation frequency coincides with the system 
natural frequency. Is this the maximum transmissibility ever?  

c) Provide a value of frequency such that the transmitted force is 
less than the applied force, irrespective of the damping in the 
system. 

Solution: From the fundamental FRF amplitude for a base force 

excitation transmittedF K X D X    
 

 

 

2

( ) 22 2

1 2

1 (2 )

transmitted
T r

o

rF
A

F r r






 

 
 

 
 
Set AT=2 and r=0.75, and find the 
damping ratio .  
 


 

1
222 2

2

1 11

2 1

aT

a T

A r

r A


  
 

  
 

=0.186 
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Finally, calculate the viscous damping coefficient D= Dc  
 

At resonance, r=1, 
  



2

21
A

5.2

T


 . Then calculate the 

magnitude of the transmitted force. 
 
 
Again, the maximum transmissibility occurs at a frequency f* 

which satisfies   0TA
r


  . Perform the derivation and find a 

closed form solution. 
 
Recall that operation at frequencies 2r , i.e. for Ω 1.414n, 
(41 % above the natural frequency) determines transmitted 
forces that are lower than the applied force (i.e. an effective 
structural isolation is achieved). 
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PROBLEM TYPE 4 
Consider a system excited by a periodic force with magnitude 
Fo=M acc (for example) and frequency Ω.  
 
a) Determine the damping ratio ζ needed such that the maximum 

acceleration in the system does not exceed (say) 4 g's for 
operation at a frequency (say) 30% above the natural 
frequency of the system (=1.3n).  

b) With the result of (a), determine the system acceleration for 
operation with an excitation frequency coinciding with the 
system natural frequency. Explain your result 

 
Recall the periodic response is ( )( ) cos( )s rX t X H t    , then 

the acceleration of the system is 
 

2 2
( )( ) cos( ) ( )s rX t X H t X t     

 
Solution: From the amplitude of FRF  
 

 

2 2

22 2/ 1 (2 )

n

o

rX

F K r r






 

 
 

2

22 2/ 1 (2 )o

X r

F M r r


 


 

 
Follow a similar procedure as in other problems above. 
 

OTHER PROBLEMS 
Think of similar problems and questions related to system 
dynamic performance.  
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In particular, you may also "cook up" similar questions related 
to the dynamic response of first-order systems (mechanical, 

thermal, electrical, etc).  cosoM V DV F t    
 
Luis San Andrés - MEEN 363/617 instructor 
 
 
The following worked problems should teach you how to 
apply the frequency response function to resolve issues and 
to design many mechanical systems 
 



the magnitude of acceleration is A
Fo

Ke

ω
2

1 r
2−( )2

2 ζ⋅ r⋅( )2
+

⎡
⎣

⎤
⎦

.5
⋅= A

Fo

Me

r
2

1 r
2−( )2

2 ζ⋅ r⋅( )2
+

⎡
⎣

⎤
⎦

.5
⋅=

hence, define
Amax 10 g⋅:=

maximum allowed acceleration of filament

HZ 2 π⋅
1

s
⋅:=Me 150 lb⋅:=

system mass

fn 12 HZ⋅:= natural frequency

f 11.5 HZ⋅:=
excitation frequency due to wind buffets

Let ro
f

fn
:= ro 0.958= close to natural frequency

The maximum force allowed
equals

Fmax r ζ,( ) Amax Me⋅
1 r

2−( )2
2 ζ⋅ r⋅( )2

+
⎡
⎣

⎤
⎦

.5

r
2

⋅:=

P2. Periodic forced response of a SDOF mechanical system. DESIGN COMPONENT

The signal lights for a rail may be modeled as a 176 lb mass mounted 3 m above the 
ground of an elastic post. The natural frequency of the system is 
measured to be 12.2 Hz. Wind buffet generates a horizontal harmonic 
force at 12 Hz. The light filaments will break if their peak accelerations 
exceed 15g. Determine the maximum acceptable force amplitude |F| 
when the damping ratio ζ=0.0 and 0.01.  

Full  grade requires you to explain the solution procedure with due attention to physical details 
 
 
 
 
 
 

3 m

F

The excitation force is periodic, say F(t)=Fo sin(ωt). then the system response will also be periodic, Y(t), with same

frequency as excitation. Assuming steady state conditions:

STEADY RESPONSE of M-K-C system to PERIODIC Force with frequency ω

Case: periodic force of constant magnitude Define operating frequency ratio: r
ω

ωn
=

F t( ) Fo sin ω t⋅( )⋅=

System periodic response: Y t( ) δs H r( )⋅ sin ω t⋅ Ψ+( )⋅=
(1)

where:

H r( )
1

1 r
2−( )2

2 ζ⋅ r⋅( )2
+

⎡
⎣

⎤
⎦

.5
=δs

Fo

Ke
= tan Ψ( ) 2− ζ⋅ r⋅

1 r
2−

=

care with angle, range: 0 to -180deg

From (1), the acceleration is a t( ) ω
2

− Y t( )⋅= A sin ω t Ψ+ 180−( )(⋅=

or



c) Posts are usually hollow for the cables to be routed. These posts have layers of elastomeric 
material (~rubber-like) inside to increase their structural damping. Modern posts are wound up fro
composites that integrate damping layers. Clearly, adding a "true" dashpot is not cost-effective

Fmax ro ξ,( )
Fmax ro 0,( ) 2.553=

b) a system with damping ξ=0.1 will produce a 255 % increase in allowable force

Hence, the rail lightsystem will be more reliable, lasting longer.

which gives a very good estimation of the 

maximum wind force allowed

Amax Me⋅ 2⋅ ξ⋅ 300 lbf=SInce ro~1, a simpler enginering 
formula gives

GRAPH NOT FOR EXAM
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cc
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g
f fn

A r ζ,( )
Fo

Me

r
2

1 r
2−( )2

2 ζ⋅ r⋅( )2
+

⎡
⎣

⎤
⎦

.5
⋅:=

Fo Fmax ro ξ,( ):=

For the force found the amplitude of acceleration is

Fmax ro ξ,( )
Fmax ro 0,( ) 2.553=

Fmax ro ξ,( ) 340.231 lbf=ξ 0.1:=with damping

Note the importance of damping that leads to a 

substantial increase in force allowed
Fmax ro 0,( ) 133.27 lbf=without any damping



Fo

K
ω

2
⋅

Fo

M

ω
2

ωn
2

⋅=
Fo

K
r
2⋅=since:[6]aop r( )

Fo

M
r
2⋅

1 r
2−( )2

2 ζ⋅ r⋅( )2
+







.5
=

where:

[5]aY t( ) ω
2

− Yop⋅ sin ωt ψ+( )⋅= aop sin ωt Ψ+ 180−( )⋅=

from [2], we find that the acceleration is given by:
[4]

r
ω
ωn

=with

[3b]Ψ atan
2 ζ⋅ r⋅

1 r
2−









−=[3a]Yop r( )

Fo

K

1 r
2−( )2

2 ζ⋅ r⋅( )2
+







.5
=

[2]Y t( ) Yop sin ωt ψ+( )⋅=

[1]F t( ) Fo sin ωt( )⋅=
Recall that for an imposed external force of periodic form:

the system response Y(t) is given by:

where the amplitude of motion (Yop) and phase angle (Y) are 
defined as:

Solution:
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Dynamic measurements were conducted on a mechanical system to determine its FRF (frequency 
response function). Forcing functions with multiple frequencies were exerted on the system and a digital 
signal analyzer (FFT) recorded the magnitude of the ACCELERATION/FORCE ([m/s2]/N) Frequency 
Response Function, as shown below. From the recorded data determine the system parameters, i.e. 
natural frequency (wn:rad/s) and damping ratio (z), and system stiffness (K:N/m), mass (M:kg), and 
viscous damping coefficient (C:N.s/m). 
Explain procedure of  ANALYSIS/INTERPRETATION of test data for full credit.  

EXAMPLE - EXAM 2 TYPE:

lsanandres
Rectangle



The number of calculations is minimal. One needs to interpret correctly the test data results, 

however.

C 314.159 N
s

m
⋅=C ζ 2⋅ M⋅ ωn⋅:=

Once the damping ratio is obtained, the damping coefficient can be easily determined from

the formula:

1

2 ζ⋅
1

0.1
= 10=

That is, the system has a damping ratio equal to 5%. This result could have also been easily 

obtained by studying the ratio of (amplitude at the natural frequency divided by the amplitude at 

very high frequency, i.e.) 

ζ 0.05=

ζ
1

2 M⋅
1.0

kg








⋅
:=

from the graph (test data), the ratio is approximately equal to one (1/kg). Thus. the damping ratio 

is determined as

aop 1( )

fo

1

2 M⋅ ζ⋅
=

for excitation at the natural frequency (r=1), the ratio of amplitude of acceleration to force 

reduces to

K 9.87 10
5×

N

m
=K ωn

2
M⋅:=

We can estimate the stiffness (K) from the fundamental relationship:

ωn 314.159
rad

s
=

ωn fn 2⋅ π⋅:=expressed in rad/s as:

fn 50 Hz⋅:=Thus, take the natural frequency as

The system appears to have little damping, i.e. amplitude of FRF around a frequency of

50 Hz is rather large and varying rapidly over a narrow frequency range.

M 10 kg⋅:=Thus

1

M
0.1

m

s
2

N⋅









⋅=From the graph

(test data):

1

M

aop r( )

Fo
←For excitation at very high frequencies, r>>1.0

m

s
2

N

[7]

aop r( )

Fo

r
2

1 r
2−( )2

2 ζ⋅ r⋅( )2
+







.5

1

M
⋅=

The units of this expression

are 1/kg =

thus, the magnitude of amplitude of acceleration over force amplitude follows as:



P1: Identification of parameters from FRF  

The graph below shows the amplitude of ACCELERANCE (acceleration/force) versus frequency (Hz) for shaker load tests conducted on 
a rotor at the Laboratory. In the measurements, a force transducer with a gain of 0.87milliVolt/lbf and a piezoelectric accelerometer with a 
gain of 0.101 Volt/g were used. The graph shows the amplitude of the accelerance function in units of [Volt/Volt]. 
a) Determine the appropriate relation to convert the results given into appropriate physical units. [10] 
b) Estimate the natural frequency [rad/s] and damping ratio () of the system, the stiffness K [lbf/in], mass M [lb] and viscous damping 

D [lbf.sec/in] coefficients. [20] 
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(a) Graph shows ratio of acceleration in volts to force in volts. To convert amplitudes in graph to proper

physical units:

Gain_loadcell 0.87 10
3

volt

lbf
 Gain_accel 101 10

3
volt

g


Convert_VV_to_physical
1 volt

Gain_accel

1

1 volt
Gain_loadcell






 g 32.174
ft

s
2



Convert_VV_to_physical 0.277
ft

sec
2

lbf
 Convert_VV_to_physical 3.326

in

sec
2

lbf


OR

(b) the amplitude of FRF for accelerance function

 equals:
a

F

ω
2

K M ω
2 2

C ω( )
2







.5
=

b.1) the system inertia or mass (M) is determined from the accelerance function at high frequency, i.e.

a

F

1

M
=

a_F 2.1
volt

volt
 Convert_VV_to_physical

From graph, at frequency of 80 Hz:

M
1

a_F


M 55.282 lb

Engineering considerations

* narrow zone for peak vibration means little damping, 

** from graph the natural frequency is about



fn 52 Hz

Thus, ωn fn 2 π ωn 326.726
rad

sec


b.2) Thus the system equivalent mass equals:
K Mωn

2
K 1.528 10

4
lbf

in


b.3) at the natural frequency, the magnitude of the acceleration/force function is inversely

proportional to the damping coefficient, i.e.at 52 Hz graph shows
a

F

ωn

D
=

a_F 16
volt

volt
 Convert_VV_to_physical

D
ωn

a_F
 D 6.14 lbf

sec

in


b.4) Damping ratio follows from

damping ratio is small justifying assumption of
ζ

D

2 K M( )
.5


ζ 0.066

ωn ωd=
1 ζ

2  .5
0.998

Another way to obtain the damping is by using the Q-factor. In this case, it is equal to the

amplitude at the natural frequency divided by the amplitude at high frequency, i.e.

Q
16

2.1
 Q 7.619

ζ
1

2 Q
 ζ 0.066

D ζ 2 K M( )
.5

D 6.14 lbf
sec

in




 MEEN 363/459/617/659:  Response of SDOF mechanical system

( )e e eM y K y C y F t   EOM: Luis San Andres (c)

Given a mechanical system with  equivalent parameters (Me) mass, (Ke) stiffness, (Ce) viscous damping coefficient.

define natural frequency and damping ratio as: ωn

Ke

Me

= ζ
Ce

2 Me ωn
=

Ce

2 Ke Me
=

Ce ωn

2 Ke
=

 TRANSIENT RESPONSE system to STEP Force F(t)=Fo Me 2
t

Yd

d

2
 Ce

t
Yd

d
 Ke Y Fo=

 Underdamped system  only, <1
+ initial conditions Y0 Y 0( )= V0

t
Yd

d
= at t=0

system response is:
Y t( ) e

ζ ωn t
C1 cos ωd t  C2 sin ωd t   Yss=

and
Yss

Fo

Ke

= C1 Y0 Yss= C2

V0 ζ ωn Y0 Yss  
ωd

= ωd ωn 1 ζ
2

=
where

damped natural frequency
for 1: see page 2)

LOG DEC (): formula to estimate damping ratio () from a free response δ
1

n
ln

Ao

An






=
2π ζ

1 ζ
2



= ζ
δ

4 π
2

 δ
2



=

Ao and An are peak motion amplitudes separated by n periods

================================

 TRANSIENT RESPONSE system to Force F(t)=A+Bt Me 2
t

Yd

d

2
 Ce

t
Yd

d
 Ke Y A B t=

C1 Y0 a=
Y a b t e

ζ ωn t
C1 cos ωd t  C2 sin ωd t  =

a A Ce
B

Ke









1

Ke

= ; b
B

Ke

= ;

for ζ 1 C2 ωd V0 b ζ ωn Y0 a =

 Transient response of  overdamped system , step force Fo=constant 1

+ initial conditions Y0 Y 0( )= V0
t
Yd

d
= at t=0

Me 2
t

Yd

d

2
 Ce

t
Yd

d
 Ke Y Fo=

Y t( ) A1 e
s1 t

 A2 e
s2 t

 Yss= where: s1 ωn ζ ζ
2

1 = s2 ωn ζ ζ
2

1 =

A1 A2 Y0 Yss=
Yss

Fo

Ke

=
s1, s2 < 0

A1 s1 A2 s2  V0= Solve for A1 and A2

 Transient response of  critically damped system , step force Fo=constant 1

Me 2
t

Yd

d

2
 Ce

t
Yd

d
 Ke Y Fo= + initial conditions Y0 Y 0( )= V0

t
Yd

d
= at t=0

Y t( ) e
s t

A1 t A2  Yss=
where: s ωn=

Yss

Fo

Ke

= A1 Y0 Yss=
A1 s A2  V0=



 STEADY RESPONSE of system to PERIODIC LOADS with frequency 
 Case: periodic force of constant magnitude F t( ) Fo sin ω t( )= Define operating frequency ratio:

System periodic response: Y t( ) δs H r( ) sin ω t Ψ( )=
r

ω

ωn

=
where:

H r( )
1

1 r
2

 2 2 ζ r( )
2








.5
= care with angle, range: 0 to 180deg

δs

Fo

Ke

= tan Ψ( )
2 ζ r

1 r
2


=

where
 Case: base motion of constant amplitude

Me 2
t

Yd

d

2
 Ce

t
Yd

d
 Ke Y K YB Ce

t
YB

d

d
=

YB t( ) A sin ω t( )=

System periodic response:
Y t( ) A G r( ) sin ω t Ψ ϕ( )=

where: G r( )
1 2 ζ r( )

2


1 r
2

 2 2 ζ r( )
2













.5

= tan Ψ ϕ( )
2 ζ r

3


1 4 ζ
2

 r
2


=

 Case: response to mass imbalance
F t( ) m e ω

2
 sin ω t( )= u=imbalance (offset center of mass)

displacement

Me M m=
System periodic response: Y t( ) e

m

Me

 J r( ) sin ω t Ψ( )=
m e Me u=

J r( )
r
2

1 r
2

 2 2 ζ r( )
2








.5
=

tan Ψ( )
2 ζ r

1 r
2


=

care with angle, range: 0 to -180deg

OTHER USEFUL formulas:  (program them in a calculator)

 Underdamped system <1:  step force response
constants in formulas

Given 

Y t( ) e
ζ ωn t

C1 cos ωd t  C2 sin ωd t   Yss=

find velocity
V t( )

t
Yd

d
=

V t( ) e
ζ ωn t

D1 cos ωd t  D2 sin ωd t  =

D1 ζ ωn C1  C2 ωd= D2 ζ ωn C2  C1 ωd=
where:

find acceleration

a t( )
t
Vd

d
=

a t( ) e
ζ ωn t

E1 cos ωd t  E2 sin ωd t  =

E1 ζ ωn D1  D2 ωd= E2 ζ ωn D2  D1 ωd=
where:



 A case your memory should retain forever NO DAMPING, C=0 Ns/m

 TRANSIENT RESPONSE of M-K system to STEP Force F(t)=Fo
Undamped system, 

Me 2
t

Yd

d

2
 Ke Y Fo=

+ initial conditions Y0 Y 0( )= V0
t
Yd

d
= at t=0

response is: Y t( ) C1 cos ωn t  C2 sin ωn t   Yss=

MOTION never dies since

there is no dissipation action

(no damping)
Yss

Fo

Ke

= C1 Y0 Yss= C2

V0

ωn

=
where

and velociy and acceleration:

V t( )
t
Yd

d
=

V t( ) D1 cos ωn t  D2 sin ωn t  =
D1 C2 ωn= D1 C1 ωn=

a t( )
t
Vd

d
=

a t( ) E1 cos ωn t  E2 sin ωn t  =
E1 C1 ωn

2
= E2 C2 ωn

2
=

Note that the velocity and acceleration superimpose a cos & a sin functions. Thus, the maximum values of velocity and

acceleration equal 

Vmax ωn C1
2

C2
2

=

amax ωn
2

C1
2

C2
2

= ωn Vmax=

since 

Yss

Fo

Ke

= C1 Y0 Yss= C2

V0

ωn

=

amax ωn
2

Y0 Yss 2
V0

ωn









2

=

Note: the function x t( ) a cos ω t( ) b sin ω t( )= can be written as

x t( ) c cos ω t ϕ( )=
where 

c a
2

b
2

= tan ϕ( )
b

a
=



OTHER important information

given a function f t( ) find its maximum value

t
fd

d
0=

The maximum or mimimum values are obtained from 

For example, for the underdamped response, <1, the system response for a step load is

Y t( ) e
ζ ωn t

C1 cos ωd t  C2 sin ωd t   Yss=

and
Yss

Fo

Ke

= C1 Y0 Yss= C2

V0 ζ ωn Y0 Yss  
ωd

= ωd ωn 1 ζ
2

=
where

damped natural frequency

when does Y(t) peak (max or min) ?

from the formulas sheet
V t( ) e

ζ ωn t
D1 cos ωd t  D2 sin ωd t  =

D1 ζ ωn C1  C2 ωd= D2 ζ ωn C2  C1 ωd=

A peak value occurs at time t= when dY/dt=V=0, i.e.

0 e
ζ ωn τ

D1 cos ωd τ  D2 sin ωd τ  =

e
ζ ωn τ

0 for most times; hence 0 D1 cos ωd τ  D2 sin ωd τ =

tan ωd τ 
D1

D2

=
solve this equation to find 

there are an infinite # of time values () satisfying the equation above. Select the lowest  as this will probaly will give

you the largest peak. 

Me 2
t

Yd

d

2
 Ce

t
Yd

d
 Ke Y A B t=Example: 

Obtain constants C1 and C2 for case of force F(t)=A+Bt - underdamped response 

Given Y t( ) e
ζ ωn t

C1 cos ωd t  C2 sin ωd t   a b t=

V t( )
t
Yd

d
= V t( ) e

ζ ωn t
D1 cos ωd t  D2 sin ωd t   b=

D1 ζ ωn C1  C2 ωd= D2 ζ ωn C2  C1 ωd=

at t=0, Y0 Y 0( )= V0
t
Yd

d
= at t=0

satisfy initial conditions:
Y0 Y 0( )= Y0 C1 a=

C1 Y0 a=

V0
t
Yd

d
=

V0 D1 b= ζ ωn C1  C2 ωd b=

V0 ζ ωn Y0 a   C2 ωd b=
C2

V0 b ζ ωn Y0 a 

ωd

=



 FREQUENCY RESPONSE FUNCTIONS for PERIODIC LOAD with frequency 

 Case: periodic force of constant magnitude

Me 2
t

Yd

d

2
 Ce

t
Yd

d
 Ke Y Fo sin ω t( )=

Define operating frequency ratio: r
ω

ωn

=

Displacement: Y t( ) δs H r( ) sin ω t Ψ( )=
System periodic responses:

velocity: V t( )
t
Yd

d
= δs ω H r( ) sin ω t Ψ( )=

acceleration: a t( )
2

t
Yd

d

2
= δs ω

2
 H r( ) sin ω t Ψ( )= ω

2
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care with angle, range: 0 to -180deg

Define dimensionless amplitudes of frequency response function for

displacement Y
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GRAPHS for AMPLITUDE OF TRANSFER functions

 Given desired H and freq rConstant amplitude force

formula for damping ratio Ha 2 ra 1.2
H r ζ( )
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===================================================================================

Acceleration or Imbalance
 Given desired J and freq r

formula for damping ratio Ja 3 ra 0.9
J r ζ( )
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=======================================================================================

 Given desired T and freq rTransmitted force to base or foundation
ra 0.75 Ta 2.0
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