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Notes 8 ME 459/659 Sound & Vibration Measurements 

Experimental identification of system physical parameters: 

an application to fluid film bearing/seal elements 
 

Experimental identification of the dynamic force coefficients of bearings, seals and other rotor 

support elements is of importance (a) to predict, at the design stage, the dynamic force performance 

of a rotor using these elements; (b) to reproduce rotordynamic performance when troubleshooting 

rotor-bearing system malfunctions or searching for instability sources; and (c) to validate (and 

calibrate) predictive tools for bearing and seal analyses. The ultimate goal is to collect e a reliable 

data base from which to determine the confidence of bearing and/or seal operation under both 

normal design conditions and extreme environments due to unforeseen events.  

In addition, even advanced predictive computational physics based models are very limited or non-

existing for certain bearing and seal configurations and with stringent particular operating 

conditions, and thus experimental measurement of the actual element force coefficients constitute 

the only option available to generate engineering results of interest. Squeeze film dampers 

operating with persistent air ingestion and entrapment are an application example where systematic 

experimentation becomes mandatory. 

 

The widespread availability and low-cost of PC high-speed data acquisition equipment and (real 

time) data signal processing have promoted dramatic advancements in the field of bearing and seal 

parameter identification. In most cases, methods are restricted to the laboratory environment and 

strictly applicable to rigid rotor configurations and identical bearing supports. Time and frequency 
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domain based parameter identification procedures are based on the seminal works of Goodwin 

[1991] and Nordmann [1980], respectively.   

 

RESOURCE 
Tiwari, R., Lees, A.W., Friswell, M.I.  2004. “Identification of Dynamic Bearing Parameters: A Review.”  

The Shock and Vibration Digest,  36, pp. 99-124. 
The paper reviews the most popular test techniques and analysis methods to identify linearized force coefficients 

in fluid film bearings. The methods include time and frequency domain procedures, while experimentation 

focuses on the types of dynamic load excitation most efficient for a particular procedure.   The review also 

includes physics based mathematical modeling with governing equations of the test bearing element or rotor-bearing 

system, parameter extraction algorithms, and uncertainty in the estimates.  The classification of identification 

techniques is based on the method used to excite the test element or system: short duration (impacts and shock loads), 

periodic load excitation, fixed or sine-sweep and including imbalance induced forces, and random load excitation 

techniques. 

 

Identification algorithms consider the test bearing or support as a two degree of freedom 

mechanical system undergoing lateral motions (x, y)(t) and with readily available (measured) 

support transmitted forces and rotor displacements from which test system complex dynamic 

stiffnesses (impedances) are obtained. Curve fits to the appropriate transfer functions give the 

support mechanical parameters. 
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For lateral rotor motions (x, y) [two degrees of freedom], a bearing or seal reaction force vector f is 

usually modeled as 
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where fo is a static equilibrium force typically counteracting a fraction of the rotor weight, for 

example.  The test element force coefficients are four (4) stiffness K and four (4) damping C force 

coefficients in mineral oil lubricated bearings, oil seals, and also gas damper seals. In liquid annular 

(damper) seals and bearings (hydrostatic and/or hydrodynamic) working with process fluids (water 

or LOx, for example), four (4) inertia force coefficients M are also important.   

Note that these force coefficients (K, C, M) are mechanical parameters representative of a 

linearized physical system. In this regard,   the (K, C, M) coefficients are to be determined in a 

system or test element undergoing small amplitude motions about an equilibrium condition. This 

operating condition is of utmost importance to obtain reliable and repeatable results.  
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Unfortunately, the basic assumption –the one needed to ensure the physical model is linear- is often 

not considered by the experimenters, and which explains the vast differences in parameter 

magnitudes when compared to analytical model predictions, for example.  

Incidentally, the linearized coefficients model for a test element also assumes that the coefficients 

are frequency independent. Only in the last 20+ years, since the late 1990’s, the engineering 

community has recognized this limitation and developed techniques to extract parameters from 

frequency domain measurements.  

Furthermore, note that the so called “experimental” force coefficients (K, C, M) are in actuality not 

measured parameters but mere ESTIMATIONS derived from procedures (ranging from simple or 

complex) that relate motions of the test system or element due to known applied forces.  

Until the beginning of the century, estimation of (bearing and seal) force coefficients was 

traditionally based on time domain response methods. These techniques, often limited in scope, use 

only a limited amount of the recorded information rendering poor results with marginal confidence 

levels. Modern parameter identification techniques are based on frequency domain 

procedures, where dynamic force coefficients are estimated from transfer functions of measured 

displacements (velocities and accelerations as well) due to external loads of a prescribed time 

varying structure.  

Frequency domain methods take advantage of high speed computing and digital signal processors, 

thus  producing estimates of system parameters in real time and at a fraction of the cost (and effort) 

of those with cumbersome time domain algorithms. 
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In a typical test rig, the rotating shaft does not move (fixed) while the test bearing or seal element 

is floating or suspended elastically from a support structure.  One regards the test element as a 

point mass with two degrees of freedom (x,y) and undergoing forced displacements induced by 

external forcing functions. 
 

KXX, CXX 

bearing 

X 

Y 

KXY, CXY 

KYX, CYX 

KYY , CYY 

 

 

Representation of point mass and bearing force coefficients used for 

identification of parameters from dynamic load and motion measurements  

KhXX, ChXX 

KhYY , ChYY 
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(M) 

FX 

FY 

 
For small amplitudes about an equilibrium position, the equations of motion of the linear 

mechanical system are 
 

   M x C C x C y K K x K y fh XX hX XY XX hX XY X
          

 

   M y C C y C x K K y K x fh YY hY YX YY hY YX Y
             (2) 
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where {fi}i=X,Y   external excitation forces,  

Mh     test element mass,  

{Khi, Chi}i=X,Y   (any) structural support stiffness and remnant damping coefficients1, and  

{Kij, Cij}i,j=X,Y   seal or bearing dynamic stiffness and damping force coefficients. 

 

Added mass or inertia force coefficients {Mij, Cij}i,j=X,Y   are not included in the model above.  

These coefficients are NOT significant, i.e., their magnitude is small, for highly compressible 

fluids (LH2 or gases) and in most bearing and seals lubricated with mineral oil2.  

 

The apparent simplification is easily removed and does not diminish the importance of the 

identification method.   

 

The test system structural stiffness and damping coefficients, {Khi,Chi}i=X,Y, are obtained from 

prior shake tests results under dry conditions, i.e. without fluid through the test element. 

 
 

                                                           

1 Refers to any mechanical component aiding to support the test bearing, for example connecting rods or 

springs;  and damping from the DRY test system, i.e. without any lubricant,  for example. In addition, the model 

assumes no tilts (angular displacements) or moments act on the test element.  

2 Note that test data by Childs et al. obtained for mineral oil tilting pad bearings, pressure dam bearings and 

floating ring seals actually evidence these test elements show large added mass coefficients; larger in magnitude 

than theoretical model predictions. See Notes 7 or Notes 11 for further details and discussion.  
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Procedure and Analysis 

Two independent force excitations (impact, periodic-single frequency, sine-swept, random, etc) 

(fX, 0)T and (0, fY)T, for example, are applied to the test element.  This process is formulated as 
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2. Obtain the discrete Fourier transform (DFT)3 of the applied forces and displacements, i.e. 

Let  
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     (4a) 

                                                           

3 A sequence of N time-domain data points, say [(z1,t1=0), (z2,t2), …. (zN,tN=tmax )] with t=t2-t1= t3-t2=…, will 

transform using the DFT algorithm, into ½ N coefficients (complex numbers with amplitude and phase) at 

discrete frequencies DFT(z) Zk=ak eik at discrete frequencies 0=0, 1=, 2=2,….. N/2=½ N = max= 

1/(2t). Hence, =1/(N t) ~ 1/tmax.  Typically, N is a power of 2, i.e. N=256, 512, etc. for efficient and fast 

data processing. Note that 1/t is known as the sampling rate. In addition, the longer the time span for 

analysis (tmax), the smaller is the frequency step (); while the faster the data acquisition sampling rate,  

(t is small) the highest is the maximum frequency (max) of the DFT. Satisfying both small   and a very 

high max may require of exceedingly large number of test data points. Often, these two conditions can not be 

attained simultaneously; and in which case care is needed to avoid aliasing of the recorded signal as well as 

other spurious effects. Read a dedicated book on the Fast Fourier Transform analysis for more accurate and 

relevant details. 
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The DFT is an operation that transforms the information from the time domain into the 

frequency domain. Incidentally, recall that 
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( ) ( ) ( ) ( );t ti X DFT x X DFT x               (5) 
 
 

3. For the assumed physical model describing the test element, the EOMs in the frequency 

domain for the first loads set become: 
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Or, written in matrix form as 
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Define the complex dynamic stiffness4 {Hij}i,j=X,Y  as 
 

   2

ij ij hi ij hi ij ij hi ijH K K M i C C                       (7) 
 

where 1i   ,  ij = 1 for i = j = X, Y ; zero otherwise.   
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The complex stiffness H comprises a real 

part and an imaginary part, both functions 

of the excitation frequency ().  The real 

part denotes the dynamic (real) stiffness, 

Re(H) ~ ; while the imaginary part is 

the quadrature stiffness, being proportional 

to the viscous damping coefficient, Ima(H) 

~ C, as shown in the figure. 
 
 
 
 

Real and imaginary parts of ideal dynamic 
complex stiffness representative of 
assumed physical model. 

 

 

With definition (7), EOMs (6) become for the first & second load tests   
 

                                                           

4 Also called improperly as a mechanical impedance.  
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Add these two equations and reorganize them as 
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At each frequency (ωk=1,2,…n), Eq. (8) represents four independent equations with four 

unknowns, (HXX, HYY , HXY , HYX). Hence, 
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The meaning of linear independence of the test forces (and ensuing motions) should be evident. 

That is, the forces in the second test cannot be a multiple of the first set of forces since then, both 

the matrix of forces [F(1) F(2)] and the matrix of ensuing displacements [X(1) X(2)] become singular.  
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The experimenter must select sets of excitations that are linearly independent, for example (fX, 

0)T and (0, fY)T are preferred (and easy) choices.  

 

In the identification process, ensuring linear independence of the applied forces and the ensuing 

test system displacements is MOST important to obtain reliable and repeatable results.  

In actual practice, measured displacements may not appear similar to each other but nonetheless 

produce an identification matrix that is ill conditioned, i.e., the determinant of matrix [X(1) X(2)] is 

close to zero or is zero.  

 

In this case, the condition number of the identification matrix is of importance to determine 

whether the identified coefficients are any good. Test elements that are nearly isotropic and that 

are excited by periodic (single frequency) loads producing circular orbits of the test system 

usually determine a too ill conditioned system (Murphy, 1990).  

 

Often enough, even careful experimenters overlook the calculation of the condition number for the 

matrix [X(1) X(2)]  to later produce poor results.  

 

Preliminary estimates of the system parameters {M, K, C}i,j=X,Y   are determined by curve fitting 

of the test derived discrete set of impedances (HXX, HYY , HXY , HYX)k=1,2…., one set for each 

frequency ωk, to the analytical formulas over a pre-selected frequency range.  That is, for example 

 

   2 ReXX hX h XXK K M H       ImaXX hX XXC C H        (10) 
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Since 1993, Childs and students excel in employing the method above to “measure” rotordynamic 

force coefficients in many types of bearings and seals. The method lends (Rouvas and Childs, 

1993) itself to simple curve-fitting of the recorded complex functions H to physically 

representative analytical functions, i.e.  K-ω2M and ωC. 

 

Analytical curve fitting of any data renders a correlation coefficient (r2) representing the 

goodness of the fit. A low value of the correlation coefficient, r2 << 1, does not mean the test data 

or the obtained coefficients are incorrect, but rather that the physical model (analytical function) 

selected to represent the test system actually does not reproduce the measurements.  On the other 

hand, a high r2 ~ 1 demonstrates that the physical model, say with a constant stiffness K and 

viscous damping C in K-ω2M and ωC, respectively, actually describes the measurements (system 

response) with accuracy. 

 

System transfer functions (output/input) are often used to obtain more precise estimates of the 

testselement coefficients (Nordmann and Schollhorn, 1980, Massmann and Nordmann, 1985).  

This process leads to curve fits of nonlinear functions. 

 

Transfer functions  known as test system flexibilities G (displacement/force)are easily 

derived as functions of the complex stiffnesses, (Hij)i,,j=X,Y .   

    From the fundamental equation G = H-1,  
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where            H H H HXX YY XY YX       (11c) 
  

 

Next, the Instrumental Variable Filter (IVF) method developed by Fritzen (1985), an 

extension of a least-squares estimation method, is used to simultaneously curve fit all G 

functions from displacement measurements due to two sets of (linearly independent) applied 

loads.  

 

The IVF method has the advantage of eliminating bias typically seen in an estimator due to 

measurement noise. 

 

Recall the product of the flexibility (G) and impedance (H) matrices should be equal to the 

identity matrix 
1 0

0 1

 
  
 

I  since G=H-1.  

 

However, in any measurement process there is some noise associated with the experiments. Thus, 

an error matrix (e) is introduced into the fundamental relationship, 
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2 i       G H G K M C I + e     (12) 
 

where K, C and M are matrices of system stiffness, damping  and added mass coefficients.   
 

, ,
XX hX XY XX hX XY XX h XY

YX YY hY YX YY hY YX YY h

K K K C C C M M M

K K K C C C M M M

       
              

K C M  

 

For generality, added mass coefficients (MXX, MYY , MXY , MYX) are included in the matrices 

above.  

 

In Eq. (12) G denotes the measured flexibility matrix while H represents the (to be) estimated 

test system impedance as defined in Eq. (7). Recall that Eq. (7) corresponds to the physical 

model ASSUMED to best represent the test system or test element.  
 

In the present method, the flexibility coefficients (G) work as weight functions of the errors in a 

minimization procedure. Whenever the flexibility coefficients are large, the error is also penalized 

by a larger value. As a result, the minimization procedure will become better in the neighborhood 

of the system resonances (natural frequencies) where the dynamic flexibilities have a maximum 

(i.e., null dynamic stiffness, (K-2M)=0. That is, the measurements containing resonance regions 

will have more weight on the fitted system parameters. External forcing functions exciting the test 

system resonances are more reliable because at those frequencies the system is more sensitive, and 

the measurements are accomplished with larger signal to noise ratios.  
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In addition, it is precisely around the resonant frequencies where all the physical parameters 

(mass, damping and stiffness) most appreciably affect the system response. For “too low” 

frequencies the important parameter is the stiffness, while for “too high” frequencies the inertia 

dominates the response. Only near the resonance do all three parameters have an important effect 

on the system amplitude response.  

 

Therefore, it is more accurate to minimize the approximation errors using Eq. (12) rather than 

directly curve fitting the impedances, i.e. simply using Eq. (10). Unfortunately, the process is not 

straightforward and leads to a rather complex minimization scheme. 

 

Write the impedance matrix H representing the test system or  test element as 

2
( ) i  

 
 

     
 
 

M

H I I I C

K
    (14)  

  

with 1i    and 1 0

0 1

 
  
 

I . Thus Eq. (12) becomes at each discrete frequency  k=1,2…,n 

2k k
k ki 

 
 

    
 
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M
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K
    (15a) 
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Let       
2k k
k ki   

 
A G I I I     (16) 

and write Eq. (15a) as  
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Now, stack all the equations, one for each frequency k=1,2…,n , to obtain the set  
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 
 

M

A C Ι e

K        (17) 

where  

1 1

2 2,

n n

   
   
    
   
      

A e

A A e e

A e

      and    

0 1 0 1 0 1 .. .. .. .. 0 1

1 0 1 0 1 0 .. .. .. .. 1 0

T  
  
 

I
 (18) 

 

A contains the stack of measured flexibility functions (at discrete frequencies k=1,2…,n).  Eq. 

(17) is an over determined set of equations, i.e. there are more equations than unknowns. Hence, 
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its solution by least-squares aims to minimize the Euclidean norm of e.  This minimization 

leads to the normal equations: 
 

 
1

 
 
 
 
 

T T

M

C = A A A I

K

      (19) 

 

A first set of force coefficients (M,C,K) is determined from these equations. 

 

Fritzen (1985) introduced the elegant Instrumental Variable Filter Method (IVF) to solve 

for the system coefficients that minimize the Euclidean (L2) norm of the system response error e. 

The IVF procedure was originally developed to estimate parameters in econometric problems. 

Massmann and Nordmann (1985) applied successfully the method to annular seal elements.  
 

In the IVF method, the weighting function, A, is replaced by a new matrix function, W, created 

from the analytical flexibilities resulting from the (initial) least-squares curve fit, i.e., solution of 

Eq. (19). This weighting function W is free of measurement noise and contains peaks only at 

the resonant frequencies as determined from the first estimates of stiffness, mass and damping 

force coefficients.  
 

At step m,  
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1

1

m

T T
m m




 
               
 

M

C W A W I

K
    (20) 

where  

2
1 1( )1

2
( )

m

m

m
n nn

i





 

 

   
    

 

 
        

F I i I I

W

F I I I

   and   

1

2
( )

m

m
i  


  
  
        
   

M

F I I I C

K
 (21) 

A first iteration (m=1) is performed with W1=A, which corresponds to the standard least-squares 

solution of the problem, Eq. (19). Then, Eqs. (20) and (21) are applied iteratively until a given 

convergence criteria or tolerance is satisfied.  

The criteria can be conveniently chosen depending on the desired results. For example, the square 

summation of the differences between the parameters at iteration m and (m-1) can be required to be 

less than a certain value, i.e., limiting the Euclidean norm of the error. Alternatively, it can be 

required that the largest difference be lesser than the largest acceptable error, i.e. limiting the L1 

norm of the error. Different tolerances to each variable could also be asserted depending on their 

physical units and significance.  

It should be clear that the substitution of W for the discrete measured flexibility A (which also 

contains noise) improves the prediction of the system parameters. Note that the product ATA 
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amplifies the noisy components and adds them. Therefore, even if the noise has a zero mean value, 

the addition of its squares becomes positive resulting in a bias error.  

On the other hand, W does not have components correlated to the measurement noise. That is, no 

bias error is kept in the product WTA. Consequently, the approximation to the system parameters 

improves. 

 

Note that the force coefficients are identified in the frequency domain. Thus, magnitudes of 

uncertainty for the estimated force coefficients must be obtained by comparing the original 

frequency responses with the frequency response of a reference excitation force and its 

associated displacement time response. Evaluation of coherence functions then becomes 

necessary to reproduce the exact variability of the identified force coefficients.  

 

Closure 
Read the paper of Diaz and San Andrés (1999) for further insight on the IVF method as applied to 

a multiple degree of freedom (n>2) system.  

 

An example of parameter identification representative of your lecturer’s research is 

presented in class.  

 

A MATHCAD® program is available for your self-study and further learning.  
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Other developments on field or in-situ parameter identification methods 
Field identification of fluid film bearing and seal force coefficients (physical parameters) is 

critical for adequate interpretation of rotating machinery performance and necessary to validate or 

calibrate predictions from restrictive computational fluid film bearing models.  

 

The key features of a successful method for ready field implementation are: minimal external 

equipment, little or no changes to existing hardware, and the use of measuring instruments 

commonly used in machine protection and monitoring.  
 

 DeSantiago and San Andrés (2004, 2007) detail a simple method for estimating in-situ bearing 

support force coefficients in flexible rotor-bearing systems. The model neither adds 

mathematical complexity to existing rigid rotor models nor requires additional instrumentation 

than that already available in most high performance turbomachinery. The method requires two 

independent tests with known mass imbalance distributions and the measurement of the rotor 

motion (amplitude and phase) at locations close to the supports. A good rotor model (elastic and 

mass properties) must represent the (non observable or not measured) degrees of freedom. The 

procedure finds the bearing transmitted forces as a function of observable quantities (rotor 

motions at one side of the bearings). Imbalance response measurements conducted with a two-disk 

flexible rotor supported on two-lobe fluid film bearings allow validation of the identification 

method estimations. Predicted (linearized) bearing force coefficients agree reasonably well with 

the parameters derived from the test data.   
 

A commercial compressor company uses successfully the method advanced to qualify its 

equipment as per API requirements and for real-time assessment of bearing condition from 

measurements of rotor motions while the compressor is in operation. 
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Other developments on the identification of force coefficients in nonlinear 

systems 
 

San Andrés and Delgado (2007-2009) have developed efficient methods to identify force 

coefficients in test systems that combine both linear and nonlinear mechanical elements. They 

apply the method to a squeeze film damper (SFD) that integrates a contact-surface end seal that 

prevents air ingestion.  The system motion is nonlinear due to dry friction at the mechanical seal 

mating surfaces. Single parameter characterization of the test system would yield an equivalent 

viscous damping coefficient that is both frequency and motion amplitude dependent.  The 

algorithm takes the nonlinear test system as a combination of linear and nonlinear inputs with linear 

operators on a multiple-input/single output scheme (Rice and Fitzpatrick, 1991)  
 

The identification method suited for nonlinear systems allows determining simultaneously the 

squeeze film damping and inertia force coefficients and the seal dry friction force. The 

identification procedure shows similar (within 10 %) force coefficients than those obtained with a 

more involved two-step procedure that first requires measurements without any lubricant in the test 

system to determine the dry-friction parameter.  The nonlinear identification procedure saves time 

and resources while producing reliable physical parameter estimations. The identified damping and 

inertia force coefficients agree well with model predictions that account for end flow effects at 

recirculation grooves. 
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NOTES 14.  
A METHOD FOR IDENTIFICATION OF BEARING FORCE COEFFICIENTS AND ITS 
APPLICATION TO A SQUEEZE FILM DAMPER WITH A BUBBLY LUBRICANT 

Reproduced with permission from: Sergio E. Diaz, Luis A. San Andrés, STLE Tribology Transactions, Vol. 42, 4, pp. 
739-746, 1999 

ABSTRACT 

A general formulation of the instrumental variable filter (IVF) method for parameter identification of 
a n-DOF (Degrees Of Freedom) mechanical linear system is presented. The IVF is a frequency 
domain method and an iterative variation of the least-squares approximation to the system 
flexibilities. Weight functions constructed with the estimated flexibilities are introduced to reduce 
the effect of noise in the measurements, thus improving the estimation of dynamic force coefficients. 
The IVF method is applied in conjunction to impact force excitations to estimate the mass, stiffness, 
and damping coefficients of a test rotor supported on a squeeze film damper (SFD) operating with a 
bubbly lubricant. The amount of air in the lubricant is varied from nil to 100% to simulate increasing 
degrees of severity of air entrainment into the damper film lands. The experimental results and 
parameter estimation technique show that the SFD damping force coefficients increase as the air 
volume fraction in the mixture increases to about 50% in volume content. The damping coefficients 
decrease rapidly for mixtures with larger air concentrations. The unexpected increase in direct 
damping coefficients indicates the complexity of the SFD bubbly flow field and warrants further 
experimental verification. 

NOMENCLATURE 

A Matrix of coefficients for error equation 
[2nN,3n].  

c SFD nominal radial clearance [0.290 mm]. 

C Matrix of damping coefficients [nxn]. 

Cij Equivalent damping coefficients of SFD-rotor 
system[Nsec/m]. 

d Shaft diameter [9.5 mm]. 

D Journal diameter [50.8 mm]. 

E Error matrix [n,n]. 

E  Extended error matrix [2nN,n]. 

f Forcing vector [n]. 

F DFT of the force vector f  [n]. 

F Flexibility matrix [n,n]. 

H Impedance matrix [n,n] 

i Imaginary unit [√-1]. 

I Identity matrix [n,n]. 

I  Extended identity matrix [2nN,n]. 

i,j Indexes for degrees of freedom [=1,2,...n]. 

k Frequency index. 

Kij Equivalent stiffness coefficients of SFD-rotor 
system [N/m]. 

l Shaft length [304.8 mm]. 

L Journal length [25.4 mm]. 

m Iteration counter for IVF method. 

M Matrix of inertia coefficients [n,n]. 

Mij Equivalent inertia coefficients of SFD-rotor system 
[kg]. 

n Number of degrees of freedom of the system. 

N Number of frequencies considered for identification 
range. 

t Time [sec]. 

W Weight matrix for IV method [2nN,3n]. 

x Displacements (state) vector [n]. 

X DFT of the displacement vector x [n]. 

X, Y Horizontal and vertical coordinates, respectively. 

μ Fluid viscosity [Pa.s]. 

ω Frequency [rad/s]. 

0 Zero (null) matrix [n,n]. 
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K Matrix of stiffness coefficients [n,n]. 

 

 

 

INTRODUCTION 

Experimental identification of linearized bearing parameters, namely stiffness and damping force 
coefficients, is of importance to verify the rotordynamic performance of actual fluid film bearing 
elements and to validate (and calibrate) predictive tools for computation of bearing and seal dynamic 
forced responses. The ultimate goal is to provide reliable data bases from which to determine the 
confidence of bearing and/or seal operation under both normal design conditions and extreme 
environments due to unforeseen events. In addition, even advanced analytical models are very 
limited or non-existing for certain bearing and seal configurations and with stringent particular 
operating conditions, and thus experimental measurements of actual bearing force coefficients 
constitute the only option available to generate engineering results of interest. Squeeze film dampers 
operating with air entrainment are but an example of the many applications where systematic 
experimentation becomes mandatory. 

The estimation of bearing and seal rotordynamic force coefficients has been traditionally based 
on time domain response procedures [1]. However, these techniques are limited in their scope, use 
only a limited amount of the recorded information, and often provide poor results with marginal 
confidence levels [2]. Modern bearing parameter identification techniques are based on frequency 
domain procedures, where dynamic force coefficients are estimated from transfer functions of 
measured displacements (velocities and accelerations as well) due to external loads of a prescribed 
time varying structure. The frequency domain methods take advantage of high speed computing and 
processors, thus  producing estimates of system parameters in real time and at a fraction of the cost 
(and effort) prevalent with cumbersome time domain techniques [3, 4, 5]. 

This paper presents a frequency domain method for identification of linearized bearing force 
coefficients from test fluid film bearing elements. The technique, a variation of a least square 
estimator, is based on the Instrumental Variable Filter (IVF) Method with the capability to 
automatically reduce the noise inherent in any measurement and to provide reliable bearing force 
coefficients within a frequency range. The analysis introduces the equations of motion for the test 
system and the measurement of time domain responses. The description follows with the 
transformation of displacement and load dynamic responses to the frequency domain, and the 
implementation of the procedure for error minimization and curve fitting of the (output/input) 
transfer functions over a selected frequency range. 

The identification method is applied to the estimation of system force coefficients {Kij, Cij, Mij 
}ij=X,Y  for a small test rotor supported on a squeeze film damper (SFD). Calibrated impact guns 
excite the rotor in two radial planes (X,Y) and the rotor displacements are recorded for a multiple 
sequence of impacts. The SFD operates with an air in oil (bubbly) mixture to simulate prevalent 
operating conditions with air entrainment [6]. The identification procedure also renders dry, i.e. 
without lubricant, structural force coefficients.  
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INSTRUMENTAL VARIABLE PARAMETER IDENTIFICATION TECHNIQUE 

Consider a n-degree of freedom linear mechanical system governed by the following system of 
differential equations. 

M x C x K x f&& &( ) ( ) ( ) ( )t t t t+ + =  (1) 

where f(t) and x(t) represent the external forcing function and system displacements, respectively. The 
(.) denotes differentiation with respect to time. The square matrices M, K and C contain the 
generalized mass, stiffness and damping force coefficients representing the parameters of the system.  
The objective of the identification procedure is to determine the system force coefficients from 
measurements of the system dynamic response due to applied external loads. The governing 
equations can be written in the frequency domain as  

[ ] )()()()( ωωωω ==+ω+ω− FXHXKCiM2
 (2) 

where X(ω) and F(ω) are the discrete Fourier transforms (DFT) of the time varying forces and 
displacements, f(t) and x(t), respectively. The impedance of the system is generally defined as 

[ ] 12 −=++−= iKCiMH ;)( ωωω  (3) 

The n2 impedance coefficients n,...j,ij,i }{ 1=H  are complex algebraic functions of the excitation 
frequency (ω). However, the system of equations (2) provides n equations for n2 unknowns. A n-
DOF (Degrees Of Freedom) system has n-linearly independent modes of vibration. Thus, n-linearly 
independent excitations {F i}i=1,..n should lead to n-linearly independent responses {Xi}i=1,..n, hence 
rendering n-linearly independent systems of equations of the form (2) for any given excitation 
frequency. The selection of the set of force excitations depends fundamentally on the structure and 
constraints of the system. A typical method consists of exciting the system at the location of each 
degree of freedom, one at the time1. However, any combination of forcing functions is appropriate as 
long as the n-forces are linearly independent. 

The n-systems of equations (2) representing the independent measurements can be regrouped in 
the following form, 

[ ] [ ]n
)()()(

n
)()()()( ωωωωωωω = FFFXXXH LL 2121

 (4) 

and the system impedance coefficients at the frequency of interest can be computed from 

[ ][ ] 12121 −
ωωωωωωω = n

)()()(
n

)()()()( XXXFFFH LL  (5) 

                                                           

1 Note that this procedure when carried out with static loads leads naturally to the determination of the system flexibilities, i.e. the 
influence coefficient method. 
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The definition of the impedance coefficients, equation (3), renders a quadratic relationship in 
frequency. To identify the force coefficients it is sufficient, in principle, to obtain the impedance 
coefficients at three different and well spaced frequencies and then use some curve-fit procedure to 
extract the force coefficients (Mi,j, Ci,j, Ki,j)i,j=1,2,…,n. Note that the model assumes the force 
coefficients or system parameters are constants independent of frequency. In the following, the basic 
issues related to the selection of appropriate test frequencies are discussed. 

In a linear system excited by a sustained time varying force, the system response has the same 
frequency content as the external excitation as long as the transient motions not due to the external 
force have died out. Therefore, in an ideal case only pure-tone forced excitations are required, and 
response measurements conducted at only three different excitation frequencies should be sufficient 
to fully determine the system physical parameters.  In practice, however, measurements of forces 
and displacements contain noise that affects greatly the desired results. In some other cases, the 
objective is to find linearized force coefficients that represent the behavior of a certain non-linear 
system over a frequency range. In both circumstances, whether dealing with measurement noise or 
localized system linearization, the identification procedure leads to a problem where the 
minimization of errors is of importance.  

Instead of working with the minimum amount of frequencies needed, it is best to obtain 
measurements for a whole set of frequencies within a range of interest. However, an increased cost 
(and time) in the experimental procedure is the natural consequence if the measurements are 
conducted with a pure tone force excitation for every frequency of interest. Therefore, other forms of 
force excitations must be sought. The two excitations most commonly used are the impact load and 
the multi-harmonic force, though the sweep sine force is also often employed  [7]. 

The fundamental idea is to excite the system with a wide-band-spectrum force which will result 
in a wide-band system frequency response. The application of the DFT to the measured forces and 
displacements leads to discrete algebraic equations in the frequency domain and at the selected, say 
N, frequencies within the range of interest. The kth impedance coefficients at the frequency (ωk) 
could then be found from: 

[ ][ ] Nknnk
kkkkkk

,,2,11
(

2
)(

1
)((

2
)(

1
)( KLL ==

−

ωωωωωω XXXFFFH  (6) 

From here on, several paths could be followed to determine the 3n2 parameters (Mi,j, Ci,j, 
Ki,j)i,j=1,2,…,n from the n2 impedance coefficients, (Hi,j)i,j=1,2,…,n , as functions of the excitation 
frequency. The most direct and most commonly used procedure consists of performing independent 
least-squares curve fittings to the real and imaginary parts of each component of the impedance 
matrix H over a range of frequencies. This procedure takes advantage of the fact that each system 
coefficient, (Mi,j, Ci,j, Ki,j), appears only in one impedance term making the polynomial curve fit 
(quadratic for the real part and linear for the imaginary part) independent of each other. 

However, the direct least-squares curve fit of the system impedances is highly sensitive to the 
level of the inherent noise in the measurements and to the selection of the frequency range for the 
approximation [8]. A more robust method is achieved based on the following identity [4] 

( )
kk

k
EIHF +=ω  (7) 
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where F k represents the measured flexibility matrix, defined as the inverse of the impedance H k, 
equation (6), at the frequency ωk. H in the equation above corresponds to the estimated system 
impedance as defined by equation (3). E k is the matrix of errors due to the approximation. In this 
formulation, the flexibility coefficients work as weight functions of the errors in the minimization 
procedure. Whenever the flexibility coefficients are large, the error is also penalized by a larger 
value. As a result, the minimization procedure will become better in the neighborhood of the system 
resonances (natural frequencies) where the dynamic flexibilities are maximums (i.e., null dynamic 
stiffness, K-ω2M). That is, the measurements containing resonance regions will have more weight on 
the fitted system parameters. This result is of importance since forcing functions exciting the system 
resonances are more reliable since this is more sensitive at those frequencies, and the measurements 
are accomplished with larger signal to noise ratios. In addition, it is precisely around the resonant 
frequencies where all the physical parameters (mass, damping and stiffness) most affect appreciably 
the system response. For “too low” frequencies the important parameter is the stiffness, while for 
“too high” frequencies the inertia dominates the response. Only near the resonance do all three 
parameters have an important effect on the system response. Therefore, it is more convenient to 
minimize the approximation errors using equation (7) rather than directly curve fitting the 
impedances. However, this last procedure could be rather intricate. The approximation functions on 
the left-hand-side of equation (7) are no longer independent of each other since all the parameters 
appear in all of them. This difficulty is easily overcome by rearranging the impedance definition (3) 
to the form 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
ωω−=ω

K
C
M

IIiIH 2
)(  (8) 

Substituting the definition (8) into equation (7) and separating into real and imaginary parts gives 
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 (9) 

Stacking the equations for the N discrete frequencies at which the identification procedure is to 
be performed renders  
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where          
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Fritzen [3] introduces the elegant Instrumental Variable Filter Method (IVF) to compute the 
system coefficients that minimize the Euclidean (L2) norm of the global error matrix E . This 
procedure was originally developed to estimate parameters in econometry problems. Massmann and 
Nordmann [4] have applied the method to fluid film seal elements. The IFV method proposes a 
solution of the form 
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The weight matrix W is chosen to have the same form as A, see equation (10), but it consists of 
the analytical flexibilities rather than the measured ones, i.e.,  
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A first iteration (m=1) is performed with W = A, which corresponds to the standard least-squares 
solution of the problem in equation (10). Then equation (11) is applied iteratively until a given 
convergence criterion is satisfied. This criterion can be conveniently chosen depending on the 
desired results. For example, the square summation of the differences between the parameters at 
iteration m and (m-1) can be required to be less than a certain value, i.e. limiting the Euclidean norm 
of the error. Alternatively, it can be required that the largest difference be less than the largest 
acceptable error, i.e. limiting the L1 norm of the error. Different tolerances to each variable could 
also be asserted depending on their physical units and significance. It is clear that the substitution of 
W for the discrete measured flexibility A (which also contains noise) improves the prediction of the 
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system parameters. Note that the product ATA amplifies the noisy components and adds them. 
Therefore, even if the noise has a zero mean value, the addition of its squares becomes positive 
resulting in a bias error. On the other hand, W does not have components correlated to the 
measurement noise. That is, no bias error is kept in the product WTA. Consequently, the 
approximation to the system parameters is improved. 

An example of the application of the IVF parameter identification method to a simple laboratory 
rotor-bearing system follows. Ransom, et al. [9] provides a successful application for the 
identification of force coefficients in multiple-pocket gas damper seals.  

 

SFDs AND AIR ENTRAINMENT 

 Squeeze film dampers (SFDs) are effective means to introduce damping to rotor-bearing systems 
thus reducing vibration amplitudes at critical speeds and improving system stability. A SFD is a type 
of hydrodynamic bearing in which a non-rotating journal whirls with the shaft and squeezes a thin 
film of lubricant that surrounds it. The squeezing action generates hydrodynamic pressures yielding 
a force that opposes the journal motion and provides the desired damping. Generally, SFDs operate 
with low levels of external pressurization and are open to ambient on the sides. Under these 
conditions, the cyclic squeezing in and out of the oil results in the entrapment of external air and 
leads to the formation of a bubbly (foam-like) mixture of air and oil within the film [10,11]. The 
mixture has different material properties than the pure lubricant, and consequently it affects 
considerably the dynamic force performance of the SFD. Zeidan, et al. [12] estimate damping 
coefficient losses as large as 75% of the value predicted for operation with pure oil.  

 The phenomenon of air entrainment is readily acknowledged to be the main obstacle for the 
reliable prediction of SFD dynamic forces [13]. Yet no accurate measurements correlating the 
viscous damping coefficients to the amount of entrained air are available. The lack of firm 
(quantifiable) experimental evidence prevents further advances in the theoretical formulation of SFD 
flows [14, 15].  

 

EXPERIMENTAL FACILITY 

 Figure 1 shows a section of the test rig and the instrumentation setup for force and displacements 
measurement. The shaft of length 305 mm (12") and diameter 9.5 mm (3/8") is supported by a 
bronze bushing at the drive end and by a squeeze film damper at the rotor midspan. The squeeze film 
damper consists of a steel journal of diameter (D) and length (L) equal to 50.8 mm and 25.4 mm, 
respectively, and a Plexiglas transparent housing. The damper radial clearance (c) is 0.29 mm (11.4 
mils). Four flexible rods compose the squirrel cage that supports the damper journal. A ball bearing 
inside the SFD journal forces the shaft and the journal to whirl together while allowing the shaft to 
rotate. A flexible coupling transmits torque from the DC drive motor but isolates lateral vibration. A 
massive disk is mounted on the free end of the shaft to provide inertia and a location to install 
imbalance masses.  
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Fig. 1-Test rig section and instrumentation 

Two eddy current proximity sensors measuring horizontal and vertical shaft displacements are 
installed at (LX) 213 mm and (LY) 254 mm from the rotor drive end, respectively. The SFD and disk 
centers are located at (LSFD) 151 mm and (LD) 274 mm from the rotor drive end, respectively. The 
bushing stiffness is larger than the SFD elastic support stiffness, and thus the rotor pivots about the 
bushing location for rotor speeds below 6,000 rpm as shown in Figure 2. For the range of 
frequencies of interest, the rotor can be considered as an equivalent point mass system with two 
degrees of freedom in the lateral directions (X,Y).  

 A controlled mixture of air and ISO VG 2 oil flows to the SFD through a small hole located at 
the top of the bearing housing. The viscosity (μ) of the pure lubricant is 2.25 centipoise at a 
temperature of 30o C. The lubricant exits the test section through both sides of the damper which are 
open to ambient. The mixture is generated in a sparger element installed at the connection of the air 
and oil lines. The proportions of air and oil are accurately regulated with valves on each feed line. 
The air volume fraction is computed as the ratio of measured air volumetric flow rate to total (air + 
oil) volumetric flow rate. 
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Fig. 2-Conical mode shape of the rotor 

An instrumented impact gun excites the rotor shaft at the location of the SFD. A support allows 
installation of the impact gun for excitations in the horizontal and vertical directions. An A/D board 
and computer record the time traces of the impact force and the shaft lateral displacements 
simultaneously at a rate of 6,700 samples per second for 1.2 seconds. All tests are performed without 
rotor spinning.  

 

EXPERIMENTAL PROCEDURE 

 The rotor is carefully centered within the damper clearance and the valves in the oil and air feed 
lines are set to the desired mixture composition. The air and oil flow rates as well as the values of 
supply pressures and temperature are recorded for the computation of the air volume fraction. The 
system fundamental natural frequencies, measured by impact tests under dry conditions, are equal to 
28.4 Hz and 30.1 Hz in the horizontal and vertical directions, respectively. The difference is due to 
asymmetry in the squirrel cage stiffness as demonstrated earlier by static load measurements of the 
system flexibility [15]. 

 The test system has two DOF (n=2). Thus, two independent excitations are required to compute 
all four coefficients of the impedance matrix H. Impact loads in the horizontal (X) and vertical (Y) 
directions are sufficient to perform the identification procedure. Eight impacts are exerted on each 
direction for every mixture condition, and the time traces of forces and displacements are stored. The 
impact forces are applied at the SFD journal and the shaft displacements are measured near the end 
disk. Equivalent X and Y displacements at the SFD location are computed using the conical mode of 
motion with a pivot at the bushing as depicted in Figure 2. A DFT transform is applied to the 
dynamic displacements and loads, and the resulting spectra are regrouped into eight sets, each one 
containing the data from the X and Y impacts. Equation (6) is then employed to compute the 
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impedance elements (HXX, HXY, HYX, HYY) for each data set at the discrete values of frequency. Then, 
the eight discrete functions corresponding to each impedance coefficient are averaged to render a 
single frequency function in which the noise not related to the load excitation is reduced2. Figure 3 
shows typical time variations of the applied force and displacement responses, and their 
corresponding DFTs for one case of impact excitation in the X direction. The measurements include 
a short pre-trigger and contain the full span of the transient motions, thus avoiding “leaking” effects 
on the DFT transforms. Figure 3 also shows the excitation to have a wide-band spectrum that covers 
the whole range of frequencies of interest. 

 The IVF parameter identification method, equation (11), is applied to the averaged flexibilities 
over a selected range of frequencies around the fundamental natural frequency of the system. In this 
case, the selected range goes from 8.1 Hz to 48.8 Hz and includes the peak response (resonance) 
region. The process is repeated for six different lubricant mixture compositions ranging from pure 
oil to 100% air. The IVF identification process renders estimates for the system force coefficients 
(Mij, Cij, and Kij)i,j=X,Y as functions of the air volume content in the mixture. These are equivalent 
system parameters referred to the location of the SFD middle plane. 
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Fig. 3-Typical impact excitation in the X direction and response displacements (X and Y) in 
time and frequency domains 

 
 

                                                           

2 Note that using the average of the impedance and/or flexibility (transfer) functions, instead of computing the transfer function from 
frequency averaged responses and excitations, eliminates the requirement for repetitive excitations thus allowing for the use of hand-
held impact hammers or the combination of different types of excitations. 
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TEST RESULTS 

 Figure 4 depicts with symbols the flexibilities (Fij,)i,j=X,Y  measured for an air/oil mixture volume 
content of 8.6% as a function of the excitation frequency. The continuous lines represent the 
flexibilities calculated with the estimated system parameters. The experimental values represent the 
averages from multiple impacts as discussed before. Note that the cross-coupled flexibilities are at 
least one order of magnitude lower than the direct system flexibilities. Correlations between the 
measurements and the analytical (curve fit) functions are computed for each direct and cross-coupled 
flexibilities to provide a measure of the goodness of the approximation. All correlations range 
between 94% and 98% demonstrating the effectiveness of the IVF method. Furthermore, the 
coherence of the direct displacements to the exerted loads shows values near unity for the range of 
frequencies considered. 
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Fig. 4. Measured and approximated system flexibilities. Air volume fraction = 8.6% 

 Figures 5 to 7 depict the estimated dynamic force coefficients acting at the damper location. The 
values for an air volume fraction of one, i.e. pure air or ”dry” condition, represent solely the effect of 
the support structure and rotor inertia without any influence of the squeeze film. These coefficients, 
identified earlier by other means, serve to validate the dynamic measurement process and 
identification method. The direct inertia coefficients are determined by weighing the shaft, disk and 
journal and using simple geometrical relations to evaluate the equivalent inertia at the SFD location. 
The value calculated by this procedure is 4.02 kg, and somewhat lower than the magnitudes 
identified from the dynamic response tests. The direct stiffness of the elastic damper support in the 
horizontal direction (KXX) is determined by applying static loads with a dynamometer and recording 
displacements with a dial gauge indicator. The measured value is KXX = 150 kN/m. The equivalent 
structural damping is estimated from the logarithmic decrement of the dynamic response to an 
impact. The direct damping coefficient for no lubricant is estimated as 22.3 N.s/m. 
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Figure 5 shows the direct and cross-coupled inertia coefficients estimated by the IVF method as a 
function of the mixture air volume fraction. At a volume fraction of one, i.e., pure air, the IVF 
method confirms the estimations of mass coefficients performed by weighing the parts. The results 
also show that no significant fluid inertia is introduced by the SFD since the system direct inertia 
coefficients (MXX, MYY) remain invariant when oil flows through the damper lands. The cross-
coupled inertia coefficients (MXY, MYX) are nearly null in all test cases.  

The estimated IVF stiffness coefficients {Kij}i,j=X,Y  are depicted in Figure 6 for air volume 
fractions ranging from zero (pure oil) to one (pure air). The measurements for the “dry” condition 
confirm the static measurements of the structure characteristics. No appreciable change is observed 
in any of the stiffness coefficients (direct or cross-coupled) when oil is fed to the damper. The cross-
coupled stiffnesses are nearly zero, though definitely negative in all tests. The vertical direct stiffness 
is slightly larger than the horizontal one, which agrees with the higher natural frequency measured in 
the vertical direction.  
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Fig. 5. Equivalent inertia coefficients vs air volume fraction. 
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Fig. 6. Equivalent stiffness coefficients vs air volume fraction. 
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The average values and maximum percent variation for the stiffness and inertia force coefficients 
are: 

KXX= 146.3 kN/m (  4.3%), KYY= 169.1 kN/m (  4.1%), 

KXY=   22.3 kN/m (38.7%),  KYX=  11.5 kN/m (24.2%), 

MXX=    4.7 kg (  2.3%), MYY=   4.8 kg (  3.1%  ), 

MXY=    0.62 kg (43.4%),  MYX=   0.25 kg (52.4%  ), 

  Figure 7 depicts the variation of the system damping coefficients {Cij}i,j=X,Y  as the air volume 
content in the mixture increases. The measurements of the “dry” direct damping coefficients 
coincide with the preliminary tests based on the system logarithmic decrement. Predicted values of 
the SFD damping coefficients for the pure oil condition, centered journal and a full film extent are 
equal to [17] 
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Fig. 7. Equivalent damping coefficients vs air volume fraction 

 These values are very close to the identified viscous damping coefficients. The estimated test 
cross-coupled damping coefficients are rather small, most likely within the uncertainty of the 
measurements. As expected, the direct damping coefficients (CXX, CYY) vary significantly with the 
air/oil mixture composition. However, contrary to expected results, the direct damping coefficients 
increase steadily as the air volume fraction rises to a mixture with 50% air content.  For larger 
concentrations of air/oil volume the direct damping coefficients decrease rapidly towards their “dry” 
value.  
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 The unusual damping coefficients identified imply an increase in the effective viscosity of the 
lubricant mixture for small air volume contents. Chamniprasart, et al. [18] provide a fundamental 
analysis and limited empirical evidence verifying this phenomenon. The present authors speculate 
that the nature of the impact tests generates too fast system transient responses which may prevent 
the mixture compressibility from affecting the generation of squeeze film pressures or the overall 
damping coefficients. It may also be possible that, since the SFD is open to ambient on both sides, 
the air in the mixture is expelled from the film earlier than the oil, thus resulting in a lubricant with a 
lower air content than the one measured in the supplied mixture. 

 Diaz and San Andrés [8, 14, 15] detail measurements of damping coefficients in a SFD 
performing sustained circular centered orbital motions at various whirl frequencies. In these 
experiments, the SFD force coefficients steadily decrease as the air content increases in the lubricant 
mixture. These references reveal the complexity in the structure of bubbly flow fields and their 
effects on SFD force performance. 

CONCLUSIONS 

 The instrumental variable filter (IVF) method proves a reliable tool for the identification of 
bearing force coefficients. The general formulation presented easily allows for extension of the 
method to account for support flexibility or even shaft flexibility when the equations of motion of a 
system need to be established experimentally. Application of the IVF renders the inertia, stiffness, 
and damping matrices of a linear system according to the selected degrees of freedom. However, the 
selection of the appropriate degrees of freedom is not always evident, thus representing the most 
critical part of the parameter identification process. The excitation force employed is also an 
important factor. Many options are available, but the impact force stands out because of the ease of 
its implementation and its wide frequency spectrum. 

 The IVF method is applied to the identification of system force coefficients in a small test rotor 
supported on a squeeze film damper (SFD) lubricated with a mixture of air in oil. The measurements 
show that the SFD does not introduce any significant amount of stiffness or inertia to the structural 
system. The cross-coupled damping coefficients are also negligible in all test cases. A curious trend 
is unveiled for the direct damping coefficients (CXX, CYY). Instead of a monotonic decrease for 
increasing air volume fractions, the direct damping coefficients increase slightly up to a lubricant 
composition of about 50% air in volume, where they reach a maximum. Further increase of air 
content reduces the damping coefficients until they reach the “dry” damping value for a pure air 
condition. The present results confirm that the amount of damping provided by a SFD is greatly 
affected by air entrainment. However, it is suspected that the increased viscosity for low air volume 
fractions will not be enough to produce an increment of the actual damping in an operating SFD with 
sustained whirl motions of significant amplitude and where the mixture compressibility effect is of 
utmost importance. 
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