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Important design issues and engineering 
applications of SDOF system Frequency response 
Functions 
 
The following descriptions show typical questions related to the 
design and dynamic performance of a second-order mechanical 
system operating under the action of an external force of 
periodic nature, i.e. F(t)=Fo cos(Ωt) or F(t)=Fo sin(Ωt) 
 

The system EOM is:   cosoM X D X K X F t      
 
Recall that the system response is governed by its parameters, 
i.e. stiffness (K), mass (M) and viscous damping (D) 
coefficients. These parameters determine the fundamental 

natural frequency, 
n

K
M  , and viscous damping ratio,  

,with 2
c

D
D cD KM    

 
In all design cases below, let r=( Ω /n) as the frequency ratio. 
This ratio (excitation frequency/system natural frequency) 
largely determines the system periodic forced performance.  
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PROBLEM TYPE 1 
Consider a system excited by a periodic force of magnitude Fo 
with external frequency Ω.  
a) Determine the damping ratio   needed such that the 

amplitude of motion does not ever exceed (say) twice the 
displacement (Xs=Fo/K) for operation at a frequency (say)  
20% above the natural frequency of the system (=1.2n). 

b) With the result of (a), determine the amplitude of motion for 
operation with an excitation frequency coinciding with the 
system natural frequency. Is this response the maximum ever 
expected? Explain. 

Recall that system periodic response is      

   ( )( ) cos( )s rX t X H t     

 
Solution. From the amplitude of FRF 
 

 
( ) 22 2

1

1 (2 )
r

s

X
H

X r r
 

 
 

 
Set r=ra = 1.2   and |X/Xs|=Ha=2. 
Find the damping ratio  from the algebraic equation: 
 

  
 

22 2 2

22 2
2

1 (2 ) 1

1
(2 ) 1

a

a

a a

a
a

H r r

r r
H





  

  
   

1
2

22
2

1 1
1

2
a

a a

r
r H


 

   
 

=0.099 

 
Finally, calculate the viscous damping coefficient D= Dc  
 
For excitation at the natural frequency, i.e., at resonance, then 
r=1, |X/Xs|=1/(2) = Q. Thus |X|=Q Xs 
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The maximum amplitude of motion does not necessarily occur 
at r=1. In actuality, the magnitude of the frequency ratio (r*) 

which maximizes the response, 0s

X

X
r





 
 

 
 

, is (after some 

algebraic manipulation): 
 

 
 

2
* 2

max

1 1
1 2 ; and

2 1s

X
r

X


 
  


 Corrected 2/19/13 

 

Note that for small values of damping 
max

1

2s

X

X 
  
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PROBLEM TYPE 2 
Consider a system exited by an imbalance (u), giving an 
amplitude of force excitation equal to Fo=M u Ω2. Recall that 
u=m e/M, where m is the imbalance mass and e is its radial 
location  

 2cosM X D X K X M u t       
 
Recall that system periodic response is      

   ( )( ) cos( )rX t u J t     

 
a) What is the value of damping  necessary so that the system 

response never exceeds (say) three times the imbalance u for 
operation at a frequency (say) 10% below the natural 
frequency of the system (=0.9n). 

b) With the result of (a), determine the amplitude of motion for 
operation with an excitation frequency coinciding with the 
system natural frequency.  

 
Solution From the fundamental FRF 
amplitude ratio 
 

 

2

( ) 22 21 (2 )
r

X r
J

u r r
 

 
 

 
Set r=0.9 and |X/u|=Ja=3. Calculate the damping ratio   from 
the algebraic equation. 
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  
1

24
22

2

1
1

2

a

a

a a

r
r

r J


 
   

 
=0.107 

 
Finally, calculate the viscous damping coefficient, D= Dc. 
 
Note that for forced operation with frequency = natural 
frequency, i.e., at resonance,   
 

r=1, |X/u|=1/(2) = Q. Thus |X|=Q u 
 
The maximum amplitude of motion does not occur at r=1. The 
value of frequency ratio (r*) which maximizes the response is 
obtained from 

 0
X
u

r





 
 

 
 then   

 

   * 2 2
max

1 1 1
; and

21 2 1

X
r

u  
 

 
 corrected 2/19/13 

 
 

Note that for small values of damping 
max

1

2

X

u 
  
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PROBLEM TYPE 3 
Consider a system excited by a periodic force of magnitude Fo 
and frequency Ω. Assume that the spring and dashpot connect to 
ground.  
a) Determine the damping ratio needed such that the 

transmitted force to ground does not ever exceed (say) two 
times the input force for operation at a frequency (say) = 75% 
of natural frequency (=0.75n).  

b) With the result of (a), determine the transmitted force to 
ground if the excitation frequency coincides with the system 
natural frequency. Is this the maximum transmissibility ever?  

c) Provide a value of frequency such that the transmitted force is 
less than the applied force, irrespective of the damping in the 
system. 

Solution: From the fundamental FRF amplitude for a base force 

excitation transmittedF K X D X    
 

 

 

2

( ) 22 2

1 2

1 (2 )

transmitted
T r

o

rF
A

F r r






 

 
 

 
 
Set AT=2 and r=0.75, and find the 
damping ratio .  
 


 

1
222 2

2

1 11

2 1

aT

a T

A r

r A


  
 

  
 

=0.186 
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Finally, calculate the viscous damping coefficient D= Dc  
 

At resonance, r=1, 
  



2

21
A

5.2

T


 . Then calculate the 

magnitude of the transmitted force. 
 
 
Again, the maximum transmissibility occurs at a frequency f* 

which satisfies   0TA
r


  . Perform the derivation and find a 

closed form solution. 
 
Recall that operation at frequencies 2r , i.e. for Ω 1.414n, 
(41 % above the natural frequency) determines transmitted 
forces that are lower than the applied force (i.e. an effective 
structural isolation is achieved). 
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PROBLEM TYPE 4 
Consider a system excited by a periodic force with magnitude 
Fo=M acc (for example) and frequency Ω.  
 
a) Determine the damping ratio ζ needed such that the maximum 

acceleration in the system does not exceed (say) 4 g's for 
operation at a frequency (say) 30% above the natural 
frequency of the system (=1.3n).  

b) With the result of (a), determine the system acceleration for 
operation with an excitation frequency coinciding with the 
system natural frequency. Explain your result 

 
Recall the periodic response is ( )( ) cos( )s rX t X H t    , then 

the acceleration of the system is 
 

2 2
( )( ) cos( ) ( )s rX t X H t X t     

 
Solution: From the amplitude of FRF  
 

 

2 2

22 2/ 1 (2 )

n

o

rX

F K r r






 

 
 

2

22 2/ 1 (2 )o

X r

F M r r


 


 

 
Follow a similar procedure as in other problems above. 
 

OTHER PROBLEMS 
Think of similar problems and questions related to system 
dynamic performance.  
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In particular, you may also "cook up" similar questions related 
to the dynamic response of first-order systems (mechanical, 

thermal, electrical, etc).  cosoM V DV F t    
 
Luis San Andrés - MEEN 363/617 instructor 
 
 
The following worked problems should teach you how to 
apply the frequency response function to resolve issues and 
to design many mechanical systems 
 



the magnitude of acceleration is A
Fo

Ke

ω
2

1 r
2−( )2

2 ζ⋅ r⋅( )2
+

⎡
⎣

⎤
⎦

.5
⋅= A

Fo

Me

r
2

1 r
2−( )2

2 ζ⋅ r⋅( )2
+

⎡
⎣

⎤
⎦

.5
⋅=

hence, define
Amax 10 g⋅:= maximum allowed acceleration of filament

HZ 2 π⋅
1

s
⋅:=Me 150 lb⋅:=system mass

fn 12 HZ⋅:= natural frequency

f 11.5 HZ⋅:= excitation frequency due to wind buffets

Let ro
f

fn
:= ro 0.958= close to natural frequency

The maximum force allowed
equals

Fmax r ζ,( ) Amax Me⋅
1 r

2−( )2
2 ζ⋅ r⋅( )2

+
⎡
⎣

⎤
⎦

.5

r
2

⋅:=

P2. Periodic forced response of a SDOF mechanical system. DESIGN COMPONENT

The signal lights for a rail may be modeled as a 176 lb mass mounted 3 m above the 
ground of an elastic post. The natural frequency of the system is 
measured to be 12.2 Hz. Wind buffet generates a horizontal harmonic 
force at 12 Hz. The light filaments will break if their peak accelerations 
exceed 15g. Determine the maximum acceptable force amplitude |F| 
when the damping ratio ζ=0.0 and 0.01.  

Full  grade requires you to explain the solution procedure with due attention to physical details 
 
 
 
 
 
 

3 m

F

The excitation force is periodic, say F(t)=Fo sin(ωt). then the system response will also be periodic, Y(t), with same
frequency as excitation. Assuming steady state conditions:

STEADY RESPONSE of M-K-C system to PERIODIC Force with frequency ω

Case: periodic force of constant magnitude Define operating frequency ratio: r
ω

ωn
=

F t( ) Fo sin ω t⋅( )⋅=

System periodic response: Y t( ) δs H r( )⋅ sin ω t⋅ Ψ+( )⋅= (1)

where:

H r( )
1

1 r
2−( )2

2 ζ⋅ r⋅( )2
+

⎡
⎣

⎤
⎦

.5
=δs

Fo

Ke
= tan Ψ( ) 2− ζ⋅ r⋅

1 r
2−

=

care with angle, range: 0 to -180deg

From (1), the acceleration is a t( ) ω
2

− Y t( )⋅= A sin ω t Ψ+ 180−( )(⋅=

or



c) Posts are usually hollow for the cables to be routed. These posts have layers of elastomeric 
material (~rubber-like) inside to increase their structural damping. Modern posts are wound up fro
composites that integrate damping layers. Clearly, adding a "true" dashpot is not cost-effective

Fmax ro ξ,( )
Fmax ro 0,( ) 2.553=

b) a system with damping ξ=0.1 will produce a 255 % increase in allowable force
Hence, the rail lightsystem will be more reliable, lasting longer.

which gives a very good estimation of the 
maximum wind force allowed

Amax Me⋅ 2⋅ ξ⋅ 300 lbf=SInce ro~1, a simpler enginering 
formula gives

GRAPH NOT FOR EXAM
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r
2

1 r
2−( )2

2 ζ⋅ r⋅( )2
+

⎡
⎣

⎤
⎦

.5
⋅:=

Fo Fmax ro ξ,( ):=

For the force found the amplitude of acceleration is

Fmax ro ξ,( )
Fmax ro 0,( ) 2.553=

Fmax ro ξ,( ) 340.231 lbf=ξ 0.1:=with damping

Note the importance of damping that leads to a 
substantial increase in force allowed

Fmax ro 0,( ) 133.27 lbf=without any damping



Fo

K
ω

2
⋅

Fo

M
ω

2

ωn
2

⋅=
Fo

K
r2⋅=since:[6]aop r( )

Fo

M
r2⋅

1 r2−( )2
2 ζ⋅ r⋅( )2

+






.5
=

where:

[5]aY t( ) ω
2

− Yop⋅ sin ωt ψ+( )⋅= aop sin ωt Ψ+ 180−( )⋅=

from [2], we find that the acceleration is given by: [4]r
ω
ωn

=with

[3b]Ψ atan
2 ζ⋅ r⋅

1 r2−









−=[3a]Yop r( )

Fo

K

1 r2−( )2
2 ζ⋅ r⋅( )2

+






.5
=

[2]Y t( ) Yop sin ωt ψ+( )⋅=

[1]F t( ) Fo sin ωt( )⋅=
Recall that for an imposed external force of periodic form:

the system response Y(t) is given by:

where the amplitude of motion (Yop) and phase angle (Y) are 
defined as:

Solution:
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Dynamic measurements were conducted on a mechanical system to determine its FRF (frequency 
response function). Forcing functions with multiple frequencies were exerted on the system and a digital 
signal analyzer (FFT) recorded the magnitude of the ACCELERATION/FORCE ([m/s2]/N) Frequency 
Response Function, as shown below. From the recorded data determine the system parameters, i.e. 
natural frequency (wn:rad/s) and damping ratio (z), and system stiffness (K:N/m), mass (M:kg), and 
viscous damping coefficient (C:N.s/m). 
Explain procedure of  ANALYSIS/INTERPRETATION of test data for full credit.  

EXAMPLE - EXAM 2 TYPE:

lsanandres
Rectangle



The number of calculations is minimal. One needs to interpret correctly the test data results, 
however.

C 314.159 N
s
m

⋅=C ζ 2⋅ M⋅ ωn⋅:=

Once the damping ratio is obtained, the damping coefficient can be easily determined from
the formula:

1
2 ζ⋅

1
0.1

= 10=

That is, the system has a damping ratio equal to 5%. This result could have also been easily 
obtained by studying the ratio of (amplitude at the natural frequency divided by the amplitude at 
very high frequency, i.e.) 

ζ 0.05=

ζ
1

2 M⋅
1.0
kg









⋅
:=

from the graph (test data), the ratio is approximately equal to one (1/kg). Thus. the damping ratio 
is determined as

aop 1( )

fo

1
2 M⋅ ζ⋅

=

for excitation at the natural frequency (r=1), the ratio of amplitude of acceleration to force 
reduces to

K 9.87 105×
N
m

=K ωn
2

M⋅:=

We can estimate the stiffness (K) from the fundamental relationship:

ωn 314.159
rad
s

=
ωn fn 2⋅ π⋅:=expressed in rad/s as:

fn 50 Hz⋅:=Thus, take the natural frequency as

The system appears to have little damping, i.e. amplitude of FRF around a frequency of
50 Hz is rather large and varying rapidly over a narrow frequency range.

M 10 kg⋅:=Thus

1
M

0.1
m

s2 N⋅









⋅=From the graph
(test data):

1
M

aop r( )

Fo
←For excitation at very high frequencies, r>>1.0

m

s2

N

[7]

aop r( )

Fo

r2

1 r2−( )2
2 ζ⋅ r⋅( )2

+






.5

1
M

⋅=

The units of this expression
are 1/kg =

thus, the magnitude of amplitude of acceleration over force amplitude follows as:




