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MEEN 459/659 Notes 6 

A Brief Introduction to the Discrete Fourier Transform 

and the Evaluation of System Transfer Functions 
Original from Dr. Joe-Yong Kim (ME 459/659), modified by Dr. Luis San Andrés (MEEN 617, Jan 2013, 2019). 

Consult free resources from commercial vendors of precision instruments 

The Discrete Fourier Transform 

The Fourier Transform (FT) and its inverse FT are (continuous functions) defined as 
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Above note the integrals are evaluated over infinite long time (intervals?).   

 

Consider the set  
0,1,..., 1n n N

x
 

recorded at discrete times 

   0 1 0 2 0 1 0, , 2 ,...., 1n Nt t t t t t t t t t t N         , where N is the number of samples acquired 

the elapsed time for recording is T=(N-1)t. 

 

The Discrete Fourier Transform (DFT) of a spatially or time sampled series xn is 
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and the inverse DFT is  
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The vector    
0,..., 1m m mm N

X a ib
 

  is complex. 

 

Note the DFT and its inverse are the discrete form of a truncated FT.  

 

Presently, the DFT and inverse DFT can be calculated fast and efficiently by using various Fast 

Fourier Transform (FFT) algorithms. (e.g., the “fft” command in Matlab® or MATCAD®)  
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For real x, the DFT shows that, * * *

0 1 1 2 2 3, ,...., ,...N N NX X X X X X      where (*) denotes the 

complex conjugate,  m ma ib .  

 

In practice, software usually delivers a vector of ½ N values (shifted), i.e., 

   0 1 1 2 11 1 1
, ;.....; ; ;

2
k N k NN k N k

N
X X X X X X X X k      

                        (5) 

  

The maximum frequency (fmax) of the DFT of a time series {xn}n=0, N-1 sampled at t satisfies the 

Nyquist Sampling Theorem, i.e., 
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There are k=½N data points in the frequency spectrum (complex numbers).  Since the maximum 

frequency is fmax = fsample/2, the frequency resolution (f) equals 

 
sample 1 1 1

time record length

f
f

N N t T
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
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Hence, the longer T is (the more samples N), the smaller f is; while the maximum frequency is set 

by the sampling rate.  

  

Example 1 

Figure 1(a) below shows x(t)=1 sin(t), with ff=22 Hz, sampled at 100 Hz (samples/s) or 

t=0.01 s, and the number of points is N=256 (Tmax=2.55 s).Note that t << 0.045 s, the period of 

the f=22 Hz wave.  

Figure 1(b) shows the amplitude of the DFT, 
20,..., 1Nm m

X
 

versus frequency. The maximum 

frequency in the DFT is fmax=50 Hz with a step of 
1

f
t N

 


=0.391 Hz. The number of frequencies 

in the DFT is 128. Note the amplitude of the DFT |Xm| shows components at other frequencies than 

22 Hz.  

 

The DFT is a collection of k= ½ N complex numbers, i.e., it is a discrete set (not continuous). 

Figure 1(c) graphs the real and imaginary parts of the DFT Xm .  
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9.856·10    +5.059i·10    -3 -4

9.867·10    +6.758i·10    -3 -4

9.882·10    +8.468i·10    -3 -4

9.9·10    +1.019i·10    -3 -3

9.921·10    +1.193i·10    -3 -3

9.945·10    +1.369i·10    -3 -3

9.974·10    +1.548i·10    -3 -3
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0.01+1.913i·10    -3

0.01+2.101i·10    -3
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
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Fig. 1(a): 22 Hz signal sampled at 100 samples/s. 
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Fig. 1(b): amplitude of DFT for 22 Hz signal sampled at 100 samples/s. 
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Fig. 1(c): Real and imaginary parts of DFT for 22 Hz signal sampled at 100 samples/s. 

 

 

The ideal FFT output would be a single amplitude X=1 at 22 Hz and 0’s at all other frequencies. 

This ideal representation only occurs when sampling at a frequency that is a multiple of the signal 

frequency, as shown in Fig 1(d) for sampling at 88 Hz.  
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Fig. 1(d): amplitude of DFT for 22 Hz signal sampled at 88 samples/s. 
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Notes 

1) increasing the number of recorded data points N, while keeping the same sampling rate, 

increases the total time (T) for sampling, but has no impact on the span of the frequency 

range (fmax is the same). Increasing T (recording time) makes f to decrease (the frequency 

resolution increases).  

 

2) increasing the sampling rate (fsample) while keeping N extends the span of the frequency range 

(fmax = ½ fsample), and also increases the frequency step f (decreases resolution as it makes f 

larger). Increasing fsample, decreases the total elapsed time for measurement, T=(N-1)t 

 

The table below verifies the relationships fmax = ½ fsample  and (fmax /f ) = k= ½ N, where N and 

fsample are specified (input). 

 

N fsample (Hz) fmax (Hz) f  (Hz) (s) 

25=32 40 20 1.250  0.775 

26=64 40 20 0.625  1.575 

27=128 40 20 0.313  3.175 

26=64 40 20 0.625 1.575 

26=64 80 40 1.250 0.788 

26=64 160 80 2.500  0.394 

 

ALIASING 

Figure 2(a) shows the same function x(t)=1 sin(t), with ff=22 Hz, sampled at 30 Hz 

(samples/s) or t=0.033 s, and the number of points is N=28=256 (Tmax=8.5 s).Note that t ~ 0.045s, 

the period of the 22 Hz wave, while the time step for sampling is 1/30=0.033 s.   
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Fig. 2(a): 22 Hz wave sampled at 30 samples/s. 

As shown in Fig. 2(b) depicting the amplitude of the DFT, when a 22 Hz sinusoidal signal is sampled 

at 30 Hz, the sampled data can be misinterpreted as an 8 Hz sinusoidal signal. This is referred to as 

aliasing. Thus, the sampling frequency should be at least 44 samples/s (22 Hz Nyquist) in order 

to avoid this problem. 
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Fig. 2(a): DFT of 22 Hz wave sampled at 30 samples/s. 

 

Leakage 

Consider a case where a continuous signal with main frequency f=12 Hz, f(t)= 1 cos(2 f t),  is 

sampled at a frequency of fsample=100 samples/s (T=10 ms), and the number of the total sampled 

data is N = 32, as shown in Fig. 3(a).  

Note in Fig. 3(b) the amplitude of the DFT with components at other frequencies than 12 Hz, 

including 0 frequency. 
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Fig. 3(a): 12 Hz wave sampled at 100 samples/s. 
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Fig. 3(b): Amplitude of DFT for 12 Hz wave sampled at 100 Hz. 
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The amplitudes at near zero-frequencies (i.e., the first data points in Fig. 3(b) show leakage and 

is caused by the truncation of the time data. That is, the time data at t = 0 and t = T have non-zero 

amplitudes, see Fig. 3(a). The graph immediately tells you that the mean value of the function shown 

is NOT zero.   

 

To reduce the truncation error and leakage effect, a Hanning window1 is introduced. The 

window is defined as 

 
1 2

1 cos
2

m

m
H

N

  
    

  
. (8) 

and displayed below in Fig. 4 as 
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Fig. 4. Hanning window with 32 data points. 

Figure 5 shows the signal data set xn weighted with the Hanning window. The DFT of a windowed 

time data is  
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X w x e
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where wn represents the window function. Based on the window function, two constants are defined 

as 

1 1
2

1 2

1 1

 and 
N N

n n

n n

w w 
 

 

           (10) 

 

                                                 
1 There are many different types of windows or windowing procedures. Refer to a more advanced resource for details on 

their implementation and accuracy.  
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Fig. 5: Sampled 12 Hz wave (100 samples/s) with Hanning window. 

At t = 0 and t = T, the amplitude of the signal =0. In the frequency domain, as shown in Fig. 6, the 

leakage of the windowed data is smaller than that for the original data, see Fig. 3(b), although the 

frequency resolution of the windowed data is lower than the original data (i.e., the peaks of the 

windowed data become broader than the original data). [Certainly the amplitude at 12 Hz is much 

smaller than 1] 
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Fig. 6: Amplitude of DFT with Hanning window for 12 Hz wave sampled at 100 Hz. 
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Spectrum and Spectral Density 

All experimental (recorded) data contains noise! Spectral averaging is applied to reduce the 

effects of noise. 

The cross-spectrum of two signals X and Y is (think of a dot product or projection of one signal 

onto the other) 

 
*

2

1

2
m

m m
xy

X Y
S


 , 0,1,...,

2

N
m k   (11) 

where Xm
* is the complex conjugate of Xm and 1 is a scaling factor 

 

The auto-spectrum is also defined as 

 
*

2

1

2
m

m m
xx

X X
S


 . 0,1,...,

2

N
m k   (12) 

The cross-spectral density is defined as 

 
*

sample 2

2
CSD

m

m m
xy

X Y

f 
 . 0,1,...,

2

N
m k   (13) 

The cross spectral density is the cross-spectrum per unit frequency interval. 
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Spectral Estimation 

 

 

Fig. 7: Averaging process of time data. 

 

Based on the procedure shown in Fig. 7, when the maximum number of averaging is Na, the spectral 

averaging process is represented as 

  
1

1 aN

xx xx m
ma

S S
N 

  . (14) 

When the statistical properties of a signal do NOT change with respect to time, the signal is 

referred to as a “stationary” signal.  Thus, (random) noise effects can be reduced by using a time 

averaging process, as shown in Fig. 7 and Eq. (14) for any stationary signals.  

 

A useful operation to check when performing multiple (time) averages leads to expected (credible) 

results is the coherence function. (See later these notes).  
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Transfer Function Estimation 

Figure 8 shows a single input and single output (SISO) system with transfer function H. 

 

Fig. 8: Depiction of SISO system with transfer function H.  

x: input, y: output, and n: noise 

In an ideal case without measurement noise, the transfer function2 is  

 
 

 

Y
H

X





 . (15) 

where 
   

( )
t

X DFT x

  and 

   
( )

t
Y DFT y


 .However, when noise3 components nx and ny are 

present at the input and output of the system, one records the input and output signals as 

( ) ( )( ) ( ) ( ) ( ),
t tt t x t t yx x n y y n    , respectively. Hence, the transfer function becomes 

  

 

 

   

   

y

x

Y Y N
H

X X N

  



  


 


. (16) 

Here, the estimated transfer function H is biased due to the noise. Note that once noise is present 

in a signal, one cannot know with certainty the actual (true) value of a function, Y or X, and worse yet 

H.   

 

To estimate an accurate transfer function, the noise components must be suppressed (or filtered).  

 

Two types of transfer function estimators are introduced.  The first type of estimator uses a 

cross-spectral correlation with respect to the input. 

 

                                                 
2 By function here I mean a discrete function of frequency. That is, both Y and X (and H) have values at specific 

frequencies, k. A more proper notation should be    ,
k k

k kX X H H
 

  , etc. 

3 Here noise is a broad band frequency signal with zero mean (aleatory in character). 
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 
 

   
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1 **

y x x y

x x x x

xy xn n y n nx y
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S S S SX Y X N Y N
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S S S SX X X N X N
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  

   
. (17) 

 

When the input x(t) and output y(t) are not correlated with either noise (input) nx and (output) ny, that 

is  0, 0, 0, 0
y x x xxn n y xn n xS S S S    , and further the noises (nx , ny) are not correlated to each other 

 0
x yn nS  , the estimator of the transfer function can be simplified, after taking the time average, as 

 1

x x

xy

m

xx n n

S
H

S S



.

 
 

   
   

**

**
~

x x

x y xy

xx n nx x

X Y X N Y N S

S SX X X N X N

 
 

 
 (18) 

 

This first kind of estimator has no bias error when the uncorrelated noise is present only in the 

output signal (y), i.e., 0
x xn nS  . Then, the first type estimator becomes  

 1

xy

m

xx

S
H

S
 . (19) 

This estimator is good at anti-resonance frequencies of a system where the input signal (X) has a 

large signal to noise ratio (SNR). 

 

 

The second type of estimator uses the cross-spectral correlation with respect to the output 

 

 
 
 

   

   

**

2 * **

y y y y

x y y x

yy yn n y n ny y

m
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S S S SY Y Y N Y N
H

S S S SY X Y N X N
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  

   
. (20) 

 

With uncorrelated  0, 0, 0, 0
x y y yyn n y yn n xS S S S    and noises 0

x yn nS  , then the 2nd estimator 

simplifies to  

         2 *

y yyy n n

m

xy

S S
H

S


 .          (21) 

This estimator has no bias error if the noise is present only in the input signal (x); but not the 

output, i.e., 0
y yn nS  .  Thus, the second type estimator becomes 

          2 *

yy

m

xy

S
H

S
 .                                 (22) 

This estimator is good at resonance frequencies of a system where (in general) the output signal 

(Y) has a large signal to noise ratio (SNR). 
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About the coherence function 

https://en.wikipedia.org/wiki/Coherence_(signal_processing) 

 

The coherence is a statistic function that examines the relation between two signals, x(t) : input and 

y(t): output. The coherence estimates the power transfer between input and output of a linear system. 

If the signals are ergodic (random), and the system function linear, the coherence can be used to 

estimate the causality between the input and output. 

T 

he coherence between two signals x(t) and y(t) is a real-valued function 
2

m

m

m m

xy

xy

xx yy

S
C

S S
      (23) 

where Sxy is the (averaged) cross-spectral density between x and y, and Sxx and Syy are the (averaged) 

auto-spectral density of x and y, respectively (see Eqs. 11-14). The magnitude of the spectral density 

is denoted as |S|.  

 

The coherence always satisfies  0 1
mxyC   and estimates the extent to which y(t) may be predicted 

from x(t) by an optimum linear least squares function. 

 

If the coherence is less than one but greater than zero it is an indication that either noise is entering 

the measurements, that the assumed function relating x(t) and y(t) is not linear, or that y(t) is producing 

output due to input x(t) as well as other inputs (including noise).  

 

If the coherence = zero  x(t) and y(t) are completely unrelated. 

 

If the coherence = 1   x(t) and y(t) are completely correlated, the output y is due to the input x.  

 

In vibration measurements, the larger the number of independent tests conducted  aN   (and 

averaged) will produce better coherence values as the averaging process reduces (filters) noise, for 

example.  

 

Do NOT use or interepret transfer function estimations in frequency ranges with low values of 

coherence 1
mxyC  . 

 

More on estimations of transfer functions for actual physical systems (experimental 

data) will follow as the class progresses. 

 

 

https://en.wikipedia.org/wiki/Coherence_(signal_processing)
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Final notes: 

 

 

A word of wisdom/caution 

Please practice this knowledge (and learn more) by building your own canned routines 

(MATLAB) to produce the estimators as shown above.  

Most computational software produce both spectra and cross-spectra correlation 

operators at the click of a mouse.  
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EXAMPLE of Time Response Signals  DFTs  Transfer functions  

Coherence 

 

 

Schematic and top view of test rig and instrumentation for an impact load test 
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Example. Typical impact loads: time and frequency domains along X direction. 

 

 

Example. Typical displacement (left) and acceleration (right) time responses to impact 

loads along X direction. 
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Example. Amplitude of transfer functions : flexibility function H = |X/F| and 

accelerance function G = |A/F| versus frequency. Response to impact load test along 

X direction. 

 

 

 

Example. Phase angle of recorded impact response versus frequency: Phase angle of 

(a) displacement and (b) acceleration. 

l-sanandres
Callout
note fast change of phase angle at nat frequency (little damping)

l-sanandres
Line
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Example: Amplitude of flexibility function H = |X/F| and accelerance function G = |A/F| 

versus frequency. Test data and model curve fit. Response to impact load test along X 

direction. 

 

 

 

 
Example: Coherence of flexibility (left) and accelerance (right) functions obtained 

from 10 impact loads on the BC along X direction. 

 

 

 

l-sanandres
Rectangle

l-sanandres
Callout
will lead to good estimation of K,C,M

l-sanandres
Callout
coherence ~ 1 for most frequencies.
Except for low frequencies (piezo accel)

l-sanandres
Line

l-sanandres
Text Box
C~ 1: Output (X) is due to input (Force)
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An example with noise and shaft speed (rotor run out): 
 

 

 

l-sanandres
Text Box
Noisy I and O! More for displacement (output) due to shaft rotation (50 Hz) and flow turbulence in bearing




