
Lectures 22-23
Date: April 4 2017
Today: Vibrations of continuous systems

HD#14 Dynamic response of continuous systems
Free vibrations of elastic bars and beams.
Properties of normal mode functions. Forced response

Reading & other assignments: 
Textbook G: 7.1 - 7.7, Handout #12
Other: HMWK #6: due 04/11

FE analysis
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Recommended problems –

Chapter 6
3, 9, 11, 14, 15, 28,38, 54
Chapter 7
3,11,43,49

Chapters 6&7: Vibration of 
elastic bars, beams and rods

From your textbook 
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ME617 - Handout 14 

Vibrations of Continuous Systems 
 

Axial vibrations of elastic bars 
The figure shows a  uniform elastic bar of length L and cross 

section A.  The bar material properties are its density ρ and elastic 
modulus E. One end of the bar is attached to a fixed wall while the 
other end is free. The force P(t) acting at the free end of the bar 
induces elastic displacements u(x,t) along the bar 

 

x
P(t)

u(x,t)

Δ x

L

Fig. Schematic view of elastic bar undergoing axial motions  
 
From elementary strength of materials consider  
a) Cross-sections A remain plane and perpendicular to 

the main axis (x) of the bar. 
b) Material is linearly elastic 
c) Material properties (ρ, E ) are constant at any given 

cross section. 
 
The relationship between stress σ and strain ε  for 

uniaxial tension is   
uE E
x

σ ε ∂
= =

∂
     (1) 
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 Consider the free body diagram of an infinitesimally small 
piece of bar with length xΔ , 

 

In the FBD, ( )( , ) x
uP x t A AE
x

σ ∂
= =

∂
 is the axial force at a 

cross section of the bar, and ( , )f x t  is a distributed axial force per 
unit length,  

u(x,t)

Δ x

P(x+Δx,t)P(x,t) f(x,t)

Fig. Free body diagram of small piece of elastic bar  
 
Applying Newton’s 2nd law of motion on the bar differential  

element gives 
 

( )
2

2x x
x

uF ma A x
t

ρ ∂
=Δ = Δ

∂∑    (2) 

 

( )
2

( , ) ( , ) ( , )2 x x t x t x t
uA x P P f x

t
ρ +Δ

∂
Δ = − + Δ

∂
  (3) 

 

As ( , ) ( , )0 x x t x t
Px P P x
x+Δ

∂
Δ → ⇒ ≈ + Δ

∂
    (4a) 
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( )
2

( , )2 x t
u PA x x f x

t x
ρ ∂ ∂

Δ = Δ + Δ
∂ ∂

   

 
2

( , )2 x t
u PA f

t x
ρ ∂ ∂

= +
∂ ∂     (4) 

 

And replacing ( , ) uP x t AE
x

∂
=

∂
 

2

( , )2 x t
u uA AE f

t x x
ρ ⎛ ⎞∂ ∂ ∂

= +⎜ ⎟∂ ∂ ∂⎝ ⎠
   (5) 

 
PDE (5) describes the axial motions of an elastic bar. For its 
solution, one needs appropriate boundary conditions (BC), which 
are of two types 
(a) essential,  u=u*  ,  a specified value, at x=x*  for all 

times, 

(b) natural,  P(x*,t) = 
*x x

uAE
x =

⎞∂
⎟∂ ⎠

specified 

If P=0, then the natural BC is a free end, i.e. 
*

0
x x

u
x =

⎞∂
=⎟∂ ⎠

 

 
Note: PDE (5) and its BCs can be derived from the Hamiltonian 
principle using the definitions for kinetic (T) and potential (V) 
energies.  
 

2 2

0 0

1 1;
2 2

L Lu uT A dx V E A dx
t x

ρ ⎛ ⎞ ⎛ ⎞∂ ∂
= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫   (6) 
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Free vibrations of elastic bars 
Without external forces (point loads or distributed load, f=0), PDE 
(5) reduces to 
 

2

2
u uA AE

t x x
ρ ⎛ ⎞∂ ∂ ∂

= ⎜ ⎟∂ ∂ ∂⎝ ⎠
   (7) 

 

The solution of PDE (7) is of the form ( , ) ( ) ( )x t x tu vφ=  (8) 
Note that 

2 2

( ) ( ) ( )2 2

2 2

( ) ( )2 2

;x x t

t t

u d v v
t d t
u d v v

x d x

φ φ

φ φ

∂
= =

∂

∂ ′′= =
∂

   (9) 

 
With the definitions ( ) ( ). ';d d

d t d x= = . For a bar with uniform 
material properties (ρ, E) and cross section A, substitution of the 
product solution Eq. (8) into PDE (7) gives 
 

2 2

( ) ( ) ( ) ( )2 2 x t x t
u u v v

E t x E
ρ ρ φ φ∂ ∂ ′′= → =

∂ ∂
  (10) 

 

Divide this expression by ( , ) ( ) ( )x t x tu vφ=  to get 
 

( ) ( )

( ) ( )

t x

t x

v E
v

φ
ρ φ

′′
=    (11) 

lsanandres
Callout
METHOD: Separation of variables



MEEN 617 – HD#14 Vibrations of Continuous Systems. L. San Andrés © 2008 5

 
Above, the LHS is only a function of time, while the RHS is only a 
function of spatial coordinate x. This is possible only if both sides 
equal to a constant, i.e.  
 

( ) ( ) 2

( ) ( )

t x

t x

v E
v

φ
ω

ρ φ
′′

= =−  

 
Hence, the PDE is converted into two ordinary differential 
equations (ODEs), i.e. 
 

2
( )

2
( ) ( )

0

0
t

x x

v vω

φ λ φ

+ =

′′ + =     (12) 

 

where    E
ρλ ω=     (13) 

 
The solution of the ODEs (12) & (13) is 
 

( ) ( )( ) cos sint t tv C t S tω ω= +    (14) 
 

( ) ( )( ) cos sinx x xC x S xφ λ λ= +    (15) 
 
The coefficients (C, S) are determined from satisfying the 
boundary conditions for the specific bar configuration and load 
condition. Equation (15) is known as the fundamental equation 
for an elastic bar, i.e. it contains the information on natural 
frequencies and mode shapes. 
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Example 1.  
A bar with one end fixed and 
the other end free.  
In this case, the boundary 
conditions are 

 

At x=0,     (0, ) (0) ( ) (0)0 0t tu v tφ φ= = ⇒ = ∀  
 

At x=L,      ( ) ( ) ( )0 0L t L
x L

u v t
x

φ φ
=

⎤∂ ′ ′= = ⇒ = ∀⎥∂ ⎦
 (16) 

 
Hence, from the characteristic equation (0) 0 0xCφ = → =  and 

( )( ) sinx xS xφ λ=     (17) 
 
At x=L,    ( )( ) 0 cos 0L xS Lφ λ λ′ = = =   (18) 
 
Note that 0xS ≠  for a non trivial solution. Hence, the 
characteristic equation for axial motions of a fixed end-free 
end elastic bar is 
 

( )cos 0Lλ =     (19) 
which has an infinite number of solutions, i.e. 

1,2,.....
3 5 2 1, , ,...., ,

2 2 2 2 n
nL π π πλ π =

−
= ∞ =  

 
And hence the roots of Eq. (19) are 
 

( )
1,2,.....

2 1
2n n

n
L
πλ =

−
=    (20) 

x

u(x,t)
L
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And since E
ρλ ω= , the natural frequencies of the fixed end-

free end bar are 
 

( ) 1/ 2

1,2,.....
2 1

;
2k k

k E
L
πω

ρ =

− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (21) 

 

i.e. 
1/ 2 1/ 2 1/ 2

1 2 3
3 5, , ....

2 2 2
E E E

L L L
π π πω ω ω

ρ ρ ρ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
Associated to each natural frequency, there is a natural mode 
shape 

( ) 1,2,.....sink k k kxφ ψ λ == =   (22) 
 
as shown in the figure below. 
 

0 0.25 0.5 0.75 1
1

0.5

0

0.5

1

Mode 1
Mode 2
Mode 3

x/L

Fu
nc

tio
n 

(x
)

φ(x)
λ

1.571

4.712

7.854

10.996

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=
1
L

 
 

Fig. Natural modes shapes φ(x) for elastic bar with fixed end-free end 
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See more examples on page 13-ff. 
 

The displacement function response ( , ) ( ) ( )x t x tu vφ=  equals 
to the superposition of all the found responses, i.e. 
 

( ) ( )

( )

( , )

( )
1

cos( ) sin
k

x t k k
k

x k k k k
k

u x v t

C t S t

φ

φ ω ω
∞

=

= =

+⎡ ⎤⎣ ⎦

∑

∑
  (23a) 

 
For example 1 (fixed end –free end bar) 
 

( ) ( )( , )
1
sin cos( ) sinx t k k k k k

k
u x C t S tλ ω ω

∞

=

= +⎡ ⎤⎣ ⎦∑  (23b) 

and velocity: 

( ) ( )( , )
1
sin sin( ) cosx t k k k k k k

k
u x C t S tλ ω ω ω

∞

=

= − +⎡ ⎤⎣ ⎦∑  (24) 

 
The set of coefficients (Ck, Sk) are determined by satisfying the 

initial conditions. That is at time t=0,  
 

( )

( )

( ,0) ( )
1

( ,0) ( )
1

sin

sin

x x k k
k

x x k k k
k

u U x C

u U x S

λ

ω λ

∞

=

∞

=

= =

= =

∑

∑
   (25) 
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Orthogonality properties of the natural modes 
Recall that the pair { }( ) 1,...

,
kk x k

λ ψ
= ∞

satisfy the characteristic 

equation (12b), i.e. 
 

2
( ) ( ) 1,2...0

k kx k x kψ λ ψ = ∞′′ + =   (26) 
 
And consider two different eigenvalues andi jλ λ each satisfying 
Eq. (26), i.e. 
 

2 20 & 0i i i j j jψ λ ψ ψ λ ψ′′ ′′+ = + =  
  
Multiply Eq. on left by jψ and Eq. on right by iψ , and integrate 
over the domain { }0,x L∈  to get: 

( ) ( )

( ) ( )

2

0 0

2

0 0

0

0

L L

j i i j i

L L

i j j i j

dx dx

dx dx

ψ ψ λ ψ ψ

ψ ψ λ ψ ψ

′′ + =

′′ + =

∫ ∫

∫ ∫    (27) 

Integrate by parts the term on the LHS to obtain 
 

( 0
0 0

L L
x L

j i j i j ix
dx dxψ ψ ψ ψ ψ ψ

=

=
′′ ′ ′ ′⎤= −⎦∫ ∫   (28) 

And recall the boundary conditions for the fixed end-free end bar 
 

( ( ]
0

0 & 0j i x Lx
ψ ψ

==
′⎤ = =⎦    (29) 
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And write first of Eq. (27) as ( ) ( )2

0 0

L L

i j i j idx dxλ ψ ψ ψ ψ′ ′=∫ ∫ and 

substituting Ei i
ρλ ω=  one obtains:  

 

( ) ( )2

0 0

L L

i j i j iA dx E A dxω ρ ψ ψ ψ ψ′ ′=∫ ∫    (30a) 

( ) ( )2

0 0

L L

j i j i jA dx E A dxω ρ ψ ψ ψ ψ′ ′=∫ ∫    (30b) 

 
Subtract Eq. (30b) from (30a) to obtain 
 

( ) ( )2 2

0

0
L

j i i jA dxω ω ρ ψ ψ− =∫    (31) 

And since i jω ω≠ , it follows that 

( ) ( ) 1,2,....
0 0

0 & 0
L L

i j i j i jA dx E A dxρ ψ ψ ψ ψ ≠ = ∞′ ′= =∫ ∫  (32) 

 
That is, the modal functions { } 1,2...k kψ

=
 are ORTHOGONAL. For 

i=j, the ith natural frequency follows from 
 

( )

( )

2 0

0

L

i i
i

i L
i

i i

E A dx

A dx

ψ ψ
ω

ρ ψ ψ

′ ′
Κ

= =
Μ

∫

∫
    (33) 

Where ,i iΚ Μ are the ith mode equivalent stiffness and mass 
coefficients.  
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Note that the set { } 1,2...k kψ
=

is a COMPLETE SET of orthogonal 
functions 
 
Now, consider the initial conditions, Eq. (25) 

( )

( )

( ,0) ( )
1

( ,0) ( )
1

sin

sin

x x k k
k

x x k k k
k

u U x C

u U x S

λ

ω λ

∞

=

∞

=

= =

= =

∑

∑
   (25) 

Multiply both sides of Eq. (25) by ( )sinm mxψ λ= x ρA and 
integrate over the whole domain to obtain 
 

( ) ( )( )0 0
1

L L

m x k m k
k

A U dx C A dxρ ψ ρ ψ ψ
∞

=

=∑∫ ∫    

 
And since 

( ) when

0
when0

L m m k
m k

m k
A dxρ ψ ψ =

≠

Μ⎧ ⎫
=⎨ ⎬

⎩ ⎭
∫    (34) 

Then if follow that  
 

( )( )0
1,2,...,

L

m x
m m

m

A U dx
C

ρ ψ
= ∞=

Μ
∫

  (35) 

 
And similarly 

( )( )0
1,2,...,

L

m x
m m

m m

A U dx
S

ρ ψ

ω = ∞=
Μ

∫    (36) 
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with ( ) ( )22

0 0
and m

L L d
dxm m mA dx E A dxψρ ψΜ = Κ = ⎡ ⎤⎣ ⎦∫ ∫   (37) 

 
This concludes the procedure to obtain the full solution for the 
vibrations of a bar, i.e. 

( )( , ) ( )
1

cos( ) sin
kx t x k k k k

k
u C t S tφ ω ω

∞

=

= +⎡ ⎤⎣ ⎦∑  (23) 
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Example 2.  
A bar with both ends free.  
The boundary conditions are 
 
 

At x=0,     (0) ( ) (0)
0

0 0t

x

u
v t

x
 



       
 

 

At x=L,      ( ) ( ) ( )0 0L t L

x L

u
v t

x
 



       
  

 
Hence, from the characteristic equation (0) 0 0xS     and 

 ( ) cosx xC x       
 
At x=L,     ( ) 0 sin 0L xC L         
 
Note that 0   denotes rigid body motion.  Hence, the 
characteristic equation for axial motions of an elastic bar 
with free-free ends is 
 

 sin 0L       
which has an infinite number of solutions, i.e. 

0,1,2.....0, ,2 ,3 ,...., , nL n        

0,1,2,.....n nn
L

     

And since E
  , the natural frequencies of the free end-

free end bar are 
 

x=0 Lu(x,t)
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1/ 2

0,1,2,.....;k k
Ek

L
πω

ρ =
⎛ ⎞= ⎜ ⎟
⎝ ⎠

   

 
Associated to each natural frequency, there is a natural mode 
shape 

( ) 0,1,2,...cosk k kxφ λ ==    
 
And shown in the figure below. 
 

0 0.25 0.5 0.75 1
1

0.5

0

0.5

1

Mode 1
Mode 2
Mode 3

x/L

Fu
nc

tio
n 

(x
)

φ(x)
λ

0

3.142

6.283

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=
1
L

 
 

Fig. Natural modes shapes φ(x) for elastic bar with both ends free. First 
mode is rigid body (null natural frequency) 
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Example 3.  
A bar with both ends fixed.  
The boundary conditions are 
 
 

At x=0,     (0, ) (0) ( ) (0)0 0t tu v tφ φ= = ⇒ = ∀  
 
At x=L,      ( , ) ( ) ( ) ( )0 0L t L t Lu vφ φ= = ⇒ =   
 
Hence, from the characteristic equation ( ) ( )( ) cos sinx x xC x S xφ λ λ= + , 
then (0) 0 0xCφ = → =  and 

( )( ) sinx xS xφ λ=      
 
At x=L,    ( )( ) 0 sin 0L Lφ λ= = =    
 
Note that 0λ ≠  denotes rigid body motion.  Hence, the 
characteristic equation for axial motions of a fixed end-
fixed end elastic bar is 
 

( )sin 0Lλ =      
which has an infinite number of solutions, i.e. 

0,1,2.....,2 ,3 ,...., , nL nλ π π π π == ∞=  

1,2,.....n nn
L
πλ ==    

And since E
ρλ ω= , the natural frequencies of the free end-

free end bar are 
1/ 2

1,2,.....;k k
Ek

L
πω

ρ =
⎛ ⎞= ⎜ ⎟
⎝ ⎠

   

 

x=0 Lu(x,t)

x
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Associated to each natural frequency, there is a natural mode 
shape 

( ) 0,1,2,...sink k kxφ λ ==    
 
And shown in the figure below. 
 

0 0.25 0.5 0.75 1
1

0.5

0

0.5

1

Mode 1
Mode 2
Mode 3

x/L

Fu
nc

tio
n 

(x
)

φ(x)
λ

3.142

6.283

9.425

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=
1
L

 
 

Fig. Natural modes shapes φ(x) for elastic bar with both ends fixed.  
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ME617 - Handout 14 (b) 

Vibrations of Continuous Systems 
 

Lateral vibrations of elastic beams 
The figure shows a  uniform elastic beam of length L, cross 

section A and area moment of inertia I.  The beam material 
properties are its density ρ and elastic modulus E. One end of the 
beam is fixed to a wall while the other end is free. The discrete 

force P(t) acts at a fixed axial location while f(x,t) represents a 
load distribution per unit length. The forces induces elastic 

displacements on the beam and designated as v(x,t). 
 

x

P(t)v(x,t)

x
L

Fig. Schematic view of elastic beam undergoing lateral motions 

y f(x,t)

 
 
From elementary strength of materials consider  
a) Cross-sections A remain plane and perpendicular to 

the neutral axis (x) of the beam. 
b) Homogeneous material beam, linearly elastic,  
c) Material properties (ρ,E ) are constant at any given 

cross section. 
d) Stresses σy , σz <<  σx (flexural stress), i.e. along 

beam. 
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The graph below shows the free body diagram for 
motion of a differential beam element with length x .  

 

v(x,t)

x

S(x+x,t)S(x,t)
f(x,t)

Fig. Free body diagram of small piece of elastic beam

M(x,t)

M(x+x,t)

 
 

In The FBD, S(x,t) represents the shear force and M(x,t)  
denotes the bending moment. Apply Newton’s 2nd law to the 
material element: 
 

 
2

( , ) 2y y x t
x

S vF m a S S x f A x
x t

  
          

  (38) 

 

In the limit as 0x    :   
2

( , )2 x t
v SA f

t x
  

 
 

 (39) 

 
Apply the moment equation:   gM I    ~ 0   (40) 

neglecting rotary inertia gI  
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Then 

2

( , ) ( , )

2

0
2

2

x x t x t
xM M M f S x

M xM x M f S x
x




     

 
      




 

 

In the limit as 0x  :    ( , )x t
M S
x





  (41) 

 
Combining Eqs. (41) and (39) gives: 
 

 
2 2

( , )2 2x t
v MA f

t x
  

 
 

    (42) 

 
If the slope  v

x


  remains small, then the beam curvature 

is 
2

2
1 v

x


 . From Euler’s beam theory: 

 
2

2

E I vM E I
x


 

    (43) 

 
where 2I y dA  is the beam area moment of inertia. 

Substitute Eq. (43) into (42) to obtain the equation for 
lateral motions of an elastic beam: 
 

 
2 2 2

( , )2 2 2x t
v vA f E I

t x x
    

      
  (44) 
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The PDE is fourth-order in space and 2nd order in time. 
Appropriate boundary conditions are of two types: 
 
Essential BCs: 

- specified displacement,   *v v  

- specified slope,    *
v

x 
   

Natural BCs: 

- specified moment,        

*

2

* 2

x

vM M E I
x

 
    

 

- specified shear force, 
*

2

* 2

x

vS S E I
x x
  

     
 

 
See below the most typical beam configurations: 

 

Fixed end (cantilever):    0 & 0
vv
x


 


 

 
 
 

Pinned end 
2

2
0 & 0 0

vv M
x


   


 

 
 
Free end 

2 3

2 3
0 & 0 0 & 0

v vM S
x x

 
    

 
 

 

x*

x*

x*
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Spring supported end 

*

2

2

2

* 2

0

x

vM
x

vS k v E I
x x


 


  
      

 

 
Note: PDE (44) and its BCs can be derived from the Hamiltonian 
principle using the definitions for kinetic (T) and potential (V) 
energies of an elastic beam 
 

22 2

2
0 0

1 1
;

2 2

L Lv vT A dx V E I dx
t x


   

        
    (45) 

 

Free vibrations of elastic beam 
Without external forces (point loads or distributed load, f=0), PDE 
(44) reduces to 
 

 
2 2 2

2 2 2

v vA E I
t x x


   

     
   (46) 

 

The solution of PDE (46) is of the form ( , ) ( ) ( )vx t x tv   (47) 

Let    . ';d d
d t d x  .  Substituting Eq. (47) into Eq (46) gives 

 
4

( )
( ) ( ) 4v v x
x t

dE I
A d x





    

4
( ) ( ) 2

4
( )

v 1

v
t x

x

dE I
A d x




 
 


 

 
Above, the LHS is only a function of time, while the RHS is only a 
function of spatial coordinate x. This is possible only if both sides 

k

v(x,t)

x*
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are equal to a constant, i.e.  2  . Hence, the separation of 

variables gives two ordinary differential equations 
 

4
2 2

( ) 4v v=0 & 0t
d
d x
       (48) 

 

where     2 2 A
E I
 

 
  

 
    (49) 

 
The solution of the ODEs is 
 

   ( ) cos sint t tv C t S t      (50) 

 
       ( ) 1 2 3 4cos sin cosh sinhx C x C x C x C x         

(51)1 
 

where     

1
4

1/2 1
2

A
E I
  

 
   

 
  (52) 

 has units of [1/length]. 
 

The coefficients (C, S) are determined from satisfying the 
boundary conditions for the specific beam configuration. Equation 
(51) is known as the fundamental mode shape for an elastic beam, 
i.e., it contains the information on natural frequencies and mode 
shapes. 
 
 

                                                 

1 The solution of ODE 
2 40 0iv iv          is 

kxce  with 

characteristic equation 
4 2 0k    
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Example 1. Pin-pin ends beam    

x=0 x=L
 

Recall        ( ) 1 2 3 4cos sin cosh sinhx C x C x C x C x         

 
The BCs are: 

At x=0,     (0, ) (0) ( ) (0)0 v 0t tv t           (53.a) 

    (0) 1 3C C    

  
2

2 (0) ( ) (0)0 v 0v
txM  


       

    (0) 1 3C C    

 
Hence, C1=C3=0 and    ( ) 2 4sin sinhx C x C x     

 

At x=L,      ( , ) ( ) ( ) ( )0 v 0L t L t Lv t       

 
      ( ) 2 40 sin sinhL C L C L       

  
2

2 ( ) ( ) ( )0 v 0v
x L L t LxM  
 

              (53.b) 

      ( ) 2 40 sin sinhL C L C L        

 
from this two equations, since  sinh 0L  , it follows that 

 ( ) 2 sinx C x     (54) 

where  sin 0L   when 1,2....,i i
i
L
     (55) 
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and hence, the natural frequencies of the pin-pin beam are 
 

1 1
2 22 2

2
1,2...2

;i i i
E I i E I

A L A
 

   

   
    

   
 (56) 

 
Associated to each natural frequency, there is a natural mode 
shape 

  1,2,.....sin sin ;i i i
i xx

L
  

    
 

  (57) 

 
as shown in the graph below. 
 

0 0.25 0.5 0.75 1
1

0.5

0

0.5

1

Mode 1
Mode 2
Mode 3

x/L

F
un

ct
io

n 
(x

)

(x)


3.142

6.283

9.425












1

L

i i


L


 
 

Fig. Natural mode shapes (x) for elastic beam with both ends 
pinned.  
 

The displacement function response ( , ) ( ) ( )vx t x tv   equals to 

the superposition of all the found responses, i.e. 
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     ( , ) ( )
1

v cos( ) sin
kx t x k k k kk k

k k
v x t C t S t   





     
 

   ( , )
1

sin cos( ) sinx t k k k k k
k

v x C t S t  




     (58) 

 
and velocity: 

   ( , )
1

sin sin( ) cosx t k k k k k k
k

v x C t S t   




      (59) 

 
The set of coefficients (Ck, Sk) are determined by satisfying the 
initial conditions. That is at time t=0,  
 

 

 

( ,0) ( )
1

( ,0) ( )
1

sin

sin

x x k k
k

x x k k k
k

v V x C

v V x S



 









 

 




   (60) 

 
RECALL: 

       ( ) 1 2 3 4cos sin cosh sinhx C x C x C x C x         

       1 2 3 4sin cos sinh coshC x C x C x C x    
    

       2 1 2 3 4cos sin cosh sinhC x C x C x C x    
    

       3 1 2 3 4sin cos sinh coshC x C x C x C x    
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Example 2. Fixed end-free end beam  

x=0 x=L
 

Recall        ( ) 1 2 3 4cos sin cosh sinhx C x C x C x C x         
 

The BCs. are 

At x=0,     (0, ) (0) ( ) (0)0 v 0t tv t           (61.a) 

    (0) 1 3C C    

  (0) ( ) (0)0 v 0v
x t  

              (61.b) 
    (0) 2 4C C    

 
At x=L 

  
2

2 ( ) ( ) ( )0 v 0v
x L L t LxM  
 

              (61.c) 


     ( ) 1 2 3 40 cos sin cosh( ) sinhL C L C L C L C L          
 

  
3

3 ( ) ( ) ( )0 v 0v
x L L t LxS  
 

              (61.d) 


     ( ) 1 2 3 40 sin cos sinh( ) coshL C L C L C L C L         
 
Solution of Eqs. (a)-(d) gives 
 

       ( ) cosh cos sinh sinx i i i i ix x x x             : 

(62) 
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where   
   
   

cosh cos

sinh sin
i i

i
i i

L L
L L

 


 





   (63) 

and  

1 1

2 2

3 3

1.875104 0.734096

4.694041 1.018466

7.854757 0.999225

L

L

L
etc

 

 

 

  

  

  
  (64) 

 
  x  cosh  x  cos  x     sinh  x  sin  x  
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Fig. Natural mode shapes (x) for cantilever beam (fixed end-
free end) 
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Properties of the natural modes 
Recall that the pair  ( ) 1,...

,
kk x k

 
 

satisfy the ODE 

2
1,2...0

k k

iv
k k        (65) 

where   4 2 2
k k k

A
E I
  

 
   

 
 

 
As in the case of axial vibrations of a bar, it is easy2 to show that 
the natural modes   1,2...k k


of a flexing beam satisfy the following 

ORTHOGONAL properties: 
 

 
0

for

0 for

L
i

i j

i j
E A dx

i j
 

    
    (66a) 

 

 
0

for

0 for

L
i

i j

i j
A dx

i j
  

 
 

    (66b) 

 
For i=j, the ith natural frequency follows from 
 

  

 

2

2 0

2

0

L

i
i

i L
i

i

E A dx

A dx




 




 





    (67) 

Where ,i i  are the ith mode equivalent stiffness and mass 
coefficients.  
 

                                                 
2 Demonstration with integration by parts (twice). 
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Note that   1,2...k k


is a COMPLETE SET of orthogonal 

functions 
 
Now, consider the initial conditions for 

     ( , ) ( )
1

v cos( ) sin
kx t x k k k kk k

k k
v x t C t S t   





     
 

( ,0) ( ) ( ,0) ( )
1 1

;x x k k x x k k k
k k

v V C v V S  
 

 

      (68) 

 
Using the orthogonality properties, the coefficients (C m, S m) 

follow from 
 

 ( )0
1,2,...,

L

m x
m m

m

A V dx
C

 
 




   (69a) 

 
And similarly 

 ( )0
1,2,...,

L

m x
m m

m m

A V dx
S

 

  


 
   (69b) 

 
 

This concludes the procedure to obtain the full solution for the 
lateral vibrations of a beam, i.e. 

 ( , ) ( )
1

cos( ) sin
kx t x k k k k

k
v C t S t  





      (70) 
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Forced lateral vibrations of a beam 
Consider a beam subjected to an arbitrary forcing function f(x,t). 
The PDE describing the lateral motions of the beam is 
 

 
2 2 2

( , )2 2 2x t
v vA f E I

t x x
    

      
   (44) 

 
Let    1,2...k k


be the set of natural modes satisfying the boundary 

conditions of the beam configuration (pin-pin, fixed-free ends, etc). 
A solution to Eq. (44) is of the form 
 

( , ) ( ) ( )
1

k kx t x t
k

v q




      (71) 

  
 Since the set   1,2...k k


is complete, then any arbitrary function 

f(x,t) can be written as 
 

( , ) ( ) ( )
1

k kx t x t
k

f Q




      (72) 

where 

 ( , )0
1,2,...,

L

m x t
m m

m

A f dx
Q

 
 




  (73) 

 
Substitution of Eqs. (71, 72) into Eq. (44) 

 
2 2 2

( , )2 2 2x t
v vA f E I

t x x
    

      

 

gives 
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1

0iv
k k k k k k

k
A q Q E I q   





        (74) 

 

but recall that each of the normal modes satisfies 2 0iv
k k k    ; 

and hence, Eq. (74) can be written as 
 

2

1

0k k k k k
k

A q Q E I q  




          

  

and, since the natural modes are linearly independent, then it 
follows that 
 

2
1,2,....0k k k k kA q Q E I q          (75) 

 

Lastly, recall that 2 2
k

A
E I
 

 
  

 
; then 2 2

k E I A   , and 

write (75) as 

2
1,2,....;k

k k k k
Qq q A      (76) 

 
Which can be easily solved for all type of excitations ( )ktQ  

 
[ See solution of undamped SDOF EOMS – Lectures #2] 
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Example 3. Free-free ends beam  

x=0 x=L
 

Recall        ( ) 1 2 3 4cos sin cosh sinhx C x C x C x C x         
 

The BCs are: 

At x=0   
2

2 (0) ( ) (0)0 v 0v
txM  


       

    (0) 1 3C C      (a) 

  
3

30 (0) ( ) (0)0 v 0v
x txS  
 

        

    (0) 2 4C C     (b) 

 
At x=L  

  
2

2 ( ) ( ) ( )0 v 0v
x L L t LxM  
 

              (61.c) 


     ( ) 1 2 3 40 cos sin cosh( ) sinhL C L C L C L C L          
(c) 

  
3

3 ( ) ( ) ( )0 v 0v
x L L t LxS  
 

               


     ( ) 1 2 3 40 sin cos sinh( ) coshL C L C L C L C L         
(d) 
 
Solution of Eqs. (a)-(d) gives 

       ( ) cosh cos sinh sinx i i i i ix x x x               

 

where   
   
   

cosh cos

sinh sin
i i

i
i i

L L
L L

 


 





   (63) 
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and  

1 1

2 2

3 3

4.730041 0.982502

7.853205 1.000777

10.99560 0.999966

L

L

L
etc

 

 

 

  

  

  
  (64) 

 
Note that the lowest natural frequency is actually zero, i.e. a 
rigid body mode. 0=0 & 0 1   
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Fig. Elastic natural mode shapes (x) for beam with free-free 
ends 
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Characteristic (mode shape) equation for beams: 
 

       ( ) 1 2 3 4cos sin cosh sinhx C x C x C x C x         

       1 2 3 4sin cos sinh coshC x C x C x C x    
    

       2 1 2 3 4cos sin cosh sinhC x C x C x C x    
    

       3 1 2 3 4sin cos sinh coshC x C x C x C x    
    

 

lsanandres
Text Box
Students:The following pages contain five  worked examples for prediction of the vibration response of bars, rods, strings, and beams.
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The solution to the ODEs is simple, i.e.:

v t( ) At cos Ω t⋅( )⋅ Bt sin Ω t⋅( )⋅+=
(3)

φ x( ) Ax cos λ x⋅( )⋅ Bx sin λ x⋅( )⋅+=

Satisfy the boundary conditions. At x=0, u(0,t)=0 (fixed end). Thus

φ 0( ) Ax cos λ 0⋅( )⋅ Bx sin λ 0⋅( )⋅+=
Then: Ax 0=φ 0( ) Ax 1⋅ Bx 0⋅+=

and
φ x( ) sin λ x⋅( )= (4)

At the right end, x=L, the appropriate boundary condition is: axial force = M accel

E− A⋅
x

ud
d
⋅ M 2t

ud

d

2
⋅= (5a)

Axial vibrations of elastic bar LSan Andres (c) SP 08 MEEN 617

The figure shows an elastic bar of length L and cross-sectional area A, and with density and 
elastic modulus equal to ρ and E, respectively. The bar is rigidly attached to a wall at its left end. 
At its right end, a rigid block or lumped mass M is firmly attached. Note that M/Mbar= ε=0.5.  
The field equation for axial motions u(x,t) of the bar is 

2

2

2

2

x

u
AE

t

u
A

∂
∂

=
∂
∂ρ  

 
a) Determine the first three natural frequencies and characteristic modes (graph the modes) of 

the bar as a function of (ρ, E, L).  
b) Using your experience, estimate the first natural frequency of the bar and block. Explain your 

assumptions. How good is the estimate when compared to the ones derived in (a)?  

ORIGIN 1:=

M A,E,L, ρ

x 

u(x,t) 

Solution Procedure

using separation of variables, 

u x t,( ) φ x( ) v t( )⋅= (1)

leads to the following two ODEs:

2x
φd

d

2
λ

2
φ⋅+ 0= (2a)

and

2t
vd

d

2
Ω

2 v⋅+ 0= (2b)  where λ Ω
ρ
E
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅=

lsanandres
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tan λ
⎯( ) 1

ε λ
⎯
⋅

= (6)

from experience or having worked other problems, using a calculator, ε 0.5:=

f y( ) tan y( )
1

y ε⋅
−:=n 3:=guess values

y

1

2

6

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

:= # of roots

λ_ root f y( ) y,( )
→⎯⎯⎯⎯⎯

:=
λ_

1.077

3.643

6.578

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

= where λ_ λ L⋅= & Ω λ
E
ρ
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅=

0 1 2 3 4 5 6 7 8 9 100.1

1

10

100

tan(y)
1/(ye)

Graphical solution

tan Y( )

1
Y ε⋅

Y

And thus, the first three natural frequencies are

Ω

1.077

3.643

6.578

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

1
L
⋅

E
ρ
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅=

The shape functions are
φ1 z( ) sin λ_1 z⋅( ):=

φ2 z( ) sin λ_2 z⋅( ):= where z
x
L

=

φ3 z( ) sin λ_3 z⋅( ):=

or: E− A⋅ v⋅
x
φd

d
⋅ M φ⋅ 2t

vd

d

2
⋅= . Noting that

2t
vd

d

2
Ω

2
− v⋅= from (2a)

then, at x=L
E− A⋅

x
φd

d
⋅ M− Ω

2
⋅ φ L( )⋅= (5b)

recall λ
2

Ω
2 ρ

E
⎛
⎜
⎝

⎞
⎟
⎠

⋅= E A⋅
x
φd

d
⋅ M λ

2
⋅

E
ρ
⋅ φ L( )⋅= (5b)--->

Replacing (4) φ x( ) sin λ x⋅( )= &

x
φd

d
λ cos λ x⋅( )⋅= into (5b) gives

ρ A⋅ L⋅
M

cos λ
⎯( )⋅ λ

⎯
sin λ

⎯( )⋅− 0= where λ
⎯

λ L⋅=

define

ε
M

ρ A⋅ L⋅( )= , and write the characteristic equation as:
. 



0 0.25 0.5 0.75 11

0

1

Mode 1
Mode 2
Mode 3

x/L

(b) Approximate first natural frequency. Using mode shape ϕ x( )
x
L

=

recal lots of problems worked in class and homeworks, one can easily estimate the equivalent 
stiffness and mass as

Keq
A E⋅
L

= Meq
ρ A⋅ L⋅

3
M+⎛

⎜
⎝

⎞
⎟
⎠

= ρ A⋅ L⋅
1
3

ε+⎛⎜
⎝

⎞⎟
⎠

⋅=

and the estimation for natural frequency is

ω1approx
Keq
Meq

⎛
⎜
⎝

⎞
⎟
⎠

.5

= 1
L

E
ρ
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅

3
1 ε 3⋅+
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅=

3
1 ε 3⋅+
⎛
⎜
⎝

⎞
⎟
⎠

.5
1.095=

ω1approx 1.095
1
L

E
ρ
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

which is just 2.5% higher than the exact value

y1 1=
1
L

E
ρ
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅

⎡
⎢
⎣

⎤
⎥
⎦



u x t,( )

1

n

i

sin λ_i
x
L
⋅⎛⎜

⎝
⎞⎟
⎠

Ai cos Ωi t⋅( )⋅( )⋅∑
=

:=
A

0.01

4.625 10 3−×

2.897− 10 3−×

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

=

Ai
0

1
zz sin λ_i z⋅( )⋅

⌠
⎮
⌡

d
⎛⎜
⎜⎝

⎞⎟
⎟⎠

a⋅

0

1

zsin λ_i z⋅( )2⌠
⎮
⌡

d

:=

λ_

1.077

3.643

6.578

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

=

i 1 n..:=
λ_ λ L⋅=

φi z( ) sin λ_i z⋅( ):=z
x
L

= recall:Define 

Ai
0

L

xa
x
L
⋅⎛⎜

⎝
⎞⎟
⎠
φi⋅

⌠
⎮
⎮
⌡

d

0

L

xφi
2⌠

⎮
⌡

d

=

"Used orthogonality property of shape functions

multiplying this equation by φj and integrating over the domain gives

u x 0,( ) a
x
L
⋅=

1i

φi Ai( )⋅∑
=

=and

Bi 0=Since the initial velocity = 0 everywhere, then it follows that 

u x t,( )

1i

φi Ai cos Ωi t⋅( )⋅ Bi sin Ωi t⋅( )⋅+( )⋅∑
=

=

The response for axial motions of the bar is

no velocity = rest condition
t
ud

d
0=

Uniform axial stretchinga 0.01:=u x 0,( ) a
x
L
⋅=

at t=0

Consider the following intitial conditions, 
(c) Free vibrations response: 



0 0.002 0.004 0.0061 0.0081 0.0101 0.0121 0.0142 0.0162 0.01820.015

0.01

0.005

0

0.005

0.01

0.015

time (s)

u 0.5 L⋅ t,( )

u L t,( )

t

Tmax 5 Tn1
⋅:=Response at bar: midpoint & end

u x t,( )

1

n

i

sin λ_i
x
L
⋅⎛⎜

⎝
⎞⎟
⎠

Ai cos Ωi t⋅( )⋅( )⋅∑
=

:=

natural periods

Tn
T 3.644 10 3−× 1.077 10 3−× 5.965 10 4−×( ) s=

Tn
1
fn

:=

fn

274.443

928.439

1.676 103×

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

Hz=
natural frequenciesfn

Ω

2 π⋅
:=

Ω λ_
1
L
⋅

E
ρ
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅:=

ε 0.5=d 0.1 m⋅:=L 1 m⋅:=ρ 7800
kg

m3
⋅:=E 20 109⋅

N

m2
⋅:=PHYSICAL Parameters:

Calculate time response at various spatial points in bar:



(2a)

and

2t
vd

d

2
Ω

2 v⋅+ 0= (2b)  where λ Ω
ρ
E
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅=

The solution to the ODEs is simple, i.e.:

v t( ) At cos Ω t⋅( )⋅ Bt sin Ω t⋅( )⋅+=
(3)

φ x( ) Ax cos λ x⋅( )⋅ Bx sin λ x⋅( )⋅+=

Satisfy the boundary conditions. At x=0, u(0,t)=0 (fixed end). Thus

φ 0( ) Ax cos λ 0⋅( )⋅ Bx sin λ 0⋅( )⋅+=
Then: Ax 0=φ 0( ) Ax 1⋅ Bx 0⋅+=

and
φ x( ) sin λ x⋅( )= (4)

Axial vibrations of elastic bar (2) LSan Andres (c) SP 08 MEEN 617

The figure shows an elastic bar of length L and cross-sectional area A, and with density and elastic modulus equal to 
ρ and E, respectively. The bar is rigidly attached to a wall at its left end. At its right end, a massless spring Ks 
connects the bar to another fixed wall. KsL/(EA)= ε  =0.25.   
The field equation for axial motions u(x,t) of the bar is 

2

2

2

2

x

u
AE

t

u
A

∂
∂

=
∂
∂ρ  

 
a) Determine the first TWO natural frequencies and characteristic modes (graph the modes) of the bar as a 

function of (ρ, E, L, andε ).  [20] 
b) Using your experience, estimate the first natural frequency of the bar and block. Explain your assumptions. 

How good is the estimate when compared to the ones derived in (a)? [5]
ORIGIN 1:=

PHYSICAL Parameters: E 20 109⋅
N

m2
⋅:= ρ 7800

kg

m3
⋅:= L 1 m⋅:= d 0.1 m⋅:=

A
π d2⋅

4
:=

A E⋅
L

1.571 108×
N
m

=

 

Ks A,E,ρ
x 

u(x,t) 

L(a) natural frequencies & mode shapes

using separation of variables, 

u x t,( ) φ x( ) v t( )⋅= (1)

leads to the following two ODEs:

2x
φd

d

2
λ

2
φ⋅+ 0=

l-sanandres
Rectangle



ε .25:=
n 4:=guess values

from graphical
soln

y 1.71 4.76 7.88 11( )T:= # of roots f y( ) tan y( )
1
ε

y⋅+:=

λ_ root f y( ) y,( )
→⎯⎯⎯⎯⎯

:=
where

λ_

1.716

4.765

7.886

11.018

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

= λ_ λ L⋅= & Ω λ
E
ρ
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅=

And thus, the first four natural frequencies are

0 1 2 3 4 5 6 7 8 910111240

20

0

tan(y)
-(ye)

Graphical solution

tan Y( )

Y−

ε

Y

Ω λ_
1
L
⋅

E
ρ
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅:=

Ω
T

2.747 103× 7.63 103× 1.263 104× 1.764 104×( ) rad
s

=

The shape functions are

φ1 z( ) sin λ_1 z⋅( ):=

φ2 z( ) sin λ_2 z⋅( ):= where z
x
L

=

φ3 z( ) sin λ_3 z⋅( ):=

φ4 z( ) sin λ_4 z⋅( ):=

At the right end, x=L, the appropriate boundary condition is: bar axial force = Ks u = spring force

at x=L
E− A⋅

x
ud

d
⋅ kS u⋅= (5a)

or: E− A⋅ v⋅
x
φd

d
⋅ kS φ⋅ v⋅= E− A⋅

x
φd

d
⋅ kS φ L( )⋅= (5b) from (2a)

Replacing (4) φ x( ) sin λ x⋅( )= &
x
φd

d
λ cos λ x⋅( )⋅= into (5b) gives

E A⋅
kS L⋅

λ
⎯
⋅ cos λ

⎯( )⋅ sin λ
⎯( )+ 0= where λ

⎯
λ L⋅=

define

ε
kS
E A⋅

L

= , and write the characteristic equation as: tan λ
⎯( ) 1

ε
λ
⎯
⋅+ 0= (6)

. 



1
L

E
ρ
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅

⎡
⎢
⎣

⎤
⎥
⎦

λ_1 1.716=
a
λ_1

1.129=

which is just 13% higher than the exact value

a 1.936=

a
1 ε+

1
3

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

.5
:=

ω1approx
Keq
Meq

⎛
⎜
⎝

⎞
⎟
⎠

.5

= 1
L

E
ρ
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅

1 ε+
1
3

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

.5
⋅=

and the estimation for the fundamental natural frequency is

ε 0.25=

Keq
A E⋅
L

1 ε+( )⋅=ε
kS
E A⋅

L

=

Meq
ρ A⋅ L⋅

3
⎛
⎜
⎝

⎞
⎟
⎠

=Keq
A E⋅
L

kS+=

Meq
0

L

xρ A⋅ ϕ x( )( )2
⋅

⌠
⎮
⌡

d
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:=Keq
0

L

xE A⋅
x
ϕ x( )d

d
⎛
⎜
⎝

⎞
⎟
⎠

2
⋅

⌠⎮
⎮
⎮⌡

d kS ϕ L( )( )2
⋅+:=

easily estimate the equivalent stiffness and mass as

ϕ x( )
x
L

:=(b) Approximate first natural frequency. Using mode shape

x/L0 0.25 0.5 0.75 11

0.5

0

0.5

1

Mode 1
Mode 2
Mode 3
Mode 4



u x t,( )

1

n

i

sin λ_i
x
L
⋅⎛⎜

⎝
⎞⎟
⎠

Bi sin Ωi t⋅( )( )⋅⎡⎣ ⎤⎦⋅∑
=

:=

BT 1.586 10 4−× 3.33− 10 5−× 7.935 10 6−× 2.97− 10 6−×( ) m=

Bi
vo
Ωi

0

1
zzss sin λ_i z⋅( )⋅

⌠
⎮
⌡

d
⎛⎜
⎜⎝

⎞⎟
⎟⎠

0

1

zsin λ_i z⋅( )2⌠
⎮
⌡

d

⋅:=

λ_

1.716

4.765

7.886

11.018

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

=

i 1 n..:=
λ_ λ L⋅=

φi z( ) sin λ_i z⋅( ):=z
x
L

= recall:Define 

Bi Ωi⋅
0

L

xvo
x
L
⎛⎜
⎝

⎞⎟
⎠

ss
⋅

⎡
⎢
⎣

⎤
⎥
⎦
φi⋅

⌠
⎮
⎮
⌡

d

0

L

xφi
2⌠

⎮
⌡

d

=

"Used orthogonality property of shape functions

multiplying this equation by φj and integrating over the domain gives

t
u x 0,( )d

d
vo

x
L
⎛⎜
⎝

⎞⎟
⎠

s
⋅=

1

inf

i

φi Bi Ωi⋅( )⋅∑
=

=and

Ai 0=

Since the initial displacement = 0 everywhere, then it follows that 

u x t,( )

1

inf

i

φi Ai cos Ωi t⋅( )⋅ Bi sin Ωi t⋅( )⋅+( )⋅∑
=

=

The response for axial motions of the bar is

0 0.5 10

0.5

1

zss

z

ss 3:=
t
ud

d
vo

x
L
⎛⎜
⎝

⎞⎟
⎠

ss
⋅= velocity

vo 1
m
s

⋅:=u x 0,( ) 0= no axial stretching
at t=0
Consider the following intitial conditions, 

(c) Free vibrations response: 



[m/s]

0 0.0023 0.0046 0.0069 0.0091 0.01141

0.5

0

0.5

1

time (s)

v 0.5 L⋅ t,( )

v L t,( )

t

v L time,( ) 0.837
m
s

=time 0 s⋅:=v x t,( )

1

n

i

sin λ_i
x
L
⋅⎛⎜

⎝
⎞⎟
⎠

Bi Ωi⋅ cos Ωi t⋅( )⋅( )⋅∑
=

:=

vo
1
2
⎛⎜
⎝
⎞⎟
⎠

ss
⋅ 0.125

m
s

=vo 1
m
s

=
Bar velocity: midpoint & end

[m]

0 0.0023 0.0046 0.0069 0.0091 0.01142 .10 4

0

2 .10 4

time (s)

u 0.5 L⋅ t,( )

u L t,( )

t

Tmax 5 Tn1
⋅:=u x t,( )

1

n

i

sin λ_i
x
L
⋅⎛⎜

⎝
⎞⎟
⎠

Bi sin Ωi t⋅( )⋅( )⋅∑
=

:=

for graph only
Bar displacement: midpoint & end

Tn
T 2.287 10 3−× 8.235 10 4−× 4.976 10 4−× 3.561 10 4−×( ) s=

Tn
1
fn

:=
fn

T 437.199 1.214 103× 2.01 103× 2.808 103×( ) Hz=natural periods

fn
Ω

2 π⋅
:=

natural frequencies:
Calculate time response at various spatial points in bar:



The figure shows an elastic rod of length L , radius R, density  and elastic 
shear modulus G. The rod is rigidly attached to a wall at its left end. At the 
rod right end, a massless spring KS connects the rod to a fixed wall. The field 
equation for angular motions (x,t) of an elastic rod under torsion is 

2 2

2 2J G J
t x

    


 
 where J =  ½ R4 is the polar moment of area and 

M G J
x





is the torsional moment. Let KSR

2L/(GJ)=  =0.25.  

 
a) Find the first TWO natural frequencies and characteristic modes (sketch 

the modes) of the bar as a function of (, G, L, J and  ).  [35] 
b) Using experience, estimate the first natural frequency of the bar and 

spring. Explain your assumptions. How good is the estimate when 
compared to the exact (first) value derived in (a)? [15] 

If needed use the following G=12 109 Pa, =7800 kg/m3, L=1m, R=0.05m 

 
 

x

(x,t)

L

R

KS

Top view

KS

x

(x,t)

L

R

KS

Top view

KS
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Torsional vibrations of elastic rod L San Andres (c) SP 12 MEEN 617

The figure shows an elastic rod of length L , radius R, density  and elastic shear modulus G. The rod is 
rigidly attached to a wall at its left end. At the rod right end, a massless spring KS connects the rod to a 
fixed wall. The field equation for angular motions (x,t) of an elastic rod under torsion is 

2 2

2 2J G J
t x


   


 

 where J =  ½ R4 is the polar moment of area and M G J
x





is the torsional 

moment. Let KSR2L/(GJ)=  =0.25.  
 
a) Find the first TWO natural frequencies and characteristic  modes (sketch the modes) of the bar as a 

function of (, G, L, J and  ).  [35] 
b) Using experience, estimate the first natural frequency of the bar and spring. Explain your assumptions. 

How good is the estimate when compared to the exact (first) value derived in (a)? [15] 
If needed use the following G=12 109 Pa, =7800 kg/m3, L=1m, R=0.05m 

ORIGIN 1

PHYSICAL Parameters: G 12 109
N

m2
  7800

kg

m3
 L 1 m d 0.1 m

A
 d2

4
 J

0

r
Ar2





d= J
 d4
32

 J 9.817 10 6 m4

 

x

(x,t)

L

R

KS

Top view

KS

x

(x,t)

L

R

KS

Top view

KS

2 2

2 2J G J
t x

    


 

(0)



uL L R= R
d
2



or: G J v
x
d

d
 kS R2  v= G J

x
d

d
 kS R2  L( )= (5b) from (2a)

Replacing (4)  x( ) sin  x = &
x
d

d
 cos  x = into (5b) gives

G J

kS R2 L


 cos 

  sin 
  0= where 


 L=

define


kS R2 L

G J
= , and write the characteristic equation as: tan 

  1



 0= (6)

. 
 0.25

n 4guess values
from graphical
soln

y 1.71 4.76 7.88 11( )T # of roots f y( ) tan y( )
1


y

(a) natural frequencies & mode shapes
 x t( )  x( ) v t( )= (1)using separation of variables, 

Substitute into the field Eq. (0) to obtain the following two ODEs:

2x
d

d

2


2
 0= (2a)

 where  

G








.5
=

and

2t
vd

d

2


2 v 0= (2b)

The solution to the ODEs is simple, i.e.:

v t( ) At cos  t  Bt sin  t =
(3)

 x( ) Ax cos  x  Bx sin  x =

Satisfy the boundary conditions. At x=0, (0,t)=0 (fixed end - no angular deformation). Thus

 0( ) Ax cos  0  Bx sin  0 =
Then: Ax 0= 0( ) Ax 1 Bx 0=

and
 x( ) sin  x = (4)

At the right end, x=L, the appropriate boundary condition is: rod torsional moment    = spring 
reaction force x moment arm

at x=L
G J

x
d

d
 kS uL  R= (5a)



x/L0 0.25 0.5 0.75 11

0.5

0

0.5

1

Mode 1
Mode 2
Mode 3
Mode 4

4 z( ) sin _4 z 

3 z( ) sin _3 z 

z
x
L

=where2 z( ) sin _2 z 

1 z( ) sin _1 z 

The shape functions are


T

2.128 103 5.91 103 9.781 103 1.367 104  rad
s



 _
1
L


G










.5


0 1 2 3 4 5 6 7 8 910111240

20

0

tan(y)
-(ye)

Graphical solution

tan Y( )

Y



Y

And thus, the first four natural frequencies are

 
E









.5
=&_  L=_

1.716

4.765

7.886

11.018
















where

_ root f y( ) y( )






kS 1.178 107
N
m



kS
 G J

R2 L


, i.e just 13 % higher than the exact value
a
_1

1.129

1
L

G










.5










_1 1.716compare to the
exact value:

a 1.936

where1approx
Keq

Ieq









.5

= 1
L

G










.5
 a= a

1 
1
3









.5


and the estimation for the fundamental natural frequency is

 0.25


kS R2 L

G J
=with

Ieq
 J L

3








=Keq
G J
L

1  =Keq
G J
L

kS R2=

Ieq
0

L

x J  x( ) 2






d






Keq
0

L

xG J
x
 x( )d

d








2






d kS R  L( ) 2


easily estimate the equivalent torsional stiffness and mass moment of inertia from 

 x( )
x
L

(b) Approximate first natural frequency. Using mode shape

l-sanandres
Text Box
Note: do realize the torsional bar vibration problem is dimensionally and physically equivalent to the axial vibrations of an elastic bar



 where λ Ω
ρ A⋅
E IP⋅
⎛
⎜
⎝

⎞
⎟
⎠

.5
⋅=

and

2t
vd

d

2
Ω

2 v⋅+ 0= (2b)

The solution to the ODEs is simple, i.e.:

v t( ) At cos Ω t⋅( )⋅ Bt sin Ω t⋅( )⋅+=
(3)

φ x( ) Ax cos β x⋅( )⋅ Bx sin β x⋅( )⋅+ Cx cosh β x⋅( )⋅+ Dx sinh β x⋅( )⋅+= β λ
0.5=

Satisfy the boundary conditions. 
PINNED ENDs: no lateral displacement and null bending moment
 At x=0, L

x=0 x=L

2x
ud

d

2
M= 0=u 0=

at x=0
φ 0( ) Ax cos β 0⋅( )⋅ Cx cosh β 0⋅( )⋅+= 0=

since: cos 0( ) 1= cosh 0( ) 1=

2x
φd

d

2
Ax− cos β 0⋅( )⋅ Cx cosh β 0⋅( )⋅+= 0=

φ x( ) Bx sin β x⋅( )⋅ Dx sinh β x⋅( )⋅+=then Ax Cx= 0= so

lateral vibrations of elastic beam LSan Andres (c) SP 08 MEEN 617

d 15 mm⋅:= diameter ORIGIN 1:=ρ 7800
kg

m3
⋅:= E 2 1011⋅

N

m2
⋅:=

L 1 m⋅:= length

A

h

l ,D, E, I
x

y

A
π d2⋅

4
:= cross-sectional area

IP
π d4⋅
64

:=

area moment of inertia (polar) h 1 m⋅:=

free fall velocity vo 2 g⋅ h⋅( ).5:=Solution Procedure

( )
2 2 2

2 2 2
v v

A E I
t x x

ρ ⎛ ⎞∂ ∂ ∂
=− ⎜ ⎟∂ ∂ ∂⎝ ⎠

using separation of variables, 

u x t,( ) φ x( ) v t( )⋅= (1)

leads to the following two ODEs:
4x
φd

d

4
λ

2
φ⋅− 0= (2a)

lsanandres
Text Box
beam and frame are dropped from height h. find the response.

lsanandres
Rectangle



x/L

0 0.25 0.5 0.75 11

0

1

Mode 1
Mode 2
Mode 3

fT 29.828 119.311 268.449 477.242 745.691 1.074 103× 1.462 103×( ) Hz=

φ3 z( ) sin β3 z⋅( ):=φ2 x( ) sin β2 x⋅( ):=
φ1 x( ) sin β1 x⋅( ):=

The shape functions are

Ω
T

187.413 749.65 1.687 103× 2.999 103× 4.685 103× 6.747 103× 9.183 103×( ) rad
s

=

natural frequencies

f
Ω

2 π⋅
:=

β

3.142

6.283

9.425

12.566

15.708

18.85

21.991

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
m

=
Ω β( )2 E IP⋅

ρ A⋅

⎛
⎜
⎝

⎞
⎟
⎠

0.5

⋅:=

and natural frequencies

β i
i π⋅
L

:=

# of rootswith solution:
i 1 n..:= n 7:=(4) is the characteristic equation

(5)φ x( ) sin β x⋅( )=thus(4)sin β L⋅( ) 0=

MODE SHAPE
Dx 0=then

2x
φd

d

2
Bx− sin β L⋅( )⋅ Dx sinh β L⋅( )⋅+= 0=

φ L( ) Bx sin β L⋅( )⋅ Dx sinh β L⋅( )⋅+= 0=
at x=L



The response for lateral motions of a beam is

velocity = free fall velocity
t
ud

d
vo=

No initial deformationu x 0,( ) 0=at t=0

Consider the following intitial conditions, 
(c) Free vibrations response: 

Ω1a
Ω1

1.11=

0 0.25 0.5 0.75 10

0.5

1

Mode 1
approximate

exactΩ1 187.413
rad
s

=

Ω1a 208.013
rad
s

=
Ω1a

Keq
Meq

⎛
⎜
⎝

⎞
⎟
⎠

.5

:=

and the estimation for natural frequency is

Keq
48 E⋅ IP⋅

L3

1.333=
Keq E IP⋅

0

L

x2x
ϕa x( )d

d

2⎛⎜
⎜⎝

⎞⎟
⎟⎠

2⌠
⎮
⎮
⎮
⌡

d⋅:=

Meq
ρ A⋅ L⋅

0.533=

Meq ρ A⋅
0

L

xϕa x( )2⌠
⎮
⌡

d⋅:=

ϕa x( )
4x
L

1
x
L

−⎛⎜
⎝

⎞⎟
⎠

⋅:=
recall lots of problems worked in class 
and homeworks, one can easily 
estimate the equivalent stiffness and 
mass as

ϕa x( ) sin π
x
L
⋅⎛⎜

⎝
⎞⎟
⎠

:=(b) Approximate first natural frequency. Using mode shape



Tmax 5 Tn1
⋅:=Natural periodsTn

1
f

:= for graph

vo 4.429
m
s

=

VELOCITY vel x t,( )

1

mm

i

sin β i x⋅( ) Ωi⋅ Bi cos Ωi t⋅( )⋅( )⋅∑
=

:=

mm 7=

DISPLACEMENTu x t,( )

1

mm

i

sin β i x⋅( ) Bi sin Ωi t⋅( )⋅( )⋅∑
=

:=

n 7=select number of modes to display resultsmm n 0−:=

Calculate time response at various spatial points in beam:

Bi
0.03

0

1.114·10    -3

0

2.407·10    -4

0

8.772·10    -5

m
=Bi

0

L
xsin β i x⋅( )⌠

⎮
⌡

d
⎛⎜
⎜⎝

⎞⎟
⎟⎠

vo⋅

0

L

xsin β i x⋅( )2⌠
⎮
⌡

d Ωi⋅

:=

"Used orthogonality property of shape functionsi 1 n..:=

multiplying this equation by φj and integrating over the domain gives

t
ud

d
vo=

1i

φi Bi Ωi⋅( )⋅∑
=

=
and for velocity

Ai 0=Since the initial displacement = 0 everywhere, then it follows that 

u x t,( )

1

n

i

φi Ai cos Ωi t⋅( )⋅ Bi sin Ωi t⋅( )⋅+( )⋅∑
=

=

p



Displacement response at beam: midpoint (x=L/2) & x=L/4

0 0.021 0.042 0.063 0.084 0.1 0.13 0.15 0.170.04

0.02

0

0.02

0.04

time (s)

u 0.5 L⋅ t,( )

u 0.25 L⋅ t,( )

t

Tn
T 0.034 8.381 10 3−× 3.725 10 3−× 2.095 10 3−× 1.341 10 3−× 9.313 10 4−× 6.842 10 4−×( ) s=

Velocty response at beam: midpoint (x=L/2) & x=L/4

0 0.021 0.042 0.063 0.084 0.1 0.13 0.15 0.1710

5

0

5

10

time (s)

vel 0.5 L⋅ t,( )

vel 0.25 L⋅ t,( )

t

XX
L
2

:= vel XX 0 s⋅,( )
vo

0.922= vo 4.429
m
s

=



Vibrations of a string 
This problem aids to understand the tuning process of string musical 
instruments.  The graph shows a simple model of a taut string fixed at both 
ends.   

 
The string vertical displacement u(x,t) is described by: 

 
2 2

2 2

u u
T

x t
 


    

where  = 24.5 g/m is the string mass per unit length, L = 0.5 m is the string 
length, and T is the tension applied to the string. When the string is plucked 
at its middle, its vibration response is dominantly represented by the first 
mode shape at the first natural frequency f1, (see the dotted lines for a 
sketch).  Then, the sound frequency components radiating from the string 
are dominant with frequency (f1).   

The tonal frequencies of the strings in a violin are G3 = 196 Hz, D4 = 
293.7 Hz, A4 = 440 Hz, and E5 = 659.3 Hz.   

Assume the strings are made of the same material (steel). =7800 kg/m3 

 
Questions:  

a) Find the relation between the frequency (f1), the string length (L), the 
mass per unit length (), and the tension (T).  

b) Assuming all strings have the same diameter, find the tensions T to tune 
each string. Find also the stresses and elastic deformations.  

c) Find how a tonal frequency scales with the diameter of a string. Using 
the tension found in (b) for G3, determine the strings’ diameter and 
elastic deformation.  
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ORIGIN 1

The string vertical displacement u(x,t) is described by  

2 2

2 2

u u
T

x t
 


 

where T is the tension in the
string and γ is the mass per
unit length.

(0)

PHYSICAL Parameters
for a steel string: E 30 109

N

m2
 γ 0.0245

kg
m

 L 0.5 m

length of string

 ( a) natural frequencies & mode shapes
Θ x t( ) ϕ x( ) v t( )= (1)using separation of variables, 

Substitute into the field Eq. (0) to obtain the following two ODEs:

2x
ϕ

d

d

2
λ

2
ϕ 0= (2a)

 where λ Ω
γ

T






.5
=

and

2t
vd

d

2
Ω

2 v 0= (2b)
Let co

T
γ







0.5
=

The solution to the ODEs is simple, i.e.:
a characteristic speed [m/s]

v t( ) At cos Ω t( ) Bt sin Ω t( )=
(3)

ϕ x( ) Ax cos λ x( ) Bx sin λ x( )=

Satisfy the boundary conditions. At x=0, (0,t)=0 (fixed end - no displacement). Thus

ϕ 0( ) Ax cos λ 0( ) Bx sin λ 0( )=
Then: Ax 0=

ϕ 0( ) Ax 1 Bx 0=



and
ϕ x( ) sin λ x( )= (4) is the equation for the shape funcion.

At the right end, x=L, the string is also fixed.  Thus

Set T 4000 Nat x=L ϕ L( ) sin λ L( )= 0= (5a)
example

which is the characteristic equation. The roots are
λj

j π
L



And thus, the natural frequencies are Ωj λj co=

Ωj
j π
L

T
γ







.5
 rad/s

Ω
T 2.539 103 5.078 103 7.616 103 1.016 104  rad

s


The shape functions are

ϕ1 x( ) sin x
π

L







ϕ2 x( ) sin x

π 2
L








ϕ3 x( ) sin x

π 3
L









ϕ4 x( ) sin x
π 4
L









0 0.1 0.2 0.3 0.4
1

0.5

0

0.5

1

Mode 1
Mode 2
Mode 3
Mode 4

etc

x



(b)Find the relation between the frequency (f1), the string length (L), the mass per unit length (),
and the tension (T). 

The natural frequencies in Hz (cycles/s] are f Ω
1

2 π
=

f j
j

2L
T
γ







.5
 Hz

The tonal frequencies for the strings in a VIOLIN are

T f 2 L( )2
γ=

G3

D4

A4

E5















ftone

196

296.7

440

659.3















Hz

Sol3

Re4

La4

Mi5















 k 1 4 four strings( )

considering the same density/length for all strings, the necessary tuning tension in a string is

Tk 2 L ftonek
 2

γ

T

941.192

2.157 103

4.743 103

1.065 104

















N

G3

D4

A4

E5















Let a string diameter d 2mm (assumption as everyone knows the strings have different diameters)

The stresses in the strings are and the strains
σ

T

π
d2

4











ε

σ

E


σ
T 2.996 108 6.865 108 1.51 109 3.39 109  Pa

d 2mm
ε

T 9.986 10 3 0.023 0.05 0.113 

ε
T L 4.993 11.442 25.163 56.498( ) mm Deformation for the strings are large, in

particular for one with highest tonal frequency. 
Recall L 500mm

l-sanandres
Text Box
Note: do realize the vibrations of a string is dimensionally and physically equivalent to the axial vibrations of an elastic bar and the torsional vibrations of a rod



(c) Using the tension found in (b)=G3, and assuming the strings are made of the same material
(steel), find how a tonal frequency scales with the diameter of each string

Note that a string mass/unit length
γ

ρ A L
L

= ρ
π d2

4
=

where ρ is the material density and d is the diameter of a string. Hence, the tonal frequency as
a function of the string diameter equals

ftone
1

2L
T
γ







.5
= 1

2L
4T

ρ π d2









.5
=

ftone
1

L d
T

ρ π






.5
=

Set T_ T1 Tension for sound G3 T_ 941.192N

Hence, for a given tension, a string's diameter is inversely proportional to the tonal frequency

dk
1

L ftonek


T_
ρ π






.5


d

2

1.321

0.891

0.595















mm

G3

D4

A4

E5















With deformation for each string

δk
T_

π
dk 2

4










L
E


δ
T 4.994 11.444 25.168 56.508( ) mm L 0.5m

E 3 1010 Pa
δ

T

L
9.988 10 3 0.023 0.05 0.113 

(c) Stresses and strains

The stresses in the taut strings are
σ

T
A

= 2 L ftone 2
ρ=

since γ ρ A=

and the axial strains ε
σ

E
= 2 L ftone 2 ρ

E






= NOT a function of the string
diameter

with elastic deformation
δ ε L= 2 ftone 2 ρ

E






 L3= proportional to L^3 and tone_freq^2
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