Investigation of a Rotordynamic Instability in a High Pressure Centrifugal Compressor Due to Damper Seal Clearance Divergence

J. Jeffrey Moore, Ph.D. ('91)
Southwest Research Institute

April 11, 2019

Benefiting government, industry and the public through innovative science and technology
Machinery Department

- 60 engineers/technicians
- Design, analysis and testing
- Turbomachinery
- Thermodynamic cycle
- Performance testing
- Life cycle analysis/design
- Mechanical systems (bearings, seals, etc.)
- Prototype development
- Computer aided engineering
 - CFD, FEA, CAD
- Rotordynamics
- Fluid/thermal systems
Machinery Department Test Facilities

- Operating Fluids: Air, CO₂, N₂
- Multiphase with Air/H₂O
- Drive power up to 4 MW
- Shaft speeds up to 140,000 rpm
- Machinery: centrifugal pumps & compressors, reciprocating compressors, and small gas turbine engines
Case Study: Rotordynamic Instability

- Two body compression train driven by 10 MW Gas Turbine through a gearbox
- Gas gathering application that feeds large LNG plant in Nigeria
- LP compressor is a 8 stage back-to-back design and is drive-through
- HP compressor is a 9 stage back-to-back design operating at about 10,000 rpm
- Total train pressure ratio is 48:1
- Instability experience on HP compressor during field start-up

Diagram:
- Gas Turbine: PGT10B
- Gearbox
- LP Casing: CE/CO LP Casing 2BCL458
- HP Casing: CE/CO HP Casing 2BCL459/A
- High Speed: 9198 rpm
- Low Speed: 7585 rpm
- Tripped on site
Original Compressor Seal Designs

- LP Compressor:
 - Tooth-on-stator labyrinth seal at both impeller eye and center balance piston locations
 - Shunt injection on center balance piston
 - No swirl brakes

- HP Compressor
 - Honeycomb damper seal used at center balance piston
 - No swirl brake or shunt injection on any seal

- Design of compressor predated more recent experience with adverse effects of damper seals

- Design Pressure
 - $P_1 = 22$ bar (319 psi) $P_2 = 133$ bar (1930 psi)

- Maximum Discharge Pressure
 - 189 bar (2740 psi) (Maximum Continuous Speed & Near Surge)
- LP and HP compressor plotted on Fulton experience chart
- Both machines within experience limits
Site Description

- Site located near the Niger Delta in Nigeria
- Gas is used to feed large LNG plant
- Instability not discovered until field start-up since units were not full load tested at the factory
Displacement Probe System

- Measures displacement
- 0 – 2,000 Hz range
- Gain
 - 200 mV/mil or 7.87 V/mm
 - 192 mV/mil or 7.56 V/mm with Intrinsically Safe barrier
- Most effective for pk-pk measurements from 0 – 1,000 Hz
Typical spectral plot identifies:
- Synchronous (1X) vibration
- Subsynchronous vibration
- Supersynchronous vibration
- Relative magnitudes of the discreet vibration frequencies
- Signal noise
- Random vibration
- Frequency domain data
Evaluation Using Log Dec(rement)

Linear Vibration

\[\delta = L_n \left[\frac{X_{n-1}}{X_n} \right] = 0 \]

- Neutrally Stable
- Unstable
- Stable

Rotor Vibration

\[\delta < 0 \]

Undesirable

\[\delta > 0 \]

Desirable
Subsynchronous Vibration (SSV) First Appeared at 12% of Running Speed

Once Subsynchronous Amplitude Increased, Seal Rubbing Occurred Causing an Increase in Frequency

Unit tripped out on high vibration

All seals found to be heavily rubbed
Rotordynamic Modeling

- Break the series of smaller segments at diameter steps
- Components like impellers, couplings, thrust disks do not add shaft stiffness are modeled as added mass
- Stations added at bearings centerlines

Sample 10-Stage Compressor Model

Typical High Pressure Centrifugal Compressor

Rotordynamic Theory

Modeling Turbomachinery

- Continuous system modeled by a system of springs and masses formulated using either finite element or transfer matrix methods
- Results in following system of equations:

\[
[M] \ddot{X} + [C] \dot{X} + [K] X = F(t)
\]

- Similar form as the single degree of freedom
- Use Matrix solution techniques to solve for natural frequencies, unbalance response, and stability
Stability Analysis

A Rotor System Is Unstable When The Destabilizing Forces Exceed Stabilizing (Damping) Forces
Stability Analysis

- Damping is a Stabilizing Influence
- Destabilizing Forces Arise from Cross-Coupling Effects that Generate Forces in the Direction of Whirl
- Cross-Coupled Stiffness Yields a force in the Y-direction for a displacement in the X
- Sources include: fixed arc bearings, floating ring oil seals, labyrinth seals, impeller/turbine stages
Rotordynamic Theory

- Stability Calculated by Solving the Eigenvalue Problem:

\[
[M] \ddot{X} + [C] \dot{X} + [K] X = \{0\}
\]

- Eigenvalues of the form: \(s = -\zeta \omega_n + i \omega_d \)
- Imaginary part gives the damped natural frequency
- Real part gives the damping ratio (\(\zeta \)), or stability
- Logarithmic decrement (log dec) is related by:

\[
\delta = \frac{2\pi\zeta}{\sqrt{1 - \zeta^2}}
\]

- Instability characterized by subsynchronous vibration near the first whirling frequency that rapidly grows to a large amplitude bounded only by rotor/stator rubbing
- Can be brought on by small changes in load, pressure, or speed.
Stability Analysis

- Mode Shape with API Impeller Excitation at MCS/Surge

Damped Eigenvalue Mode Shape Plot

Nuovo Pignone 2bcl 459A HP Compressor
SwRI Stiffn Model - Nom Brngs with Seals

- forward
- backward

\(f = 4677.4 \text{ cpm} \)
\(d = -0.2966 \text{ logd} \)
\(N = 10050 \text{ rpm} \)
Effective Stiffness & Damping

\[K_{\text{effective}} = K_{xx} + \omega C_{xy} \]

JB and HC seal shows same order effective stiffness and damping.

Due to midspan location HC seal plays a major role in rotor stability.

\[C_{\text{effective}} = C_{xx} - K_{xy} / \omega \]
Effective Stiffness

- Low Frequency Stiffness can be strongly negative if HC is Divergent.
- Honeycomb cross over frequency location with respect to “simple” rotor natural frequency is key factor for “system” natural frequency.
- $C_{\text{effective}}$ Varies with Frequency
- If Natural Frequency in Region of Negative $C_{\text{effective}}$ ⇒ Rotor Unstable
Honeycomb Seal Damping Test Data vs. Predictions

- Damper seals like honeycomb seals provide substantial damping
- Damping increases with increasing pressure differential

First critical speed predicted about 4500 rpm (45% of running speed); good agreement with factory mech. test (no load) where first critical speed was 4200rpm.

What caused the frequency to drop to 12% running speed?

Rotordynamic Response Plot

Nuovo Pignone 2blc 459A HP Compressor
SwRI Stiffn Model - NomBrngs no Seals
Sta. No. 4: Probe 1

- **Excitation = 1x**
- **Response, mm pk-pk**
- **Rotor Speed, rpm**
 - 0 5000 10000 15000 20000 25000
 - 0.0000 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002

- **Major Amp**
- **Horz Amp**
- **Vert Amp**

Points:
- **1 x**
- **2 x**
- **3 x**

Excitation Levels:
- **2.45x**
- **3 x**
- **4 x**

SPEED:
- **5000 rpm**
- **4200 rpm**
- **4500 rpm**
Rotordynamic Modeling

- Model includes rotor, bearings, impeller eye labyrinths, second section balance seal and center division wall honeycomb seal
- Used the XLTRC2 suite from Texas A&M University
- XLTFPBrg for journal bearings (K, C) matrix
- XLLaby for each labyrinth seal (K, C) matrix
- ISOTSEAL for honeycomb seal (K, C) matrix
Assumptions used in Stability Analysis

- Swirl ratios into seal as given below:
 - Impeller eyes = 0.68
 - Calculated impeller exit swirl ratio = 0.25 (with swirl brakes)
 - Honeycomb = 0.68 (original) = 0.15 (with Shunt holes)
 - Lateral drum = 0.2
Aero Cross-Coupling

- Arises from Impellers of Centrifugal Compressors
- Most Common Method version of Wachel Equation

\[
(K_{XY})_i = 63,000 \times \frac{Mole\ Weight}{10} \sum_{j=1}^{(N_S)_i} \frac{(Horsepower)_{i,j}}{RPM \times D_i \times h_i} \left(\frac{\rho_D}{\rho_S}\right)_j
\]

- CFD Methods Have Been Developed
 - Show good correlation to experimental data for pump and compressor impellers

\[
k_{xy} = \frac{C_{mr} \rho_d U^2 L_{shr}}{Q \sqrt{Q/Q_{design}}}
\]

Refined equation based on CFD for Centrifugal Compressors

- Seal Deforms Due to Pressure Differential
- Resulting Clearance Becomes Divergent
FEA Prediction of Seal Deformation

- Seal Deforms Due to Pressure Differential
- Resulting Clearance Becomes Divergent
- Design Modifications Include:
 - Mechanical changes to reduce deformation
 - Machining positive taper into the seal
- Modified design results in constant clearance under loaded conditions

Diagram:
- Radial Clearance
 - *Surge @ MCS*
 - Cold Med Cir
 - Hot Med Cir
 - Deformed
 - Original Design
 - Undefomed
 - Flow

Graphs:
- Modified Design
 - Undefomed
 - Deformed
- outlet side
- inlet side

Flow:
- mm
5 Seal Geometric Conditions Considered:

- Cold, Nominal Clearance
- Hot and Deformed Clearance
- Hot and Deformed with Worst-Case Tolerance Stackup
 - -0.12 mm additional taper
- Hot and Deformed with 2X Clearance
- No Seals
HP Compressor Modifications

- Rev 1 modified the seal mounting design to minimize deformation
 - Positive taper machined into seal bore to reduce divergence during operation
- Rev 2 increased amount of initial taper and increased average clearance
- Shunt injection added to center division wall seal
- Swirl brakes added to impeller eye seals

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Rev. 1 Modification</th>
<th>Rev. 2 Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeycomb Seal</td>
<td>No Shunt (0.68 swirl)</td>
<td>With Shunt (0.15 Swirl)</td>
<td>With Shunt (0.15 Swirl)</td>
</tr>
<tr>
<td></td>
<td>Zero Taper Cold clearance</td>
<td>0.075 mm Cold Taper</td>
<td>0.09 mm Cold Taper</td>
</tr>
<tr>
<td></td>
<td>-0.494 mm Divergence in Operation</td>
<td>-0.05 mm Taper in Operation</td>
<td>0 Taper in Operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25% Larger Clearance</td>
<td>25% Larger Clearance</td>
</tr>
<tr>
<td>Eye Labyrinths</td>
<td>No De-swirl (0.68 swirl)</td>
<td>Swirl Brakes Added (0.25 swirl)</td>
<td>Swirl Brakes Added (0.25 swirl)</td>
</tr>
</tbody>
</table>
Analysis predicts HP Compressor instability when seal deformation accounted for using both formulations for aero cross-coupling.

Predicted frequency closely matches observed subsynchronous frequency in the field (~900 cpm).

LP Compressor predicted to be stable (it was) but log dec is low.
- Shows sensitivity of rotor system to seal divergence
- First modification was stable but too close to “cliff”
- Second design increased clearance reducing sensitivity to divergence
- Rev 2 can accommodate effects of manufacturing tolerance
LP Compressor Modifications

- Honeycomb seal with shunt injection added to center balance piston
- Swirl brakes added to impeller eye labyrinths
- Rev 2 design increased average clearance and introduced a **divergent** initial taper to increase damping
- This initial machined taper is opposite to that used on the HP compressor

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Rev 1. Modification</th>
<th>Rev. 2 Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstage Diaphragm Seal</td>
<td>Tooth-on Stator Laby Seal No Shunt (0.68 swirl) Cyl. Cold Clearance</td>
<td>Honeycomb Seal With Shunt (0.15 Swirl) 0.0 mm Cold Taper -0.005 Taper in Operation</td>
<td>Honeycomb Seal With Shunt (0.15 Swirl) -0.05 mm Cold Taper -0.053 Taper in Operation 50% Larger Clearance</td>
</tr>
<tr>
<td>Eye Labyrinths</td>
<td>No De-swirl (0.68 swirl)</td>
<td>Swirl Brakes Added (0.25 swirl)</td>
<td>Swirl Brakes Added (0.25 swirl)</td>
</tr>
</tbody>
</table>
Original design predicted to be unstable at worst-case operating condition

Rev 1 design showed similar characteristics as the HP compressor

Rev 2 increased clearance and machined a divergent taper into the seal and showed low sensitivity to divergence

Log decrement substantially improved
Field Re-Start

Re-Start After Modifications

- Subsequent Re-start showed no signs of subsynchronous activity on either HP or LP compressor even at fully loaded conditions
Summary

- Modified compressor demonstrated good stability on subsequent start-up.
- Instability was predicted when seal deformation is taken into account.
- Divergence of the damper seal reduced first natural frequency of the rotor causing the seal to become destabilizing.
- Modifications on HP compressor were made to seal to prevent divergent condition.
 - A tighter clearance seal is more sensitive to divergence.
 - Damper seals must be designed like bearings rather than seals.
 - i.e.. Tight control on clearance
 - Damper seal clearance can be designed differently depending on the operating pressure.
- Shutdown resulted in 3 months downtime with approx $40 million lost production (based on $7 per MMBtu gas)
Questions ???

jeff.moore@swri.org