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MEEN 617 Handout #11 

MODAL  ANALYSIS OF MDOF Systems with 
VISCOUS DAMPING                        ^ Symmetric 

The motion of a n-DOF linear system is described by the set of 2nd 

order differential equations 

 ( )t
M U + CU + K U = F 

                            (1) 

where U(t) and F(t) are n rows vectors of displacements and external 

forces, respectively. M, K, C are the system (nxn) matrices of mass, 

stiffness, and viscous damping coefficients. These matrices are 

symmetric, i.e. M=MT, K=KT, C=CT. 

The solution to Eq. (1) is determined uniquely if vectors of initial 

displacements Uo and initial velocities    
0t

d
d t 

o
UV  are specified. 

For free vibrations, the force vector F(t)=0 , and Eq. (1) is 

M U +CU + K U = 0 
                              (2) 

A solution to Eq. (2) is of the form  

                             
teU ψ                                                             (3) 

where in general  is a complex number.  Substitution of Eq. (3) into 

Eq. (2) leads to the following characteristic equation: 

   
2 0       M C K Ψ f Ψ                                     (4) 
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where  
 
 f is a nxn square matrix. The system of homogeneous 

equations (4) has a nontrivial solution only if the determinant of the 

system of equation equals zero, i.e. 

   
2 3 2

0 1 2 3 20 ... n
nc c c c c           f                         (5) 

The roots of the characteristic polynomial    given by Eq. (5) can 

be of three types: 

a) Real and negative, 0  , corresponding to over damped modes.  

b) Purely imaginary, i   , for undamped modes. 

c) Complex conjugate pairs1 of the form, i d    , for under 

damped modes. 

Clearly if the real part of any 0  , it means the system is unstable. 

The constituent solution, Eq. (3), teU ψ  can be written as the 

superposition of the solution roots re  and its associated vectors rψ  

satisfying Eq. (4), i.e., 

       

2

1

r

n
t

r rt C eU Ψ
                                                          (6) 

or letting       1 2 22
... nn x n

Ψ Ψ Ψ Ψ          (7) 

write Eq. (6) as 

                                                 
1 Only if the system is defined by symmetric matrices. Otherwise, the complex roots may NOT BE complex 
conjugate pairs. 
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    r t
rt C eU Ψ                                                         (8) 

However, a transformation of the form,  

   2 1
1

nx
nx tU Ψ q                                                              (9) 

is not possible since this implies the existence of 2n- modal coordinates 

which is not physically apparent when the number of physical 

coordinates is only n. 

To overcome this apparent difficulty, reformulate the problem in a 

slightly different form.  Let Y be a 2n- rows vector composed of the 

physical velocities and displacements, i.e. 

  

 
 
 

U
Y =

U


   , and (t)

 
 
 

0
Q =

F                                                         (10) 

be a modified force vector. Then write  tM U +CU + K U = F   as  

       
            

0 M -M 0U U 0+ =U FUM C 0 K

 
                             (11.a) 

or 

A Y + B Y = Q
                                                             (11.b) 

where 

   
   
   

0 M -M 0
A = , B =

M C 0 K                                                        (12) 
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A and B are 2nx2n matrices, symmetric if the M, C, K matrices are also 

symmetric.   

For free vibrations, Q=0, and a solution to Eq. (11.b) is sought of 

the form: 

te  
U
U = Y =Φ


                                                             (13) 

Substitution of Eq. (13) into Eq. (11.b) gives: 

  0 A +B Φ                                                                  (14) 

which can be written in the familiar form: 

1


DΦ Φ                                                                      (15) 

where 

  
  

  

-1
-1

-1

0 MM 0
D= -B A =

M C0 -K
,  or 

 
 
 

-1 -1

0 I
D=

-K M -K C              (16) 

with I as the nxn identity matrix. From Eq. (15) write 

 
1

0
         
D Ι Φ f Φ                                                   (17) 

The eigenvalue problem has a nontrivial solution if  

    0  f                                                                (18) 
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From Eq. (18) determine 2n eigenvalues r , r=1, 2.., 2n and associated 

eigenvectors rΦ .  Each eigenvector must satisfy the relationship: 

  
1

r r
r

DΦ Φ                                                                  (19) 

and can be written as 
 
 
 

1
r

r 2
r

Ψ
Φ =

Ψ where rΨ  is a nx1 vector satisfying: 

1

r
    
    

     

1 1
r r

-1 -1 2 2
r r

0 I Ψ Ψ
=

-K M -K C Ψ Ψ                                           (20) 

from the first row of Eq. (20) determine that: 

1

r
2 1

r rI Ψ Ψ or  r
1 2
r rΨ Ψ                                          (21) 

and from the second row of Eq. (20), with substitution of the 

relationship in Eq. (21), obtain
1

r
 -1 1 -1 2 2

r r r- K MΨ K CΨ Ψ    or 

    1
r

r




 
 
 

-1 -1 2
r-K M - K C -I Ψ = 0                                        (23) 

for r=1, 2,….2n. Note that multiplying Eq. (23) by (- r K) gives 

                 
2
r r     

2
rM C K Ψ 0                 (4) 

i.e., the original eigenvalue problem.  
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Solution of Eq. (19), 
1

r r
r

DΦ Φ , delivers the 2n-eigenpairs 

1,2,..2; r
r r n


 

  
  
  

r
r

r

Ψ
Φ

Ψ                                          (24) 

In general, the j-components of the eigenvectors rΨ  are complex 

numbers written as 

rj

j r r rj j j

i
a i b e


  rΨ  j=1,2…n 

where  and φ denote the magnitude and the phase angle. 

Note: for viscous damped systems, not only the amplitudes but also the 

phase angles are arbitrary.  However, the ratios of amplitudes and 

differences in phase angles are constant for each of the elements in the 

eigenvector rΨ . That is,  

   / const and constj k jk j k jk       for j , k = 1, 2, ..N 

A constituent solution of the homogeneous equation (free vibration 

problem) is then given as: 

2

1

r

n
t

r
r

C e



    U
U rY = Φ


                                                     (25) 

Let the (roots) r be written in the form (when under-damped) 

r r r d r
i                                                                  (26) 

and write Eq. (25) as  



MEEN 617 HD 11 Modal Analysis of MDOF Systems with Viscous Damping  L. San Andrés © 2013 
 

7

 
2

1

r r d r

n
i t

r
r

C e    



    U
U rY = Φ


                                        (27) 

and since r 
  
 

r
r

r

Ψ
Φ

Ψ
, the vector of displacements is just 

 
2

1

r r d r

n
i t

r
r

C e    



 rU Ψ                                                (27) 

 

ORTHOGONALITY OF DAMPED MODES 

Each eigenvalue r and its corresponding eigenvector rΦ satisfy the 

equation: 

0r  r rΑ Φ B Φ                                                             (28) 

Consider two different eigenvalues (not complex conjugates): 

   ; and ;s q s qΦ Φ , then if T and TΑ =Α B = B  (a symmetric system), it 

is easy to demonstrate that: 

 s q  T
s qΦ AΦ 0   

and infer  
T
s qΦ AΦ =0  ; for s q T

s qΦ ΒΦ = 0  (29) 

 

Now, construct a modal damped matrix Φ  (2nx2n) formed by the 

columns of the modal vectors rΦ , i.e. 

 1 2 2 1 2... ..n n nΦ Φ Φ Φ Φ Φ                                     (30) 
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And write the orthogonality property as: 

      
T TΦ ΑΦ=σ Φ ΒΦ=β                               (31) 

Where σ  and β  are (2nx2n) diagonal matrices.  

Now, recall that the equations of motion in physical coordinates are : 

( )t
M U + CU + K U = F 

                                                      (1) 

With the definition    
U
UY


, Eqs. (1) are converted into 2n first 

order differential equations: 

   ( )t

 
  
 

0
ΑY +ΒY =Q

F


      (32) 

where  
   
   
   

0 M -M 0
A = , B =

M C 0 K                                  (12) 

To uncouple the set of 2n first-order Eqs. (32), a solution of the 

following form is assumed: 

     

2

1

n

rt t t
r

z


  rY Φ ΦZ
                                                   (33) 

Substitution of Eq. (33) into Eq. (32) gives: 

Α Φ Ζ+Β Φ Ζ= Q                                                                (34) 
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Premultiply this equation by 
TΦ  and use the orthogonality property2 of 

the damped modes to get: 

   T T TΦ Α Φ Ζ+ Φ Β Φ Ζ=Φ Q                                          (35) 

or      Tσ Ζ+β Ζ= G Φ Q
         (36) 

Eq. (36) represents a set of 2n uncoupled first order equations: 

( )1 1 1 1 1 t
z z g    

( )2 2 2 2 2 t
z z g    

 

( )2 2 2 2 2 tN N N N Nz z g                        (37)    

where          ;r r r r     T T
r r r rΦ ΑΦ Φ BΦ ,  r=1, 2..2N 

 /r r r      (38) 

since r  r rΑΦ Β Φ 0 . In addition,                                               

( ) ( )tr tg  T

rΦ Q                                     (39) 

Initial conditions are also determined from o

oo
   

U
UY


with the 

transformation    0 0tY ΦZ  

TσΖ =Φ ΑYo o            (40.a) 

                                                 
2 The result below is only valid for symmetric systems, i.e. with M, K and C as symmetric matrices. For the more 
general case (non symmetric system), see the textbook of Meirovitch to find a discussion on LEFT and RIGHT 
eigenvectors. 
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or      
1

ro
r

  T
r oΦ ΑY   r=1, 2,   2n         (40.b) 

The general solution of the first order equation  r r r r rz z g t   , 

with initial condition  0 rr otz z  , is derived from the Convolution 

integral 

 
 

0

1
rr

r

t tt
r o r

r

z z e g e d 
 


                           (41) 

with /r r r    

Once each of the 
( )r t

z  solutions is obtained, then return to the physical 

coordinates to obtain: 

     

2

1

n

rt t t
r

z


 
   
 

 r

U
Y Φ ΦZ

U


             (33=43) 

and since r 
  
 

r
r

r

Ψ
Φ

Ψ
, the physical displacement dynamic response is 

given by: 

   

2

1

n

rt t
r

z


 rU Ψ
                                                             (44) 

and the velocity vector is correspondingly equal to: 

                   

2

1

n

r rt t
r

z


 rU Ψ
                      (45) 
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Read/study the accompanying MATHCAD®   worksheet with a detailed 

example for discussion in class. 

 

 

 

 

 



k3 2.0 10
7 n 3 # of  DOF

Make matrices:

M

m1

0

0

0

m2

0

0

0

m3













 K

k1 k2

k2

0

k2

k2 k3

k3

0

k3

k3













 C

c1 c2

c2

0

c2

c2 c3

c3

0

c3

c3















Initial conditions in displacement and velocity:

PLOTs - only N 1024 # for time steps

Uo

1

0

0









 Vo

0

.1

0











natural freqs - undamped

damped eigenvals

=====================================================================
2. Evaluate the damped eigenvalues: Rewrite Eq (1), as

   A dY/dt + B Y = Q(t), 
where Y = [ dU/dt, U ]T, and Q=[0, F(t)]T are 2n row vectors of (velocity, 
displacements ) and generalized forces; and initial conditions Yo = [ Vo, Uo ]

are 2nx2n
Symmetric matricesA

0

M

M

C









= B
M

0

0

K









=

MODAL ANALYSIS of MDOF linear systems 
with viscous damping
Original by Dr. Luis San Andres for MEEN 617 class / SP 08, 12

(1)The equations of motion are: M d2U/dt2 + C dU/dt + K U = F(t)
where M,C,K are nxn SYMMETRIC matrices of inertia, viscous damping and stiffness 
coefficients, and U, dU/dt,  d2U/dt2,and are the nx1 vectors of displacements, 
velocity and accelerations. F(t) is the nx1 vector of generalized forces. Eq (1) is 
solved with appropriate initial conditions, at t=0, Uo,Vo=dU/dt

========================================================================

Define elements of inertia, stiffness, and damping matrices:

m1 100 k1 1.0 10
7 c1 5000

m2 100 N/m N.s/mkg k2 1.0 10
7 c2 2000

m3 50 c3 1000



2.1 define the A & B augmented matrices:

zero identity n( ) identity n( ) the (nxn) null matrix

A stack augment zero M( ) augment M C( )( )

B stack augment M zero( ) augment zero K( )( )

2.2 Use MATHCAD function to calculate eigenvectors and eigenvalues of the 
generalized eigenvalue problem, M X =  N X.

In vibrations problems we set the problem as:  + B  = 0,
hence M=-B, N=A to use properly the MATHCAD functions genvecs & genvals 

 genvals B A( ) rad/s

D genvecs B A( )

Recall the undamped 
natural frequencies

5.33 165.43i

5.33 165.43i

33.31 474.21i

33.31 474.21i

21.36 803.53i

21.36 803.53i

























165.46

475.33

804.17











note that the (damped) eigenvalues are complex conjugates, with the same real part 
and +/- imaginary parts

D

0.35 0.12i

0.6 0.21i

0.64 0.23i

6.34 10
4 2.13i 10

3

1.18 10
3 3.64i 10

3

1.28 10
3 3.91i 10

3

0.35 0.12i

0.6 0.21i

0.64 0.23i

6.34 10
4 2.13i 10

3

1.18 10
3 3.64i 10

3

1.28 10
3 3.91i 10

3

0.38 0.75i

0.07 0.21i

0.22 0.44i

1.62 10
3 6.97i 10

4

4.48 10
4 1.14i 10

4

9.63 10
4 4.05i 10

4














Note that the eigenvectors are conjugate pairs, i.e. they show the same real part and 
+/- imaginary part. In addition the first n-rows of an eigenvector are proportional to 
the 2nd n-rows. The proportionality constant is the damped eingenvalue.



2.2. Form "damped" modal matrices using the orthogonality properties:

 D
T

A D  D
T

B D



0.54 0.75i

0

0

0

0

0

0

0.54 0.75i

0

0

0

0

0

0

0.26 0.26i

0

0

0

0

0

0

0.26 0.26i

0

0

0

0

0

0

0.12 0.11i

0

0

0

0

0

0

0.12 0.11i

























121.82 93.33i

6.53 10
15 1.82i 10

15

3.17 10
15 4.86i 10

15

2.57 10
15 1.99i 10

14

4.71 10
15 2.16i 10

14

8.43 10
15 2.27i 10

14

6.53 10
15 1.82i 10

15

121.82 93.33i

2.57 10
15 1.99i 10

14

3.17 10
15 4.86i 10

15

8.43 10
15 2.27i 10

14

4.71 10
15 2.16i 10

14

9.12i 10
15

2.54 10
15 1.29i 10

113.59 132.39i

1.3 10
14

2.45 10
14 1.33i 10

2.34 10
15 1.56i 10















Note off-diagonal terms are small - but NOT zero (as they should)

Check the orthogonality property: compare / ratios to eigenvalues

undamped: j j

 j j

5.33 165.43i

5.33 165.43i

33.31 474.21i

33.31 474.21i

21.36 803.53i

21.36 803.53i





















 

5.33 165.43i

5.33 165.43i

33.31 474.21i

33.31 474.21i

21.36 803.53i

21.36 803.53i

























165.46

475.33

804.17













damped modal response

from undamped modal analysis

T

165.46 475.33 804.17( )

d
T

165.43 165.43 474.21 474.21 803.53 803.53( ) damped natural freqs.

rad/snatural freqs.n
T

165.52 165.52 475.37 475.37 803.81 803.81( )


T

0.03 0.03 0.07 0.07 0.03 0.03( ) damping ratios.

damped eigenvals

damped natural freqs.

d
j

Im  j 

natural frequenciesn
j

Re  j 
 j



 j
1

Im  j 
Re  j 









2

1











.5


j 1 2 n

d n 1 
2

  .5=damping ratios:
imaginary part:

 nreal part: for  underdamped systems only



damped modal response

j 1 2 n

Ys p

1

m

q

D
s q

Zq p


FREE RESPONSE
using DAMPED MODES

s 1 2 n

andback into the physical coordinates: Y=dZ

Zj p Zoj e
 j tpget the modal response:

time sequencetp p 1( ) t
m 2 n

number of data pointsp 1 N

Zo 
1

D
T

A Yo



and in damped modal space:

Yo stack Vo Uo( )From initial conditions in displacement and velocity, set

3.1 solve the 2n-first order differential equations for the 
   Free Response to initial conditions, F(t)=0:

3. The 2n first order equations A dY/dt + B Y = Q(t) with the 
transformation Y=dZ become 2n equations of the form: 

i dZi/dt + i Zi = Gi , i=1,2,3,....2n  where 

G=d
TQ(t) and initial conditions Zo=d

T A Yo:

lsanandres
Rectangle



recall:Plot the displacements (last n rows of Y vector):
Uo

1

0

0









RESPONSE: U1

0 0.022 0.043 0.065 0.087 0.11 0.13 0.15
1

0

1

damped
undamped

time(secs)

U
1

 RESPONSE: U2

0 0.022 0.043 0.065 0.087 0.11 0.13 0.15
1

0.5

0

0.5

1

Damped
Undamped

time(secs)

U
2

 

 RESPONSE: U3

0 0.022 0.043 0.065 0.087 0.11 0.13 0.15
1

0

1

Damped
Undamped

time(secs)

U
3

 


T

0.03 0.03 0.07 0.07 0.03 0.03( )



and in physical coordinates:
m 2 ns 1 m

Ys p

1

m

q

D
s q

Zq p



STEP RESPONSE
using DAMPED MODES

Y=dZ

===================================================================
6. For completeness, obtain also the undamped forced response:

o Mm
1 

T
 M Uo o Mm

1 
T

 M Vo  
T

Fo

j 1 n

 j p oj cos  j tp 
oj

 j
sin  j tp 

 j

Kmj j
1 cos  j tp  

s 1 n
and into physical coordinates:

STEP RESPONSE
using UNDAMPED MODES U   Us p

1

n

q

s q q p




================================================================== static response - check

Us K
1

FoPlot the displacements (last n rows of Y vector):
Step load response

4. Forced response to step load F(t)=Fo and initial 
conditions 
Set initial conditions in displacement and velocity:

STEP FORCE
Fo

30000

10
5

10
5













 O

0

0

0









Uo

0

0

0









 Vo

0

0

0











Step load response

Then set: Yo stack Vo Uo( ) Qo stack O Fo( )

and transform to damped modal space: Zo 
1

D
T

A Yo



 Go D

T
Qo

Tmax
8

f1
 secs t

Tmax

N
 j 1 2 n

p 1 N
tp p 1( ) t

to get the modal response Zj p Zoj e
 j tp

Goj

 j j
1 e

 j tp 

lsanandres
Rectangle

lsanandres
Rectangle



p p

RESPONSE: U1
Us

T
3 10

3 3 10
3 2 10



0 0.051 0.1 0.15 0.2 0.25 0.3
0.005

0

0.005

0.01

damped
undamped

time(secs)

U
1

 RESPONSE: U2

0 0.051 0.1 0.15 0.2 0.25 0.3
0.005

0

0.005

0.01

Damped
Undamped

time(secs)

U
2

 

 RESPONSE: U3

0 0.051 0.1 0.15 0.2 0.25 0.3
0.01

0.005

0

0.005

Damped
Undamped

time(secs)

U
3

 


T

0.03 0.03 0.07 0.07 0.03 0.03( )



0 01

0.005

0

0.005

0.01

U
3

 

 RESPONSE: U3

0 0.00560.01110.01670.02220.02780.03330.03890.0444 0.05
0.01

0

0.01

Damped
Undamped

time(secs)

U
2

 

 RESPONSE: U2

 j

165.46

475.33

804.17











0 0.00560.01110.01670.02220.02780.03330.03890.0444 0.05
0.02

0

0.02

damped
undamped

time(secs)

U
1

RESPONSE: U1
 502.65recall:

Plot the displacements (last n rows of Y vector):

 502.65


165.46

475.33

804.17










recall the
undamped
frequencies

 2  fHzFo

3 10
4

1 10
5

1 10
5











 fHz 80

freq. of excitation
Response due to initial conditions vanishes after a long time because of damping:

5. Periodic response to loading, F(t)=Fo sin(t):



qj k
 j

Kmj j

1

1.0
k 2

 j 2












2  j
k

 j










i

 kmin 12.06

here i=imaginary unit

s 1 n

Us k

1

n

i

s i qi k


 x cos(t)FRF in physical plane:

___________________________________________________________

DAMPED CASE set: Qo stack O Fo( )
forcing vector

Go D
T

Qo

k kmin kmax

k
k

kmax
max

rad/s <=== forcing frequency

j 1 2 n Zj k
Goj

 j j

1

1 i
k

 j










 x cos(t)
modal response

and back into the physical plane:

6)    FRF Response to periodic loading, F=Fo cos(t)

UNDAMPED CASE

i 1 n
SET 

0

0

0










Fo

3 10
4

1 10
5

1 10
5













modal force 
magntidue:  

T
Fo i

165.46

475.33

804.17











and the modal "S-S" response is modes. 

j 1 n max 3 n

kmin 1 kmax 200

k kmin kmax
rad/sec <=== forcing frequency

k
k

kmax
max

kmax 2.41 10
3

x cos(t)MODAL
response

lsanandres
Rectangle

lsanandres
Rectangle



s 1 2 n m 2 n

PERIODIC RESPONSE
using DAMPED MODES

Ys k

1

m

q

D
s q

Zq k


 x cos(t)

Plot magnitude  of  response in physical space



DAMPED Amplitude FRF

10 100 1 10
3

1 10
4

1 10
5

1 10
4

1 10
3

0.01

0.1

U1
U2
U3

Damped physical response

frequency (rad/s)

A
m

p
li
tu

d
e

UNDAMPED Amplitude FRF

10 100 1 10
3

1 10
4

1 10
5

1 10
4

1 10
3

0.01

0.1

1

U1
U2
U3

UnDamped physical response

frequency (rad/s)

A
m

p
li
tu

d
e



select coordinate to displate physical response - damped & undamped jj 2 n 3 DOFs

10 100 1 10
3

1 10
4

1 10
5

1 10
4

1 10
3

0.01

0.1

1

damped
undamped

frequency (rad/s)

LINEAR vertical scale undamped: 
T

165.46 475.33 804.17( )

10 100 1 10
3

1 10
4

0

0.05

0.1

0.15

0.2

damped
undamped

frequency (rad/s)




