ME459 — Notes 10

Sound Propagation & Wave Equation

Wikipedia:

Sound is "(a) oscillation in pressure, stress, particle
displacement, particle velocity, etc., propagated in a
medium with internal forces: elastic or viscous, or the
superposition of such propagated oscillation. (b) Auditory
sensation evoked by the oscillation in (a).

Sound can be viewed as a wave motion in air or other
elastic media. In this case, sound is a stimulus. Sound can
also be viewed as an excitation of the hearing mechanism
that results in the perception of sound. In this case, sound is
a sensation.

Physics of sound

Sound can propagate through a medium such as air, water and
solids as longitudinal (compression) waves,and also as
a transverse wave in solids (alternate shear stress).

The sound waves are generated by a sound source, such as the
vibrating diaphragm of a stereo speaker. The source creates
oscillations in the surrounding medium. As the source continues to
vibrate the medium, the vibrations propagate away from the source
at the speed of sound, thus forming the sound wave: At a fixed
distance from the source, the pressure, velocity, and displacement
of the medium vary in time. At an instant in_time, the pressure,
velocity, and displacement vary in space. Note that the particles of

the medium do not travel with the sound wave. The vibrations of particles
in the gas or liquid transport the vibrations, while the average spatial position of the
particles over time does not change.

MEEN 459 — Notes 10 Sound propagation and the wave Eqgn. L. San Andrés © 2019 1



During propagation, waves can be reflected, refracted,
or attenuated by the medium

Sound waves are characterized by these generic properties:
Frequency, or its inverse, wavelength

Amplitude, sound pressure or intensity

Speed of sound (c)

Direction

Sound that is perceptible by humans has frequencies from about
20 Hz to 20,000 Hz. In air at standard temperature and pressure,
the corresponding wavelengths of sound waves range from 17 m to
17 mm. Sometimes speed and direction are combined as
a velocity vector; wave number and direction are combined as
a wave vector.

Trfracenic | Audible UraGanpe
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Sound measurement is performed with microphones. Do
note that sound (as seen next) is a perturbation of pressure
(in time and space) in a stationary (calm) medium.

To measure sound level or magnitude one typically uses a
decibel (db) = 1/10 bel.

A human’s perceived sound level is proportional to the log
scale of sound pressure (p°).
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ref

power in a sound wave is ~ pressure?,

The threshold sound pressure of human’s hearing at 1 kHz is
pref = 20 10_6 Pa

If the sound power drops to %2 of the reference, then
2
L, =10log,, ( pR%Z j =10log,,(0.5)=10*(-.3) =-3dB

ref

While if the sound power doubles, then

2
L, =10log,, ( pR% ) jleIogm (2)=10*(+.3) = +3dB

ref

Also 80 dB means - 10,000 larger than reference

2 2
8= log,, ( F:)RMS j —>( FI’ORMS j ~10° > p,,,, =10*p,, =0.01Pa
ref ref

While 120 dB means - 1 million larger than reference

1
6=log,, [—F;RMS ] —>( F;RMS j =10" > pgys =10°p,, =1Pa
ref ref

LOUD!
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Typical sound pressure levels of common noise sources
(copied from Acoustic Noise Measurements — Bruel &
Kjaer)
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(Based on handwritten Lecture Notes 18-19 by Dr. Joe Kim)
Mathematical analysis of sound propagation and

acoustic pressure fluctuations
considers

a) Inviscid media ( gas has no viscosity)

b) Adiabatic process — no thermal energy exchange
between gas (air) particles - a constant entropy process.

The equation of state for an ideal gas is:
P=pR;T (1)
where P and T are the gas absolute pressure and absolute

temperature, Rg is the gas constant and y is the ratio of specific
heats (=C,/C,).

The media (gas) is considered stagnant (with zero mean velocity)
and the pressure is equal to

P=FP+p' > p=p,+p (2)

Where the sub index a stands for ambient condition and the
¢ stands for a fluctuation (or perturbation) about the mean value.

Conservation of mass
The equation for conservation of mass in a compressible fluid is

Dp 0Op
== Vo :O 3
ot ot T VAY) )

where v=(Vx, Vx, V7) IS the acoustic velocity of a particle in a static
medium. Above V is the divergence operator.
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Substitute p = p, + p'(<< p, ) into Eq. (3) to obtain the
linearized equation

4 p,Ve(v)=0 (4)

Here, a small term like (p’v) is neglected.

Conservation of momentum
For an inviscid fluid (no viscosity), the momentum equations of a
fluid reduce to

D(pv) _ o( pv)
Dt ot

where V is the gradient operator. Ignoring advection of fluid
motion and linearization of the temporal change in momentum
leads to Euler’s equation:

+VVe(pv)=—VP (5)

ov _ ,

P.—=—Vp

at (6a)

These are three independent equations written in the Cartesian
coordinate system as

oV op'. op'. ov ap’
Y LA AL 6b
Paat T ox . ot oy ot o ©

which shows the particle acceleration (change in momentum) is
proportional to the gradient of the perturbed (dynamic) pressure
along that direction.

Now, derive the conservation of mass Eq. (4) with respect to time
to obtain
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aZIol a 62p| (a j
+p,—Ve(v)=0> —+p, Ve —Vv |=0 7
And substitute Euler’s Equation into Eq. (7) to obtain
2 1
aatf —Ve(Vp')=0 (82)

And recall V-(Y) =V? is the Laplacian operator. Hence, Eq. (8a)
becomes

2
o ~V2p' (8b)

Changes in pressure and density define the sound speed c,
as

P )R T=C? (©)

For air (molecular weight=29) Rc=286.7 J/(kg K) and y =1.4, and
at a temperature of 300 K (~27 C), the speed of sound co =347 m/s

Substitute Eqg. (9) into Eq. (8b) to obtain

10%p' o’p' o°p' o p'
e SR A
c, ot 0 X oy 0z

(10a)
This is the WAVE Equation or the equation of propagation of
acoustic pressure in Cartesian coordinates (x,y,z).

In polar coordinates (r,6, z):
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1 62 1 , 62 1 82 1 18 1 82 1
2 E =V°p'= 2 p2+ [2) += By E
c, ot rcg- or- r or 0z

(10b)

The wave Eqg. (10) is solved in the domain with specified particular
boundary conditions in the closure of the domain as well as with
initial conditions.

Once the pressure field p’ is obtained, the velocity field (v) follows

from Euler’s Eqn. Q =— iY p' (6)
ot Jo,

a

Harmonic wave propagation
The solution of the wave equation is of the general form

pl(x,y,z,t) :(A<+eizcxx +A<_e—iKXX)(Ay+eiKyy +Ay_e—i1<yy)
(AHeizczz +Az_e—izczz)(A+eia)t n A_e—ia)t)

where i is the imaginary unit. Above xis a characteristic
1/length=wave number and @ is a 1/time=frequency scale.

(11)

(w/o reflective boundaries) Let
pu(X’y,Z’t) =A<e|KXX)( IKyY)(eIKZZ)(e—Ia)'[) (12)

Substitute into Eq. 10(a) to obtain
10° p’ 2 w° 2 2 2 x
g&tz =Vp'—> E=KX+Ky+KZ—K2 ®)

where the wave number (x) is a vector: & =x,i +x, ] +x,K.
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Similarly for the velocity vector, let v = V'( ) e™'“" and sub into

X,Y,Z
oV :
Euler’s equation p, 5t =—V p' to obtain

L gpoe L

lwp,

V'=+

. vp (13)
IC, K p,

Since @ =C, K.

Note above the relationship between frequency (@) and wave
number (x). For example, given co =347 m/s, then

Freq 0] k= /o | A2 /K
Hz rad/s 1/m m

20 125.6 0.36 17.34
500 3,142 9.05 0.68
5,000 31,420 |90.5 0.068
20,000 125,700 | 362 0.0174

Recall sound that is perceptible by humans has frequencies from
about 20 Hz to 20,000 Hz. The higher the frequency is, the smaller

iIs the wave length (1) [full period]
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WAVE PROPAGATION IN A DUCT

For sound propagation along the x-direction? (only), the equations
are

o’p' ,0°p' oV op
—  _cc—r (15 d X —— 15b
o ° oy VM= (D)

Above ¢, =./yR,T [m/s] is the sound speed.

The solution of PDE is of the form [P (x,t) :¢(X)V(t) (16)
Sub into Eqg. (15a) to get

v /4

) P _ 2
— C —Q (17)
Vo P

or Vg +a) v=0& ¢(X)+K2 Dy =0 (18)

where K=wl C, (19)
w is a frequency [1/s] & « is the inverse of the wave length A [m].

The solution of the ODEs (18) is (for example)

Vy, =C, cos(at)+S,sin(wt)=D e (20a)
B =C,C0(k X)+S, sin(x x)=Ae'* +Be™* (20b)
Hence, P'o =PoVeo :[Aei"x +B e_i’”‘]e_i‘"t (21a)
And the propagation speed is
V, =+- 1L dp_ [Ae'X—Be"X} et (21b)

IC,xp, OX i o P

! Note the wave equation is identical to that derived for vibrations of a taut string (see Lecture Notes 3).
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The coefficients (A, B) are determined by satisfying the boundary
conditions for the specific duct configuration.

Example 1. Duct with one open end

Examgle ) G ol

Vinzed) = v emav'k n=L,

Ly

At x=0, specified velocity

[Aencx _Be_IKX:L(:O _ [A—B] ., (22a)
Co P CoPa

_ —iot _
Vo) =Vo€ = Po)\Viy =

At x=L, openend -> no pressure perturbation (a pressure release
condition)

P’ y=0= ¢ V= ¢(L)=O:[Ae‘KL+Be‘iKL] (22b)

Hence, the two equations for finding A and B are

1 -17(A] [pc,
|:ei/<L eiKL:|{B}_{ O }VO (23)

with A=e""" +e"*" =2cos(x L) (24)

recall: g7 = cos(a) + isin(a); e* = cos(a) —isin(a)

1 - 1 -
th A==(pc \ve'*":B=—(p.c )ve*" (25
en N (PG Vs (25)
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Sub Eq. (25) into Eq. (21a) | p’,, :[Aei’“+Be‘i’“]e‘i“’t to get

pl(x,t) _ (AeiKX 4 Be—ikx)eia)t _ ,Oai)vo |:eiK(X—L) _e—iK( x-L) :|e—ia)t

+ia

e"'* =cos(a) +isin(a)

Since | _ _» 2isin(a)

e '® =cos(a) —isin(a)

sin| x(x— L)](V i)

Then > P'on =ip,C, cos(cL) S

(26)
Similarly, the propagation speed is

1 op' cos|x(x—L)]
ic,xp, OX cos(x L)

V, =+

X

(v,e™") (27)
where the wave numberx = @/C, .

Natural frequencies and mode shapes
From the system of Eqns. (23), note the characteristic
equationis A=2cos(xL)=0—

cos(xL)=0 (28)

having an infinite number of solutions. The wave numbers and
natural frequencies are

Kn — %ﬂ._) a)n - KnCo - (2n2_1)7z-ct0. n=1,2..... (29)
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Associated to each natural frequency, the mode shapes are (see
Eqgn. (26)):

l//n: Sin(Kn{X_L}) n=12,... (30)

or
w,= sin Zldh) w,= sin vl w,= sin szl
. 2 L ) 2 L )7 2 L
shown below.
natural mode shapes
1 A
1" “a
+. i .
0.5 x=0: rigid ” 5 %=L pressure release
boundary ,:"n . (p'=0

= == Mode 3

Fig 3. Natural modes shapes (x) for duct with one end open

Acoustic impedance
Recall the definition of an impedance

Z = effort/flow (31)
In an electrical system = Z = voltage/current = V/I; while

in @ mechanical system - Z=Force/velocity or Torque/angular
speed.
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In an acoustic system, the impedance Z is the ratio between
pressure (p’) and acoustic velocity (V).

P sin| k(x—L)]
. Ty ° cos| x(x—L)]

X

=ip,c,tan| k(x—L)] (32

At the inlet of the duct, x=0, the acoustic impedance is
Z oy =—ip,C, tan|xL | (33)

The relationship is imaginary, hence reactive (not adding energy)

Recall in an electric system, with a resistor element Z= V/I 2 R
(real #) > O dissipates energy as the voltage and current are in
phase (power = I? R).

Not so for a capacitance (C) or an inductance (L) where V=1/C q
(charge) and V = L dl/dt, with I=dg/dt (the temporal change in
chargeq)

These two elements are conservative, i.e. storing energy, and with
the power in a full cycle = 0.
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Example 2. Duct with a closed (rigid) end
(organ pipe)

E?ﬁﬂlhf 1.4&‘.. ) f.f-ﬁiii Jl_;:,_i

Vinze £)= 1 pravit
Lsw

=l

At x=0, specified velocity

|:Ae|7<x _Be—mx]xzo _ [A—B] N (34a)
Co Pa ColPa

—iwt

Vioy=Ve€ = ¢(0)V(t) =

At x=L, _closed end - no velocity
[AeiKL . B e—iKL:l

Co Pa

=0 (34b)

Ve =0= 9V =

Hence, find A and B from

) S
eIK _e IK B O

with A=e"*" —e """ =2isin(x L) (36)

then A:_Kl(,oac0 )v,e ' B =_K1(,oac0 )v,e t (37)

Sub Eq. (37) into| P’ =[Aei’(X + Be_i’“‘]e_i"’t to get
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: —PaCVo [ Lin(x-L) | a-ix(x-L) | a-iot
= e +e e ' =
P = Jisinge L)[ |

cos| x(x—L)]

sin(x L)

Then > P’y =i0:C, ve ' (38)

And the propagation speed is

1 0 p':—sin[zc(x—L)](

V, =+
Ic, Kk p, OX cos(x L)

where the wave number k' = @/C, .

Natural frequencies and mode shapes
The characteristic equationis A=2isin(xL)=0 (39)

having an infinite number of solutions. The wave numbers and
natural frequencies are

nz

C
K, = T_) @, = Knco - I'UZ'IO; n=0.12..... (40)

Associated to each natural frequency, the mode shapes are (see
Eqgn. (38):

Vn= COS(Kn {X — L}) n=01.2,.. (41)
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natural mode shapes

—— Mode 1 2
- Mode 2 L
= = = Mode 3 L = 0.784m

Fig 3. Natural modes shapes (x) for duct with one end closed

Acoustic impedance
The acoustic impedance is

. =E——ip . cos| k(x—L)]|

v, O Csin[x(x-L)]

X

=ip,c, {tan[x(x—L)]}" (42)

At the inlet of the duct, x=0,
Z o) =—1p,C, COt[xL | (33)

The relationship is imaginary, hence reactive (not dissipating or
adding energy).
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OTHER Example (from Dr. Joe Kim)

E}Ct'ﬂfit) 6|n1{y|L P_}(?msim [=v C‘H+i‘ht’h'-h) e:lu=-+
¥
0 7
A : N
— 4
—b
T & \ n 9 ““d St Chsg.—izf.'i'i-nw[._
T areas
oL s

bechien 1 (x su)
PoOGK) = (Ao iR g go-afx)eivt

N 0k) = 2 (AR - g it )grink
Sechion 2 (x2s)

Polng) = ¢ erbr

L (.1(.,*} = #'(‘_ E‘i‘_

B#Mhdar“&_‘ {"“dll‘l'funs od‘ A= 0
PIL“"") = Pl-(’“") k4B = ¢

—Q
ﬁ [ T Wl =a) - - —'f‘:\'«
Vi) 2 8 ) s A-B =S L@
Nk
L3}
DeLine ko Area radio
R=t o Redlecd wave e
T= :;;‘- b Transmitfed wave rortia
E}s. @ ﬂﬁd@
1+ R =T
- R=1trT
. s
_> = L4
-k -
RT— T ’l - Tt = ..%r—';‘
Limit Cases
when ¥ =1 (ne cresi-section chah%f_)
T=1

2o (ne reflected wave
When =0 [ acsushic pressure releate condition
T= o

= -

when 2o ( Rigid ferminadon )
T = L

R=
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Example 3. More on acoustics of organ
pipe (duct with one end closed)

Watch videos on
web site too
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MUSIC Notes - equal tempered scale

In equal temperament, the octave is divided into equal parts on the logarithmic scale.

12 tone scale A4 A3 Va4 Ab =2n4
"A4" "Lad" e T I
A g S 466.16
A4 La#4 1 220 1 880
" nsign 493.88
! 2 233.08 2 932.32
I R 523.25
C5 Do5 3 246.94 3 987.76
- . 554.37
C#5 Do#5 587 33 4| 261.625 4| 1.046-108
"D5" "Re5" |f — 1.1z f 5| 277.185 5| 1.109-103
2 622.25 s
"D#5" "Re#5" - ~| 6| 293.665 Hz fs:2=16| 1.175.103| Hz
"E5" "Mi5" Saleia 7| 311.125 7| 1.244.108
"F5" "Fa5" 695.46 8| 329.625 8| 1.319-108
nEg5n "Ea#5" 739.99 9| 349.23 9| 1.397.103
"G5 "Sol5" 783.99 10| 369.995 10| 1.48-103
"G5 S~ 830.61 11| 391.995 11| 1.568-103
12| 415.305 12| 1.661-103

wave length for A4

1
1 7.967 1 oAz

2 8.441 ; ;i.igg s

3 8.943 : 76 2 o

4 9.475 . e

ocf. | 5| 10.038 4| 66.316 o

> 1 C#5

AWT T, 7| 6| 10.635| - c, |[5| 62594 i
° 7] 11267 A= 7 =|6| s9.081] em | "D°

. 1 oY

8| 11.937 7| 55.765 D#5

9| 12.647 8| 52.636 "ES"

10| 13.399 9| 49681 "F5"

11| 14.196 10| 46.893 "FH#5"

12| 15.04 11| 44.261 "G5"

12| 41.777 "GH#5"




n:=12

j=1.n-1
fy

rat; i~ f”l ratio between notes = 1.059
S.

J
An equal temperament is a musical temperament, or a system of tuning, in which the frequency interval between every

pair of adjacent notes has the same ratio. In other words, the ratios of the frequencies of any adjacent pair of notes is the
same

max(rat) = 1.059  min(rat) = 1.059 (ratl)lz =2 j=1.n

"A4"
"A#4"
"B4"
"CE
"C#5"
"D5"
"D#5"
nEGH
"E5"
"F#5"
"G5
"G#5"

900

Frgequency (Hz)

0 5 10 15

Musical scale (A4)



Example Acoustic Vibrations - ORGAN PIPE L San Andres (c) SP 19 MEEN 459

PHYSICAL Parameters molecular weight

for gas MY, := 29 ,
8314.34 ] m
= . = 286.701 ——
G as constant
MW  kg-K K O
pipe length N =14 ratio of specific heats T:=300-K  temperature
L = 78.41.cm 5 sy Pai= Lbar
¢, = (V-Ra-T)> = 347.008 —
exact length for A4 0 ( G ) S sound speed
CLOSED DUCT
Extamol 0. : "2 _ 163k
'lﬁ-'ﬁh"l L — __'--_\_\ a = = 1. —_—
[ ) ( R;ﬁi,{ end R T m>
Vineed)= vy ook wzl
Lo
(@) natural freguencies & mode shapes
_ . _ 5
using separation of variables, P(D = @()-v(® () with K = weg
Substitute into the field Eq. (0) to obtain the following two ODEs:
2
Lo+do=0 e |
dx The solution to the ODEs is  ®(X) = Ay CoS(k-X) + Bysin(k-x)  (3a)
2
d—v + wz-v =0 (2b) v(t) = Apcos(w-t) + Bysin(w-t) (3b)

dt?

Satisfy the boundary conditions.

At left end x=0, dp/dx=0 (zero velocity).
do _

ol —Ay-k-sin(k-0) + By-k-cos(k-0) = 0 then By =0
X

and d(X) = cos(k-X)  (4)is the equation for the shape funcion.

At the right end, x=L, the duct is closed, hence p'=0 (zero velocity)

at x=L d_(b = Sin(K,'L) =0 (5a) J —0.n Set N-l;A;: 4000-N
R example

= characteristic equation. Theroots are  kj := JTﬂ k| = (0 4.007 8.013 12 02)i
m



And thus, the natural frequencies are

=
Wh

— = (0 221.278 442,556 663.834)-Hz

2-T

The mode shape

functions are

d1(x) := cos(0)

Wn. = Co'Rj rad/s

>\j =—

The longer the pipe is, the lower the

natural frequency

_211'

K]

natural mode shapes

/

/

r'v_’ Y

0.5

P
[ 4

/

(@s)

-05

0

Mode 1
ee e \Mode 2
= = = \ode 3

| x

L =0.784m

rigid body mode + hamonics of first A3

wave lengths g :=

W

d2(X) := cos[m(x—1)] P3(X) := cos[2-(Xx — 1)]

1.568

m
0.784
0.523

0
221.278
442.556
663.834



. e . kg
Solution for a specific velocity and frequency  p, = 1.163—= ¢ = 347 008"
S

m
L = 0.784m
M f - 430.-Hz i1 = (0 221.278 442556 663.834)-Hz
V,i=1.— T
° S pitch lower
than A4 3 1
. . w="F271=2702x10"—
build pressure and velocity waves S koo W 7.7861
C m
i 0
peiod -1 _ 5 326.ms
f wave length N = 2_7T — 0.807m

p_ = Py CO'VO = 403.449Pa constant for excited pressure

from lecture notes 10
|
cos[r-(Xx—-L)] . —i-w- ivi
p(X,t) —p.- [ ( )] Nile I-w-t take real part & divide by constant value p_ and vo
— _
. ]
sin[k-(X—L)] —iw-
V(X,t) == -y M-e bt
e _
k'L =6105
< o E =1.029 Note pressureis 90 away out of phase with velocity

sin(k-L) = —0.177 near resonance

1
=——— = -5.64
max sin(k-L)
For time-varying solution N_periods := 2 for analysis

tmax = T-N_periods

tmax

MNVV;: 30 total number of frames or steps At = S — 155x 10_45 time step

k .= 10 FRAME

L= At S~ 0



BUILD: pressure &velocity waves vs time _ _
f = 430-Hz T = 2.326ms L =0.784m

. X =0.807m
velocity pressure

i
5 X _ 0.667
0
p(x,0) \ /
TN/
_5

0 02 04 0.6 0 02 04 0.6 A
] 2 - 1029
X X L
power
p_ = 403.449Pa
20 1 5
ower(x,0 — — 564
powerbe0) 1 sin(k-L)
power(x,t k) N NS
-20

fnT = (0 221.278 442.556 663.834)-Hz

Waves of velocity, pressure and power vs. X L‘% _ 31.364cm
time at 1

T = 2.326x 10 °s

3

0 1x10 210 3x10 4x10°

time () 1

\

=0

power



PRESSURE AMPLITUDE FREQUENCY RESPONSE at varios spatial locations x

P_

graph

x=0.75L

frax == 1000-F

p
Ll T 1
0 f, =(0 221.278 442,556 663.834)=
- S
natural frequencies:
= 4N 449Pa
=
[<5]
5 \ | J \
z / \
o
5 1 ~
() y A \\
g A W 4 \ WV | ) y 4 [ ‘\\
= I \ X \ \
g_ e —
<
0.1 o1
0 200 400 600 800 1><103
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More notes from Dr. Joe Kim

Sound intensity level
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