MEEN 617 Handout #11

MODAL ANALYSIS OF MDOF Systems with
VISCOUS DAMPING A Symmetric

The motion of a n-DOF linear system is described by the set of 2™

order differential equations
MI..J+CU+KU=F([) (1)

where U, and F, are » rows vectors of displacements and external
forces, respectively. M, K, C are the system (uxn) matrices of mass,
stiffness, and viscous damping coefficients. These matrices are
symmetric, i.e. M=M", K=K", C=C".

The solution to Eq. (1) is determined uniquely if vectors of initial

: —_ » dU e
displacements U,, and initial velocities Vo=( %t)—o are specified.

For free vibrations, the force vector F»=0, and Eq. (1) is

MU+CU+KU=0 )

A solution to Eq. (2) is of the form

U=e%vy (3)
where in general « is a complex number. Substitution of Eqg. (3) into

Eq. (2) leads to the following characteristic equation:

(a2M+aC+K)‘I‘:[f(aJ‘I‘:O @
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where [f(a)] IS @ nxn SQUAre matrix. The system of homogeneous

equations (4) has a nontrivial solution only if the determinant of the
system of equation equals zero, i.e.

A(a)z‘f(a)‘z O=c,+ca+c,a’+c,a’+..c, a” (5)

The roots of the characteristic polynomial A(a) given by Eq. (5) can
be of three types:

a) Real and negative, <0, corresponding to over damped modes.

b) Purely imaginary, « = tiw, for undamped modes.

c) Complex conjugate pairs1 of the form, o ={w tiwy, for under

damped modes.

Clearly if the real part of any @ > 0 it means the system is unstable.
The constituent solution, Eq. (3), U=e* y can be written as the

superposition of the solution roots ¢ and its associated vectors ¥y

satisfying Eqg. (4), i.e.,

2n
U(t):;Cr‘I’rer (6)

or letting [T]ann :[Tl \PZ TZn]

(7)
write EqQ. (6) as

! Only if the system is defined by symmetric matrices. Otherwise, the complex roots may NOT BE complex
conjugate pairs.
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_ a,t
Uy, =[¥]iC. "'} ®)
However, a transformation of the form,
U’”‘l:[‘l’] q(t)anl (9)

Is not possible since this implies the existence of 2n- modal coordinates
which is not physically apparent when the number of physical
coordinates is only n.

To overcome this apparent difficulty, reformulate the problem in a
slightly different form. Let'Y be a 2n- rows vector composed of the

physical velocities and displacements, i.e.

U 0
Y_M and Qz{%} (10

be a modified force vector. Then writt MU+CU+KU=F,, as

woelbH e WJEHE

or
AY+B Y=Q (11.b)

where

To ™ [-M o0
Aol BTo k (12)
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A and B are 2nx2» matrices, symmetric if the M, C, K matrices are also

symmetric.
For free vibrations, =0, and a solution to Eq. (11.b) is sought of

the form:

V| =Y=@e

(13)
Substitution of Eq. (13) into Eq. (11.b) gives:
[0[A+B](I):O (14)
which can be written in the familiar form:
D®= L ()]
e (15)
where
M' 0 (0 M 0 I
D=-B'A= D=
( 0 -K"](M C j or (-K"M -K-lcj (16)
with I as the »x» identity matrix. From Eq. (15) write
1
{D‘;I}q’:[fwﬂq’zo (17)
The eigenvalue problem has a nontrivial solution if
A(“):‘f(a)‘zo (18)
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From Eq. (18) determine 2x eigenvalues{e, }, =1, 2., 2. and associated

eigenvectors{®,}. Each eigenvector must satisfy the relationship:

1
D® =—®
S (19)
Tl
and can be written as P« =L,;}where Tr IS a nx1 vector satisfying:
0 I Y| 1|¥
K'M K'C)|¥| o |¥ (20)
from the first row of Eq. (20) determine that:
1 1 2
I‘Pf=a—‘1'1 o ¥, =0 ¥, (21)

and from the second row of Eq. (20), with substitution of the

) ) 1
relationship in Eq. (21), obtain - K 'M¥, -K" C¥; ZQ—‘Pf or

r

1

{(—K-IM)ar -(K'IC)—Ia—:| ‘Plz. =() (23)

r

for =1, 2,....2n. Note that multiplying Eq. (23) by (-« K) gives
Mo +Ca, +K| ¥ =0 4

I.e., the original eigenvalue problem.
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1
Solution of Eq. (19), D@, =a—‘1’r, delivers the 2n-eigenpairs

r

. arTr
o, P = ¥, A% 5 (24)

In general, the j-components of the eigenvectors ¥, are complex

numbers written as

) ip
b 4 ‘ :ar‘ +1 br. :5rj e ’ j=1,2...n

r
J J J

where sand ¢ denote the magnitude and the phase angle.
Note: for viscous damped systems, not only the amplitudes but also the
phase angles are arbitrary. However, the ratios of amplitudes and

differences in phase angles are constant for each of the elements in the

eigenvector ¥, . That is,
(6,15, )=const , and(¢, — ¢, )=const , for;, k=12 .~

A constituent solution of the homogeneous equation (free vibration

problem) is then given as:
) 2n
—| U | _ a.t
Y—[U]—;Cre (I)r (25)

Let the (roots) &;-be written in the form (when under-damped)

ar:gr a)r+l.a)dr (26)

and write EqQ. (25) as
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. . r r r (27)

and since o, {“"P‘P‘} , the vector of displacements is just

2n
. (-¢, 0, +iwg, )t

ORTHOGONALITY OF DAMPED MODES

Each eigenvalue «,- and its corresponding eigenvector @, satisfy the
equation:
a AD® +B® =0 (28)
Consider two different eigenvalues (not complex conjugates):
{a,;®, }and {aq ;<I>q}  thenif A=AT andB=B7 (a symmetric system), it
IS easy to demonstrate that:

(a,-a,) @] A®, =0

and infer

T —_ . T —
(I)S A(I)q—() y (I)s B(I)q—O fOI’O!S;ﬁOCq (29)

Now, construct a modal damped matrix @ ., formed by the

columns of the modal vectorso_, i.e.

n

(I)=[(I)l P, . . D (I)Zn] (30)
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And write the orthogonality property as:
T T
®'A®=6 ®'BO=p an

Where 6 and B are (2zx2n) diagonal matrices.

Now, recall that the equations of motion in physical coordinates are :

MU+CU+KU=F 1)

With the definition Y = [3] , Egs. (1) are converted into 2n first

order differential equations:

oy |
AY+BY=Q-=

Fy) (32)
A0 M| o [M 0
where M Cl 0 K (12)
To uncouple the set of 2x first-order Egs. (32), a solution of the
following form is assumed:
2n

Yo = Zl: ®. 2, =PZ, (33)
Substitution of Eqg. (33) into Eq. (32) gives:

AD®Z+B D Z=Q (34)
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Premultiply this equation by ®" and use the orthogonality property” of

the damped modes to get:
(®'A ®)Z+(®"'B ®)Z=0"Q (35)
o 6ZL+BZ=G=0"Q (36)
Eq. (36) represents a set of 2n uncoupled first order equations:
o5+ Pz =&,
C,Z2,+B,2,= g2,

Oy Zon + Pon Zay = 82w, (37)
Where Gr :mf Amr ; ﬂr :(DI B®r :_ar O-r ' l’:]., 2.2N

a,==p.lo, (38)

since &, A®_+B ®_ =0 |n addition,

U

Initial conditions are also determined fromY, = [U;’] with the

transformation Y, =®Z_,

6Zy=®1 AY, (40.2)

% The result below is only valid for symmetric systems, i.e. with M, K and C as symmetric matrices. For the more
general case (non symmetric system), see the textbook of Meirovitch to find a discussion on LEFT and RIGHT
eigenvectors.
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1

T
or Z, = ;q’r AY, r=1,2, ... 2n (40.b)

7

The general solution of the first order equationo, z, + 8.z, =g, (¢),

with initial condition Z,(,_o) = 2, _, is derived from the Convolution

integral

(41)

with o, =— 4./ o,

Once each of the z

(@

| solutions is obtained, then return to the physical

coordinates to obtain:
U 2n
Yoo ={ g [F2®r 200 =PZy (33=43)

and since mr{“"‘:’}, the physical displacement dynamic response is

given by:
2n
Uy=2%¥z (44)
r=1
and the velocity vector is correspondingly equal to:
2n
Up= le @ ¥,z (45)
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Read/study the accompanying MATHCAD® worksheet with a detailed

example for discussion in class.
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MODAL ANALYSIS of MDOF linear systems
with viscous damping

Original by Dr. Luis San Andres for MEEN 617 class / SP 08, 12

The equations of motion are: M d2U/dt2+ C dU/dt + K U = F(t) ?

where M,C,K are nxn SYMMETRIC matrices of inertia, viscous damping and stiffness
coefficients, and U, dU/dt, d2U/dt2,and are the nx1 vectors of displacements,
velocity and accelerations. F(t) is the nx1 vector of generalized forces. Eq (1) is
solved with appropriate initial conditions, at t=0, Uo,Vo=dU/dt

Define elements of inertia, stiffness, and damping matrices:

m1 == 100 ki:=1.0-10" c1 == 5000
22 Z ;80 kg ko = 1.0.10° VM ¢, = 2000 NS/M
ks = 2.0.10" ¢z = 1000 N = 3#of DOF
Make matrices:
mg 0 O ki+ka k2 O Ci+Cx> <> O
M= 0 mp O K=| k2 katksz k3 C=| -co cCo+c3 -C3
0O 0 ms 0 k3 ks 0 s ca

Initial conditions in displacement and velocity:

PLOTs - only N := 1024 for time steps
Uo =

© O Pk

0
Vo =|.1
0

|E| natural freqs - undamped

[*] damped eigenvals

2. Evaluate the damped eigenvalues: Rewrite Eq (1), as

A dY/dt + B Y = Q(t),

where Y = [ dU/dt, U ]T, and Q=[0, F®)]Tare 2n row vectors of (velocity,
displacements ) and generalized forces; and initial conditions Yo =[ Vo, Uo ]

A = 9 B = -M 0 are 2nx2n
M C 0 K Symmetric matrices



2.1 define the A & B augmented matrices:

zero = identity(n) - identity(n) the (nxn) null matrix

A

stack(augment(zero, M), augment(M, C))

B

stack(augment(-M, zero) , augment(zero, K))

2.2 Use MATHCAD function to calculate eigenvectors and eigenvalues of the
generalized eigenvalue problem, M X = o N X.

In vibrations problems we set the problem as: a A¢ +B ¢ =0,
hence M=-B, N=A to use properly the MATHCAD functions genvecs & genvals

a = genvals(B, —A)r:uj/S

dp = genvecs(B, —A)'

-5.33 + 165.43i
-5.33-165.43i
. Recall the undamped
o= -33.31+474.21i natural frequencies
-33.31-474.21i
165.46
-21.36 + 803.53i
o =|475.33
-21.36 - 803.53i
804.17

note that the (damped) eigenvalues are complex conjugates, with the same real part
and +/- imaginary parts

~0.35-0.12i ~0.35+0.12i _0.38+0.75i
_0.6-0.21i 0.6+ 0.21i 0.07 - 0.21i
_0.64-0.23i _0.64 +0.23i 0.22 - 0.44i
O = _ o _ o _ L
D~ 6.34x10 %+2.13ix10 > -6.34x 10 %-2.13ix10"> 1.62x10 >+6.97ix 10" °

~1.18x 10 >+3.64ix10 > -1.18x10 °-3.64ix 10" > -4.48x10 *-1.14ix 10~

3 3 3 3

1.28x10 2+3.91ix 10 3 -1.28x10 2-3.91ix10 > -9.63x10 *-4.05ix 10"

Note that the eigenvectors are conjugate pairs, i.e. they show the same real part and
+/- imaginary part. In addition the first n-rows of an eigenvector are proportional to
the 2nd n-rows. The proportionality constant is the damped eingenvalue.



2.2. Form "damped" modal matrices using the orthogonality properties:

T T
0o = q)D A(DD B = q)D BQ)D

0.54 - 0.75i 0
0 0.54 + 0.75i
0

© O O O

0]
0
0]

-121.82 - 93.33i

1

6.53x 10 1°+1.82ix 10~

1

3.17x10 *°14.86ix 10~

1

257x10 1°-1.99ix 10~

1

4.71x10 T°-2.16ix 10"

1

8.43x 10 *°_2.27ix 10"

Note off-diagonal terms are small - but NOT zero (as they should)

Check the orthogonality property:

5.33 - 165.43i
5.33 + 165.43i
Bj.j |33.31-474.21]
oj.j |33.31+474.21i
21.36 - 803.53i
21.36 + 803.53i

0 0 0 0
0 0 0 0
~0.26 + 0.26i 0 0 0
0 _0.26 - 0.26i 0 0
0 0 0.12 + 0.11i 0
0 0 0 0.12-0.11i
6.53x 10 1°-1.82ix 10 1° 9.12ix 10”12
15 _121.82 + 93.33i 254x 10 1°+1.29ix 10
15 2575107 °+1.99ix10° 14 113.59 + 132.39i
14 317410 °_-286ix10 1° 1.3x10 ¢
14 g43x10 1°+2.27ix10 % —2.45x10 1%+ 1.33ix 1«
14 4715107+ 2.16ix10° 1% 2.34x10 1°11.56ix 10
compare B/o ratios to eigenvalues
_5.33+ 165.43i
_5.33 - 165.43i
_33.31+474.21] undamped:
(x =
33.31-474.21] 165.46
_21.36 + 803.53] 0 =|475.33
_21.36 - 803.53] 804.17




for underdamped systems only
damping ratios:

j=1.

real part: —E) JOrSY

. . |
imaginary part:

0d = mn'(l_gz)-S

[«] damped eigenvals

1 .5
Im(a;) jz
1
Rela)) ] Relo) |
(Dnj = & natural frequencies
)

mdj = Im(aj)

damped natural fregs.

¢' =(0.03 0.03 0.07 0.07
T
on = (165.52 165.52

T
og = (165.43 -165.43

.
o = (165.46

0.03 0.03) damping ratios.

475.37 475.37 803.81 803.81) fregs.
rad/s

47421 -474.21 803.53 -go3SyyPed naturalfregs.

475.33 804.17)

undamped modal analysis

[*] damped modal response



3. The 2n first order equations A dY/dt + B Y = Q(t) with the
transformation Y=®4Z become 2n equations of the form:

Gj leldt + Bi Zi — Gi [i=1,2,3,...2n where
G:(DdTQ(t) and initial conditions ZOz(S_l(DdT A Yo:

3.1 solve the 2n-first order differential equations for the
Free Response to initial conditions, F(t)=0:

From initial conditions in displacement and velocity, set Yo = stack(Vo, Uo)

and in damped modal space: 70 = 0—1_(@DT.A.YO)

p = 1. N number of data points

tp = (p - 1) -At time sequence

get the modal response: Zj p = Zoj.ei'P

andback into the physical coordinates: Y:(DdZ
s=1.2n

m
FREE RESPONSE Vs, @ = Z o5 Zq.p
using DAMPED MODES s.dq

q=1

j=1.2n

[+] damped modal response
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recall:

Plot the displacements (last n rows of Y vector):

RESPONSE: U1 Uo =
1
—
D (0]
_10 0.022 0.043 0.065 0.087 0.11 0.13 0.15
time(secs)
damped
undamped
RESPONSE: U2
1
0.5
S o
-0.5
_10 0.022 0.043 0.065 0.087 0.11 0.13 0.15
time(secs)
= Damped
— Undamped
RESPONSE: U3
1
g o
_10 0.022 0.043 0.065 0.087 0.11 0.13 0.15

time(secs)
= Damped
— Undamped

T
& =(0.03 0.03 0.07 0.07 0.03 0.03)



4. Forced response to step load F(t)=Fo and initial
conditions

Set initial conditions in displacement and velocity:

STEP FORCE 30000

0 i 0
Uo=|{0|Vo:=|0 Fo=1 10 ©:=10
0 -10° 0
[*] Step load response
Then set: Yo = stack(Vo, Uo) Qo = stack(O, Fo)
and transform to damped modal space: Zo=0 1-(®DT-A-YO) Go = (DDT'QO
8
Tmax = —secs At = Tmax
f1 N j=1.2n
p=1.N
tp = (p - 1) At
. Go; "
to get the modal response: Zjp= Zoj-eocJ 'y —J-(l ~e” tp)
. . . J.]
and in physical coordinates:
s=1.m M=2n
m
STEP RESPONSE Y=(I)dZ Ys,p:= Z q)DS q'Zq,p
using DAMPED MODES q-1 |

6. For completeness, obtain also the undamped forced response:

_ T — T T
10 :=Mm T.0 -M-Uo vo:=Mm T.0 -M-VP = ® -Fo

j=1.n
VO;
Nj,p = noj-cos(mj-tp) + —J-Sln(coj-tp) + (1 - Cos(mj tp))
0] Kmjj
and into physical coordinates: s=1.n
n
STEP RESPONSE n
using UNDAMPED MODES U=0o Us,p = Z q)s,q'nq,p
q=1
static response - check
Us = K T-Fo
Plot the displacements (last n rows of Y vector): s = i

[«] Step load response
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RESPONSE: Ul UST _ (3X 1073 3x10°3
0.01
0.005 A\ A \ Q M {\ /\ {\ /\ /\ /\ !\ /\ /\ 0 : /\ Q
-
D
o
-0.005
0 0.051 0.1 0.15 0.2 0.25 0.3
time(secs)
— damped
undamped

RESPONSE: U2

~0-005 0 0.051 0.1 0.15 0.2 0.25 0.3
time(secs)
—— Damped
—— Undamped
RESPONSE: U3
0.005
ol M, 141 A l‘ l‘ “
| A\ F { ‘ :
S A "v"' "'v”",“ ,“H" [V
-0.005 | ' ‘
v I
0.01 0 0.051 0.1 0.15 0.2 0.25 0.3

time(secs)
= Damped
— Undamped

§T=(O.03 0.03 0.07 0.07 0.03 0.03)

2x 10



5. Periodic response to loading, F(t)=Fo sin(Qt):

Response due to initial conditions vanishes after along time because of damping:

3% 102 freq. of excitation
B = fHz = 80 165.46
Fo=11x10 Q=2nfHz recall the
5 o = | 475.33 | undamped
-1x 10 Q =502.65 frequencies
804.17
[+
Plot the displacements (last n rows of Y vector):
recall: Q = 502.65
RESPONSE: Ul (165'46
175.33
0.02
304.17
3 0
—0.02

O 0.00560.01110.01670.02220.02780.03330.03890.0444 0.05
time(secs)

—— damped

—— undamped

RESPONSE: U2

0.01

—0.01
o 0.00560.01110.01670.02220.02780.03330.03890.0444 0.05

time(secs)
—— Damped
—— Undamped

ncorunoc: U3

0.01

0.005

U3
@]

—0.005




6) FRF Response to periodic loading, F=Fo cos(Qt)

A
UNDAMPED CASE

0
SET E=10 =1.n 3><104
° 165.46 Fo=11x10°
QZSr?LB"Jée P=0 Fo oj = | 475.33 “1x10°
and the modal "S-S" response is modes. 804.17
j=1.n Omax = 3-0n

kmin:=1 kmax := 200

k := kmin.. kmax
rad/sec <===forcing frequency

k
Qk = -Qmax
kmax R
kaax = 2.41)( 10
Pj 1
MODAL aj. k= i x COS(Qt) Ormin = 12.06
response ’ K iLi (Qk)z 5
1.0- $ 2.8 — | i
(Dj)z (Dj here i=imaginary unit
s=1.n
n
FRF in physical plane: Us. k= Z ®s,i-di, k x cOS(Q)
i =1
DAMPED CASE set: Qo = stack(O, Fo)

forcing vector

T
Go = dp Qo

k .= kmin.. kmax

Qg = -Omax
kmax rad/s <=== forcing frequency
Go; 1
J
=1.2n Z = :
J ik B 0k X cos(Qt)
modal response 1-i—
o

and back into the physical plane:
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s=1.2n m:=2-n

using DAMPED MODES

m
PERIODIC RESPONSE Ys k= Z dp Zqg,k X cos(Qt)
S, q
q=1

plot Magnitude of response in physical space



Damped physical response

0.1
& f
0.01 FESC AA.“"‘*
.# > Dl Y .I\ >
0 1 /XN
T 1 : AR
: _ - - T - - - - .\ | ’ '. . '..‘\
%. 110 3 2 :' -"/ i = "“
£ B : LAY
< X .
110 N
N
110 > = "
10 100 1-10 1-10
frequency (rad/s)
Ul
....... U2
==== U3
UNDAMPED Amplitude FRF
UnDamped physical response
1
0.1 4
J
0
O 0.01 ~— =7\~
= ”1 /RS
o - L. sl N
£ 1 .10_3 T .' { ! AN
< i [ —¥ BN
M : .
110 4 _'_f\‘
110 ° - -
10 100 1-10 1-10

frequency (rad/s)



select coordinate to displate physical response - damped & undamped - Nn =3 DOFs
1
0.1 :
0.01 l_-A-__ A.
” \
A
\ |
110 3 — \
\ /" N
) }
110 Ly
:
110 ° = a
10 100 1-10 1-10

frequency (rad/s)

damped
cesccse undamped

LINEAR vertical scale undampEd: _

0.2
0.15
0.1
0.05 . :
. -
o — . N
10 100 110> 1-10%

frequency (rad/s)

damped
cesccse undamped





