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ABSTRACT 

This paper is concerned with torsional vibration in the 
design, development, and fault diagnosis and correction of 
machine systems. The physical behavior of torsional vibrations 
in shafting systems and sources of torsional excitation are re­
viewed. The concepts of torsional natural frequencies, critical 
speeds, resonance, and response (fiJrces, stresses, and motions) 
are explained. The following methods for modeling and cal­
culating natural frequencies and responses are described: 
lumped and continuous parameter models, the Holzer 
method, the modal response method, and direct integration of 
equations of motion. The solution of a transient torsional vibra­
tion problem of a synchronous motor drive system is explained. 
The measurement of torsional vibration in both the field and 
the laboratory is described; monitoring and problem correction 
are emphasized. Systems subjected to torsional vibrations are 
used to illustrate measuring techniques. 

INTRODUCTION 

All rotating machinery undergoes some form of torsional 
vibration. In some cases the vibration cannot be detected with­
out special measuring equipment - even when the level is 
close to destructive amplitude. Many aspects of torsional vibra­
tion are analogous to shaft vibration after the. twisting stiffness 
and polar moment of inertia have been subs�ituted for the shaft 
bending stiffness and diametral moment of inertia, respec­
tively. Torsional vibration can be sensed by noise level and 
vibration (perceptible to touch) when something mediates in­
teraction of the vibration with the ground or gear teeth or 
coupling jaws unload. Gear sets that are used to alter speeds of 
power transmission systems allow the interaction of torsional 
vibration with the ground; slider crank mechanisms in engines 
and compressors provide the path to the ground in reciprocat­
ing machines. If gear boxes and/or reciprocating machines are 
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part of a drive train, therefore, excess noise and vibration can 
indicate trouble. 

Shaft vibration criteria are usually quantified in terms of 
motions; i.e., displacement, velocity, or acceleration. Motions 
are rarely a concern with torsional vibration, however, because 
they do not affect system function. Rather, it is the stresses that 
determine the structural integrity and life of components. Tor­
sional vibratory motions, unlike shaft whirling, always produce 
stress reversals, thereby causing fatigue. Components tolerate 
less reversed stress than steady stress. In addition, stress con­
centration factors associated with machined members reduce 
the effectiveness of load-bearing materials. Figure l illustrates 
the twisting of a shaft and the torsional mode shape of an elec­
tric motor-compressor system. A coupling in the power train 
allows fi>r misalignment in assembly. Note the mode shape ­
it shows that the stillness of the coupling is much less than that 
of the other shaft sections. 

Although the torsional vibration shown in Figure 1 occurs 
in the form of a single harmonic component, this is not usually 
the case with real systems. Torsional vibration usually takes the 
form of a complex vibration signal having many different fre­
quency components. Shock from abrupt start-ups and unload­
ing of gear teeth cause transient torsional vibrations in some 
systems, and start-up of synchronous electric motor systems 
can cause torsional resonanee. Random torsional vibration of 
rotating machines is relatively common due to gear inac­
curacies and ball bearing defects. Self�exeited vibration- that 
is, the addition of energy to a system by its motion until it 
reaches a limit cycle or destructs - is not common in power 
transmission and generation systems; eleetrical-mechanical in­
teraction can bring on this problem. Shear failures in shafts 
caused by torsional vibration usually occur near a stress con­
centration point such as a keyway or the point at which the 
shaft diameter changes abruptly. Torsional failure is manifest 
by gear wear, gear tooth fatigue, key failure, and shrink fit 
slippage. Noise that occurs when gear teeth unload indicates a 
severe torsional vibration problem. 

Allowable levels of torsional vibration have not yet been 
established for general machine systems because so many var­
iables are involved. Allowable torsional vibration levels depend 
on the amount of steady torque being carried by the power 
transmission component. Torsional motions such as shaft de­
flections per se are not restricted by function; stresses must 
thus be calculated and a complete failure analysis conducted. 
Tolerable motions in most systems are dependent upon the 
stiffness and relative twist across the component: one degree of 
torsional vibration amplitude is usually unsatisfactory, but typ­
ically an order of magnitude less is satisfactory. Torsional vibra­
tion levels usually cannot be controlled and reduced by de­
creasing the source excitation because it is typically induced by 
the machine function. Exceptions include gear tooth inac­
curacies and engine balancing (gas and inertia forces). Damp­
ing devices can be used to dissipate energy; however, tuning 
by stiffness and inertia rearrangement in the system seems to 
be the best method for reducing torsional vibration. 
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Figure 1. Torsional Vibration of an Electric Motor -Com­
pressor Unit. 

This paper is an overview of torsional vibration technology 
and includes engineering guidelines for applying the technol­
ogy to solving problems. The physical nature of torsional vibra­
tion is described, as well as methods for calculation and mea­
surerpent, techniques for measurement and analysis, fault 
diagnosis and correction, and important design considerations. 
Practical cases involving electric motors, engines, and com­
pressors are reviewed. 

PHYSICAL ASPECTS 

Physically, torsional vibration is similar to lateral vibra­
tion, after shaft twist has been substituted for shaft bending. 
Torsional excitations and stress and motion mechanisms, in­
cluding critical speeds, simple and complex harmonic motions, 
transient and self-excited motions are described in this section. 

Torsional Excitations 

Table l shows some sources of torsional vibration excita­
tion. It should be noted that most of these sources are related 
to the work done by the machine and thus cannot be removed 
or reduced. Certain construction and installation sources -
gear runout, coupling unbalance, coupling misalignment, and 
gear tooth machining errors - can be reduced. Fan or impel­
ler passing excitations can be characterized by the number of 

TABLE 1. SOURCES OF TORSIONAL VIBRATION EXCITATION 

Source 

Mechanical 

Gear Runout 

Gear Tooth Machining Tolerances 

Coupling Unbalance !Hooke's Joint 

Coupling Misalignment 

System Function 

Synchronous Motor Sta1t-up 

Surge 

Eccenhicity of Impeller Scrolls 

Blade Passing 

Motor Air Gap Eccentricity 

Engine Firing Rate -

Pumps 

Compressors with Vaned Diffusers 

Motor or Turbine Driven Systems 

Engine Geared Systems with 
Soft Couplings 

Engine Geared Systems with 
Stiff Coupling 

Amplitude 
% Average 

Torque 

20-40 

10-40 

3-10 

5-10 

15-30 

50 or 
greater 

Frequency 

l X, 3 X R PM 

No. of Gear Teeth X RPM 

I x RPM 

2 X, 4 X, 6 X R PM 

No. of drive elements 
x R PM 

2 X slip frequency 

Depends on Surge Rate 

No. Blades X RPM 

Depends on Engine 
Design and Operating 
Conditions 

No. Vanes X RPM 

No. Vanes x RPM 

No. of Poles or Blades 
x RPM 

Depends on Engine 
Design and Operating 
Conditions (can be 
%n and n X RPM) 

Depends on Engine 
Design and Operating 
Conditions 
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blades or vanes on the wheel: the frequency of excitation 
equals the number of blades times shaft speed. The amplitude 
of pulsating torque is often given in terms of percentage of 
average torque generated in the systems . In more complex 
cases, engines, for example, the multiple frequency compo­
nents depend on engine design and power output . The rela­
tionship behveen gas harmonics and inertia torque harmonics 
has a bearing on the level of torsional excitation. Pressure un­
balance excitation is a function of inlet pressure sources and 
extent of casing distortion. The harmonics of torsional excita­
tion from surge (a shock condition) arc dependent on higher 
than normal pressure for a short time and rate of pressure 
increase and decrease. 

Torsional Response 

The components of a typical rotating machine are con­
nected either directly by couplings and shafts or indirectly by 
gears, belts, and/or other speed-changing devices. When sub­
jected to excitation sources, these massive (polar moment of 
inertia) and flexible components absorb and dissipate energy 
and produce a unique pattern of torsional motion called re­
sponse . Response is rdated to the design of the machine; i. e. , 
it is an indication of the deflel'lions and stresses to which the 
system is subjected. Harmonic analysis ean be used to break 
down response into a group of individual sine curves. Each sine 
eurve has the following properties: amplitude, phase with re­
spel'l to the response curve, and frequency. These properties 
allow the curves to be reformed to the original response curve. 
Phase angles, often not obtained in harmonic analysis, are 
necessary to reconstruct the response curve . 

As with other f{mns of vibration, torsional vibration in 
machines occurs in characteristic patterns called modes (Figure 
l). The mode shape is dependent on torsional stiffm·ss (lh­
in. /rad), polar moment of inertia (lb-in. -see2), and damping 
(lb-in.-sec/rad) of the various components comprising the sys­
tem. The vibration frequency at which the mode shape occurs 
is called the natural frequency. When a natural frequency coin­
cides with an excitation frequency, a state of resonance exists. 
At resonance the system damping alone controls the motions 
and stresses in the system. 

It has been noted that components of rotating machines 
cause excitations (Table l) at fi-cquencies that are multiples of 
shaft speed; it is for this reason that vibration modes can be 
Pxcitcd by frequencies other than the frequency of the shaft 
speed. When a shaft-induced excitation corresponds to the fi·e­
quency of any mode of vibration, a special condition of reso­
nance called a critical speed exists. Figure 2 illustrates the 
critical speed of a machine . Depending on· the excitation 
sources (Table l), critical speeds can occur at many shaft 
speeds, particularly in reciprocating machines. The combina­
tion of multiple excitations and multiple natural frequencies­
three frequencies are shown in Figure 2 - produce so many 
critical speeds that it is often difficult to find a safe operational 
speed range. Note, however, that not all critical speeds are 
"critical" because of inherent system damping and the level of 
excitation. Although experience with specific machines enables 
the engineer to identify important critical speeds, it is best to 
check the response (stresses) to determine whether or not a 
machine must be redesigned for safe operation. Note also that 
the natural frequencies shown for the system in Figure 2 do not 
change with machine speed. This is unlike lateral vibration. 

The torsional vibration response of machine systems is 
usually complicated by a large number of critical speeds. Un­
like lateral motions, however, instabilities and self-excited 
vibrations are rare with torsional vibration. In some cases the 
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Figure 2. Torsional Critical Speeds of Shafting Systems. 

coupling of electromechanical components- such as induction 
motor driven systems - can cause sdf-excited vibrations. 

Torsional systems arc susceptib\t> to failures as a result of 
transient excitation. A rapid starting frequency (often required 
to prevent overheating eh•ctric motor windings) induces large 
stn·sscs. In addition, start-ups with synchronous speed motor 
drives can be disastrous if a torsional resonance is excited. The 
resonanee is the result of a matching of the synchronous motor 
excitation and the system torsional natural frequency. The syn­
chronous motor has a large pulsating torque during start-up. 
The frequency of this pulsation is equal to twice the slip fi·e­
quency, and it varies from twice the line frequency at start-up 
to zero at synchronous speed. Any torsional critical speeds 
within this frequency range may be excited during the start-up 
cycle . Even though the excitation is transient, the pulsating 
torque may lw strong enough to cause shaft failures after sev­
eral start-up cycles. In extremely critical situations failure can 
occur during a single start-up. Sohrc [ l] has analyzed such a 
failure and documented the corrective action taken. A transient 
response analysis, conducted prior to equipment installation, 
allows determination of required system fatigue life. Doughty 
[2] has published a technique to determine the speed at which 
a system must be accelerated through critical speed to avoid 
unacceptable stresses. 

CALCULATIONS 

Calculations based on mathematical models, whether com­
plex or simple, can be of value in design, development, and 
fault diagnosis of machines .  It has been shown that vibration 
is dependent on the mass, elastic, and damping properties 
of the machine. Sources of vibration, called a forcing function, 
include reciprocating mass and blade passing. The mass and 
elastic properties determine the natural frequencies of the 
system and thus the critical speeds. Damping in the form of 
heat dissipation con trois the vibration levels. Damping is 
usually most effective at resonance - the level at which a 
forcing function equals a natural frequency. Table 2 and 
Figure 3 show some of the nomenclature used in torsional 
vibration calculations. ] 2 is assumed to be much larger than] 1 
that is] 2 is stationary and] 1 vibrates. 
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Figure 3. Modeling Torsional Vibration 
a. Multimass model 
b. Small model 

MODELING 

The most important part of solving a vibration problem is 
the selection of a mathematical model; the process is called 
"modeling." Two basic errors are commonly associated with 
the solution of a vibration problem: numerical error and model­
ing error. The best mathematical solution cannot overcome a 
modeling error. It is important to obtain the best model availa­
ble; if an approximate solution is desired, the model can be 
reworked so that solution is easier. Approximate methods indi­
cate whether answers are high or low. The methods used to 
solve a problem dictate the mathematical model that must he 
used. 

Mathematical solution involves calculating the response of 
the system to a given excitation. 

Excitation ------7 

Some physical considerations are important in modeling. 
System mass, clamping, and forcing functions are absolute val­
ues in calculations of vibration or natural frequencies. If any 
quantity is neglected therefore, it affects the results. Stiffness is 
a relative quantity, that is, the stiffnesses of adjacent members 
can be compared to determine a simple model. If one stiffness 
is an order of magnitude larger than the adjacent one, it can be 
ignored. For instance, a detailed model of a motor-compressor 
system (Figure l) is shown in Figure 3a. If the stiffness of the 
coupling is an order of magnitude lower than the adjacent 
shaft, the simplified two inertia model of Figure 3b can be 
used. Formulas and guidelines for modeling torsional 
vibrations can be found in Nestorides [3]. 

Methods of Solution 

The method used to solve any vibration problem depends 
on the type of problem, time allotted, and the accuracy re-

quirecl. The accuracy of the calculated response and of the 
natural frequency depend on the model of the physical prob­
lem and the numerical technique used on the analytical model. 

Numerical calculations can be made with a slide rule, desk 
calculator, desk computer or high-speed digital computer. The 
method used is selected on the basis of: 

problem complexity, 

accuracy required 

economics, and 

time. 

The cost of computer time must be weighed against the 
cost of a man. Of course, use of a machine does not completely 
eliminate the use of a man, since programming and data in­
put/output must be handled. 

For simple single-degree-of-freedom systems (Figure 3b) 
the formulas given in Table 2 can be used to calculate the 
torsional natural frequencies and response. For more compli­
cated systems (Figure 3a) the Holzer Method [4] is commonly 
used to calculate the system natural frequencies. 

The Holzer method utilizes transfer matricies to propagate 
the effects of assumed and known boundary conditions across 
an N station system model. In the Holzer method, the inde­
pendent variable is frequency, from which the system mode 
shape is calculated. If the mode shape satisfies the boundary 
conditions, the assumed frequency is a natural frequency. In 
effect, the determination of natural frequeneies can be a trial­
and-error process. This trial-and-error process can be reduced 
to an iteration process by assuming zero torque at the left end 
of a typical torsional model; at the right end of the model the 
torque is plotted as a residual function (Figure 4). Because only 
the relative values of angular displacement are important in the 
mode shape, the displacement at the left end is assumed to be 
one. The natural frequencies are obtained by propagating the 
initial values across the transfer matricies from the initial (I) 
shaft station to the final (F) shaft station, as shown schematically 
in equation (1). 

(I) 

Practical systems have many stations in the model; it is there­
f(>re not practical to multiply the transfer matricies. Instead, 
the digital or desk computer is programmed to transfer the 
effects of the initial conditions, for an assumed frequency, 
across the model. The mode shape of the system is determined 
when the frequency used to propagate the end conditions 
across the model is the natural frequency. 

The critical speeds of a torsional system are obtained from 
the natural frequencies and the description of the torsional 
forcing phenomena. In a four stroke-cycle internal combustion 
engine, the engine crankshaft makes two revolutions per cycle. 
The engine cylinder pressure, P(t), is periodic in two engine 
revolutions; the inertial effects are periodic in one engine revo­
lution. The mathematical relationship [.5] for the periodic gas 
and inertia torque is shown in equation (2); the fundamental 
period corresponds to two revolutions of the crank. 

T(wt}=P(t)rsinwt [1 
+ y coswt] 

+ m 
( 

)2 
[ 

r . . 3r . 2 rw 2zsm wt-sm 2wt-21sm 3wt] (2) 
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TABLE 2. NOMENCLATURE F OR TORSIONAL VIBRATIONS 

Symbol Unit 

frime t sec 

Displacement 01 rad 

Velocity 01 rad/sec 

Acceleration (jl rad/sec' 

Spring constant K in-lbh·ad 

Damping factor ' dimensionless 

Mass 11 lb-in-sec'/rad 

Force or torque T = fJ01 in-lb 

Momentum f101 in-lb-sec 

Impulse Tt in-lb-sec 

Kinetic energy V2]10f lb-in 

Potential energy V2KO[ lb-in 

Work lb-in fTd(J I 
Natural frequency w,=� rad/sec 

Equation of motion 
Initial conditions 
Transient responses 

Steady state responses 

where; 

T(wt) 
P(t) 

r = 

w 

engine crank torque 

cylinder pressure 

crank radius 

connecting rod length 

engine speed 

m piston mass 

time 

wt engine crank angle 

The cylinder pressure-time values for two engine cycles, 
wt = 720 deg, are substituted into equation (2); discrete 
numerical values are obtained for the crank torque as a func­
tion of crank angle. A Fourier series expansion, shown in equa­
tion (3) is used to generate a mathematical description of the 
torque vs. crank angle exjJression. 

'T''( 
) 

. wt + . + . 3 
11 wt = a112 sm 2 a1 sm wt a312 sm 2 wt .... (3) 

The constants, a112 , a1, a312, . . . , are determined by a 
Fourier analysis [6] of the preceding numerical data. This 
expression represents the engine crankshaft torsional forcing 
function. The arguments of the harmonic functions indicate 
that the crankshaft will be forced at frequencies which are 
multiples (112, 1, 3/2, ... ) in equation (3) are called order 
numbers. If a natural frequen�y of the system corresponds 
to any of the forcing frequencies, w/2, w, 3!2w, ... , the engine 
speed, w, may be a critical speed if insufficient damping is in­
herent in the system. Equation (4) describes the relationship 
between engine system natural frequencies, order numbers, 
and critical speeds. 

natural frequency 
Critical speed = ==..=..:=-=-l:C==-'­

order no. 
(4) 

JJ� + 1)� + K� = T0 sin wt 
0(0) = 01, 0(0) = Bo 

Oc = Ae - ,w,t sin (w,rt + c/J) 
w,r = Vl- ''w, 

e, = <Psin(wt - t/J) 
To 

<P= 
V(K - ]1 w')' + (1)w)' 

There are many critical speeds due to the multiple natural 
frequencies and order numbers. Because critical speeds are 
important only when they coincide with engine running speed, 
only those natural frequencies and order numbers that yield 
pertinent critical speeds need be considered. In practice the 
first four natural frequencies are used for the response analysis; 
it is simple to examine them for critical speeds. 

Modal Analysis 

Modal analysis [7] is a technique for determining the 
torsional response of machine systems. The natural frequencies 
and mode shapes obtained by the Holzer method are used 
to determine the forced response. Periodic forcing phenomena 
such as gas and inertia torques of engines and end item pulsat­
ing torque are not harmonic and therefore must be changed 
from periodic to harmonic form. 

Modal analysis is applied to torsional models; modal damp­
ing and synchronous and nonsynchronous speed forcing phe­
nomena (gas, inertia, and end item torques) are used. The 
number of natural frequencies (determined by the Holzer 
method) that are selected depend on the range of forcing fre­
quencies of the problem. A function consisting of a weighted 
average of the mode shapes (Figure l) is shown in Equation (5). 

N 
6(x,t) = � fn(x)gn(t) 

n=J 
where: 

(J = torsional response 

fn normal modes obtained from Holzer method 

gn periodic time varying weighting factors 

N number of modes 

(5) 

The periodic time varying weighting factors, gn, are a function 
of the system forcing functions, the modal damping factors, 
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Figure 4. Schematic Determination of Natural FrecJuencies 
from a Residual TorcJUe-FrecJuency Diagram. 

rotor speed, and system mode shapes. The modal damping 
values used in this analysis are a function of the mode shapes 
of the system. !'.1odal analysis is shown schematically in Fig­
ure .'5. The modes are uncoupled and the vibration contrib­

uted from each mode is calculated as if it were a single­

degree-of-freedom system. At <:'ach frequency the results are 

sm�med (assuming a linear system) to obtain the system re­

sponse. 

Pollard [8] has used impedance techniques to solve 
steady-state and transient torsional vibration problems. 
Electrical-mechanical analogies are used to develop equations 
that are solved on the digital computer. Direct integration 
techniques for determining the transient torsional response of a 
machine system have been developed by Smalky [9]. Al­
though expensive, direct integration can be used on nonlinear 
systems; the other methods apply only to linear models. Smal­
ley uses the Newmark 2nd order implicit method because it is 
cost effective when the system to be analyzed has a wide spread 
of natural frequencies. The high costs of direct integration force 
the analyst to minimize the number of degrees of freedom used 
in the model. Smalley [9] has analyzed the stresses of a large 
synchronous motor-driven compressor system using direct in­
tegration. During start-up the drive torque was found to be 
about three times normal full-load torque. Reduction of the 
starting voltage to 84% reduced the maximum torque by more 
than 20%, and the introduction of a rubber black coupling 
further reduced the start-up torque to almost full-load torque. 
A torsional response analysis was used to determine the operat­
ing conditions and design changes necessary to achieve reason­
able start-up torques in a synchronous motor-driven compres­
sor system. 

MEASUREMENT AND ANALYSIS 

Torsional vibration is more difficult to measure than lateral 
vibration because the shaft is rotating. Analytic procedures are 
similar to those used for lateral vibration. In torsional vibration 
work the experimentalist is limited to where measurements 
can be made. Until the past few years the torsiograph had to be 
connected to the end of a shaft to make measurements. Today 
torsional response can be measured at intermediate points in a 
system. Both strains and motions can be measured. 

RESPONSE 

FREQUENCY 

Figure .5. Modal Analysis of the Torsional Vibration of a 
Machine System. 

A test facility, such as that shown in Figure 6, and the 
instrument panel associated with it (see Figure 7), can be used 
to measure torsional vibration. This facility is used to measure 
dynamic stiffness and damping of flexible shaft couplings. A 
fou r-cylinder gasoline engine is loaded with a bra ke 
dynamometer and generates the torsional excitation required 
to obtain the vibration charaeteristics of couplings. The engine 
speed and dynamometer loads are controlled fi:om the panel 
with closed loop controllers. 

Strain gages are used to measure instantaneous torque on 
the drive shaft near the engine flywheel and on the dynamome­
ter shaft. The strain gages in this test facility were calibrated to 
read instantaneous torque from static torque loads. If calibra­
tion is not possible, the stresses and/or torques can be calcu­
lated from strength of materials theory. Strain gages can be 
mounted at 45° angles so that shaft bending does not influence 
torque measurement. In addition, the strain gage bridge can 
be arranged to compensate for temperature. It is difficult to 
take a strain gage signal from a rotating shaft. In the facility 
shown in Figure 6 slip rings are used to obtain the vibration 
signal from the shaft; wireless telemetry is also available. A 
small transmitter, mounted on the rotating shaft at a conve­
nient location, broadcasts its signal to a nearby receiver. Strain 
gages are available in a variety of sizes and sensitivities and can 
be placed almost anywhere on a shaft. The strain gage signal is 
processed by the bridge-amplifier unit shown in Figure 7. Test 
results indicate directly the damage potential of torsional vibra­
tion, but cannot be considered a diagnostic method that is easy 
to use or quick to apply. 

Only peak angular vibration is obtained from external tor­
sional vibration measurement, unlike the analog signal ob-
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Figure 6. Torsional Vibration Test Facility (Courtesy of 
Lovejoy, Inc.). 

tained from strain gages. The rate of angular motion is mea­
sured and integrated by the unit shown in Figure 7. The angu­
lar displacement can be measured at the end of a shaft with 
encoders and at intermediate points with a gear-magnetic pick­
up arrangement, shown in Figure 6 on either side of the 
coupling. In faet, the nodal point of a torsional vibration mode 
is often at the coupling; coupling hubs therefore are excellent 
locations for measuring torsional vibration. Natural frequency 
and mode shape calculations should be made before sensors are 
mounted to avoid placing the pickup at a node. Torsional vibra­
tion can be measured at many intermediate points in a system 
so long as a sensor can he placed on a gear or some other 
protruding dement. One engineer wrapped a hacksaw blade 
around a shaft collar. 

The broad band torsional vibration signal must be 
analyzed for individual harmonic components. Waveform 

analysis for torsional vibration problems is more difficult than 
for lateral vibration problems. In fact, a wave analyzer is neces­
sary for diagnostic work on torsional vibration problems. Fig­
ure Sa shows a torsional response signature of the test facility 
(Figure 6). The engine was running at 2, 000 rpm under 
minimum load. The vibration responses to the one-half order 
and second order engine excitations are evident at frequencies 
of 16 .. 5 Hz and 66.6 Hz respectively. The 33 Hz first order 
signal is due to mass unbalance in the system. The analog signal 
in Figure Sb is an instantaneous torque measurement. The 
complex signature reflects the difficult waveform analysis. This 
signal can be processed in a torsional vibration analyzer unit 
shown (see Figure 7) to obtain its harmonic content. 

DESIGN CONSIDERATIONS 

The following criteria are usually considered in the design 
of power transmission systems: function, structural integrity, 
safety, life, cost, and maintainability. Torsional vibration is a 
factor in structural integrity (peak-load capability), life (fatigue 
due to torsional stress reversals), and cost. Complex vibration 
dampers or absorbers can be costly. Design criteria for tor­
sional vibration are quantified in terms of stresses: both the 
stresses attributable to normal peak-load machine function and 
the stresses arising from torsional vibration must be consid­
ered. 

Procedures 

A design procedure fc>r torsional vibration analysis can be 
based on measurements or mathematics (see Figure 9). The 
system components - i.e., motor (drive element) and com­
pressor, pump, or vehicle (driven element)- are selected on 
the basis of function. The selection of intermediate components 
such as couplings, belts, and gear boxes is based on normal load 
capacity (depending on the type of equipment, a service factor 
is included). 

If the system is to be analyzed mathematically, a model is 
prepared (see Figure 3). The inertias and stiffnesses of all com-

Figure 7. Torsional Vibration Facility Control and Instrumentation Panel (Courtesy of Lovejoy, Inc.). 
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ponents are then either calculated or measured. The model is 
reworked into the least complicated form that will yield perti­
nent information for analysis: necessarily complicated models 
require more time to solve, and the extra data requires more 
time to analyze. A prototype unit is often assembled after pre­
liminary calculations have been made. 

Natural frequencies can either be calculated from the 
model or measured on the prototype; they are sometimes dif­
ficult to measure, however, and are restricted by the excitation 
frequencies. Both the system response frequency and the exci­
tation frequency must be measured. Natural frequencies are 
obtained indirectly from critical speeds. In a reciprocating 
machine system, for example, both machine speed and tor­
sional response must be measured. Harmonic analysis is used 
to determine the excitation frequencies; critical speeds can 
then be calculated. The acceptability of the unit is based on the 
critical speeds and the desired operating speed range. The 
decision to modify either the stiffness of couplings, belts, or 
shafts or inertia in order to change critical speeds will depend 
upon how close the operating speeds are to critical speeds. In 
some cases critical speeds can be lowered or raised so that, 
during operation, the operating speed of the machine is not 
close to any critical speeds. In engine-driven systems (Figure 

50 ec/cm 
Figure 8b. Torsional Response Signature. 

2) this is usually not possible. If there are many excitation 
orders from reciprocating masses, many critical speeds usually 
occur in the operating speed range. In such cases a complete 
torsional vibration response analysis should be conducted to 
determine the stress levels in the unit. Soft (flexible couplings) 
are often used to avoid alignment problems. The system then 
will have a low fundamental natural frequency and a large fre­
quency increment between the fundamental and second 
natural frequencies. rv1any designers size equipment so that 
this low fundamental frequency is below the operating speed 
range. 

Determination of the torsional response of a system re­
quires characterization of the excitation torques, either as a 
function of time for transient analysis or as a function of fre­
quency for steady-state analysis. The excitation torques and the 
model are used to analyze the response of the system. Strength 
of materials techniques are applied to the torsional response to 
analyze stress and fatigue. Both measurements and calculations 
are often used to analyze failures. If torsional angular deflec­
tions are available from prototype measurements, the stiffness 
of components in the mathematical model can be used to calcu­
late the stresses. Although strain measurements provide the 
results directly, they are costly. Induced component stress and 
material strength from the failure analysis are used to estimate 

Ll Modify Component 
. toChangi!Crnic�l 

Speed' 
-- �·-

Figure 9. Design Procedure for Torsional Vibration. 
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component life. If necessary, components are modified to 

lower stresses. Such modification can be simple or complicated 

- depending on the design constraints. It is not always possi­

ble to add inertia or change the stiffness of a component to 

correct a problem; in such cases, either a damper, which dissi­

pates energy as heat, or an absorber, which manages or rear­

ranges the application of energy, must be added to the system. 

These procedures are usually costly but often necessary. 

Case History of a Motor-Driven Compressor 

An induction-motor driven reciprocating compressor sys­

tem was to be designed to operate at three speeds: 1,170 rpm, 

1, 470 rpm, and 1, 7.50 rpm. Significant excitation occurred in 

the reciprocating compressor (Table 3) at 2, 4, and 8 times 

running speed. Table 4 shows data for the model in Figure 3a. 

The stiffness of the original coupling is very much lower than 

anv other stiffness value in the system. It is for this reason that 

th� model can be simplified as shown in Figure 3b; the first 

natural frequency can be calculated using equation (6). The 

inertia values for the model arc the sum of all inertias on each 

side of the flexible element, the coupling. The simplified 

model has the following characteristics: 

] 1 30.1 lb-in. -sec" (motor) 
k 6.5, 000 lb-in./rad (eoupling) 

] 2 1. 09 lb-in. -sec2 (compressor) 

fn = 39.6 Hz 

(6) 

The natural fi·equency of 39.6 Hz is dose to the 39 Hz ex­

citation obtained from the second order vibration excitation at 

1,170 rpm (Table 3). The relative torsional vibration measured 

across this coupling dming operation of the unit at 1, 170 rpm 

was 2. 26 degrees. Multiplication of the torsional vibration by 

the coupling stiffness gave a value f(Jr vibratory torque of2,.560 

lb-in. The peak load torque requirement was about 4,000 lh-in. 

f(Jr this unit and the coupling load rating was 7, 000 !b-in.; both 

the natural frequency calculation and the response measure­

ment showed that the coupling would filii. 

A stiffer coupling (k = 349, 370 lb-in./rad) with a slightly 
larger rating (8400 !b-in.) was used. Note that the simple 
natural frequency formula is still valid because the coupling 
stiffness is an order of magnitude less than any other stiffness in 

TABLE 3. MOTOR-CO MPRESSOR F ORCING 
FREQUENCIES 

Forcing 
Speed Frequency 
(rpm) Order (Hz) 

1, 7.50 8 233 

4 117 

2 58 

1, 470 8 196 

4 98 

2 49 

1,170 8 156 

4 78 

2 39 

the system. This coupling had a half inertia value of .47 lb-in.­
see. The calculated natural frequency was 91. Hz - close to 
the 98 Hz excitation obtained from the fourth order at 1,470 
rpm. Measurements revealed .15 degree relative torsional 
vibration across the coupling, which corresponds to a vibratory 
torque of 914 lb-in. The peak torque was thus reduced to 4, 914 
!b-in., which proved to be satisfactory for machine operation. It 
is often difficult to select a coupling having both the proper 
load rating and a stiffness that permits operation at a number of 
speeds or for a range of speeds. 

FAULT DIAGNOSIS AND CORRECTION 

The solution of a torsional vibration problem is sometimes 
obvious- more often, it is not. This section describes methods 
used to diagnose and correct torsional vibration problems. 

Diagnosis 

The fault diagnosis techniques used to study torsional 
vibration problems are not unlike those employed in lateral 
vibration. Some understanding of the phenomena associated 
with torsional vibration is essential. A model such as that 
shown in Figure 3 often provides insight into a problem. 
Knowledge of excitation frequencies, natural frequencies, and 
mode shapes can be applied to the diagnosis, and are especially 
helpful in locating sensors when measurements are necessary 
to obtain data. In many cases torsional vibration must be mea­
sured at a point remote from where the failure occurred. It is 
theref(Jre useful to know the mode shape so that the test values 
can be used to analyze the failure mode of the unit. 

Correction 

Most torsional vibrations arise because the system has a 
large number of critical speeds. Problems are corrected by 
changing the critical speeds of the system so as to alter its 
torsional response. Critical speeds are changed- a procedure 
called tuning- by altering stiffness or inertia. It is occasionally 
necessary to add damping and absorption devices to the system 
to reduce torsional stresses. Damping devices alleviate stress 
by their motion and are thus more effective when used in 
systems that operate near or at critical speeds. Damping de­
vices should be used sparingly, however, because they are 
costly. Correction by reducing excitation is probably the best 
correction method in general, but is the least effective for tor­
sional vibration problems. The reason is that most torsional 
vibration originates in machine function. Torsional vibration 
correction therefore involves modification of the system rather 
than reduction of excitation. 

Case History of an Engine Crankshaft Failure 

A small gasoline engine was directly connected to a recip­
rocating compressor. Whenever two reciprocating machines 
are connected, more-than-usual attention should be paid to tor­
sional vibrations! In this case random crankshaft failures were 
occurring in the engine. A critical speed analysis of the system 
before it was assembled had indicated that the engine was not 
running near a critical speed. No response analysis had been 
conducted at that time, however, so it was the first step in the 
diagnosis of the vibration problem. A modal analysis of the 
system was conducted using a model of the engine-compressor 
system [7]. Analysis of the stresses in the crankshaft revealed 
that nominal stress levels (Figure 10) could vary as much as 
25% depending on the orientation of the angle between the 
engine and the compressor crankshafts. Random angular orien­
tation occurred because a friction collar had been used to con­
nect the units; this was the source of the random crankshaft 
failures. The problem was solved by placing the shafts during 
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TABLE 4. MOTOR-COMPRESSOR MODEL 

Component Component 
No. Description 

0 Motor Armature 
1 Coupling-Half 
2 Coupling-Half 
3 Compressor Cylinder 
4 Compressor Cylinder 
.5 Compressor Cylinder 
6 Compressor Cylinder 
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Figure 10. The Relationship Between Attachment Phase and 
Maximum Stress for the 3BHP Gasoline Military Engine with 
Three Phase Air Compressor Attached. 

assembly so as to insure a proper phase relationship between 
the two units. The problem would not have occurred if a tor­
sional vibration analysis had been part of the design process. 

Case History of Engine Flywheel Gear Failure 

The failure occurred on a large diesel-powered tractor 
seraper. The internal fiber gear attaehment between the 
engine flywheel and transmission failed. In addition, 
crankshafts were failing in an engine known to be reliable. 
Torsiograph measurements were made on the front of the 
engine at various operating speeds and loads. The torsiograph 
records were analyzed and used in eonjunction with a 
mathematieal model to obtain stresses in the gear and 

Polar Moment Stiffness 
of Ine1tia (lb-in./rad 

(!b-in. -sec') X 10-6) 

29.6 
.45 .6 
.45 .065 
.16 2.8 
. 16 3 . 
. 16 3 . 
. 16 3 . 

crankshaft. It was found that, at a no-load idling condition, 
excessive stress levels occurred in the unit. High torsional 
vibration exeitation at idling speed is common in engines be­
cause of the lack of balance between gas and inertia forees. In 
this case the simple solution to this problem was to increase the 
engine idling speed by 100 rpm. 
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