Lectures 22-23

Date: April 4 2017
Today: Vibrations of continuous systems

HD#14 Dynamic response of continuous systems
Free vibrations of elastic bars and beams.
Properties of normal mode functions. Forced response

Reading & other assignments:
Textbook G: 7.1 - 7.7, Handout #12 | FE analysis

Other: HMWK #6: due 04/11
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From your textbook

Chapters 6&7: Vibration of

elastic bars, beams and rods

Recommended problems —

Chapter 6
3,9, 11, 14, 15, 28,38, 54
Chapter 7

3,11,43,49
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MEG617 - Handout 14
Vibrations of Continuous Systems

Axial vibrations of elastic bars

The figure shows a uniform elastic bar of length L and cross

section 4. The bar material properties are its density p and elastic
modulus E. One end of the bar is attached to a fixed wall while the

other end is free. The force P(?) acting at the free end of the bar
induces elastic displacements u(x, ) along the bar

o AX P(t)

> X

Ux,0)

Fig. Schematic view of elastic bar undergoing axial motions

From elementary strength of materials consider

a) Cross-sections A remain plane and perpendicular to
the main axis (x) of the bar.

b)  Material is linearly elastic

¢y  Material properties (p, £) are constant at any given
Cross section.

The relationship between stress o and strain ¢ for
uniaxial tension is

G=E8=Ea—u (1)
00X
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Consider the free body diagram of an infinitesimally small
piece of bar with length Ax,

In the FBD, P(x,t)=A4

ou . _
() O'=AE6— Is the axial force at a

X

cross section of the bar, and f'(x,¢) is a distributed axial force per
unit length,

AX

»
»

A

Pxt 3 P (x+4x,t)
] fen | %

U (x,t)
Fig. Free body diagram of small piece of elastic bar

Applying Newton’s 2" law of motion on the bar differential
element gives

2
ZszAmaxz(pAAx)Z—; )
0% u B
(,OAA)C)?—P(HAM) _P(x,z) +f(x,z)Ax (3)
oP

AsAx >0 = F .~ Byt an (4a)
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p A = +f(x't) (4)
X

And replacing P(x,t)= AEa—u

ox

Fu 0 ou
p A = (AE) +f(x,t) (5)

ot* 0Ox ox

PDE (5) describes the axial motions of an elastic bar. For its

solution, one needs appropriate boundary conditions (BC), which

are of two types

(a) essential, u=u~= , aspecified value, at x=xx for all
times,

(b) natural, P(x+t) = AEg—uj specified
x =X«

If P=0, then the natural BC is a free end, i.e. Z—uj =0
x =X,

Note: PDE (5) and its BCs can be derived from the Hamiltonian
principle using the definitions for kinetic (7) and potential (V)
energies.

1% ou ou
T—E_([pA(atj dx; V= jEA(axj dx (6)

—
N
\—{recommended exercise (bonus) +5 to exam 2 |
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Free vibrations of elastic bars
Without external forces (point loads or distributed load, /=0), PDE

(5) reduces to
o°u 0 ou
A = AE
Py 6x( 8xj )

L METHOD: Separation of

variables

The solution of PDE (7) is of the form u(x,;) — ¢(x)v(;) (8)
Note that
2 2
Z—; :¢<x>%: Py Vi >
) , 9)
O’u _d°¢
ox’ dx

o
Voo =P Vi

With the definitions () =90 () =4/, For a bar with uniform

material properties (p, E) and cross section A, substitution of the
product solution Eq. (8) into PDE (7) gives

Bﬁzu _82u
E 0t* 0x°

,0 ee M
E%) Voo =PV (10)

Divide this expression by ¥, , :¢(x)v(t) to get

Vo _E Hy

(11)
Voo P P
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Above, the LHS is only a function of time, while the RHS is only a
function of spatial coordinate x. This is possible only if both sides
equal to a constant, i.e.

"

Vo _EP__ »
Voo P D

Hence, the PDE is converted into two ordinary differential
equations (ODEs), i.e.

. 2
Vi t@ v=0

(oA B9 =0 -

where A=w p/E (13)
The solution of the ODEs (12) & (13) is

vy =C, cos(wt)+S,sin(wt) (14)

¢,y =C,cos(Ax)+S, sin(Ax) (15)

The coefficients (C, S) are determined from satisfying the
boundary conditions for the specific bar configuration and load
condition. Equation (15) is known as the fundamental equation
for an elastic bar, i.e. it contains the information on natural
frequencies and mode shapes.
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Example 1.

A bar with one end fixed and
. the other end free.
r L In this case, the boundary
(xH

conditions are
<«—for all times

Atx=0, Uy =0=QoVvy= P =0 VI

ou , ,
At x=L, } =0= ¢(L)V(t) — ¢(L) =0 V¢ (16)
ox| _,
Hence, from the characteristic equation ¢, =0 — C =0 and
¢y= S.sin(Ax) (17)
At x=L, ¢, =0=A1S,cos(A1L)=0 (18)

Note that S_ = 0 for a non trivial solution. Hence, the

characteristic equation| for axial motions of a fixed end-free
end elastic bar is

cos(AL)=0 (19)
which has an infinite number of solutions, i.e.
L_7z 37 5rx o 2n—1

PN P PN EERRT Ty, _
2 2 2 2 n=1,2,.....
And hence the roots of Eq. (19) are
2n-1)r
/In — (2—)2 n=1,2,.... (20)
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And since A =@ p/E , the natural frequencies of the fixed end-
free end bar are

ok —1) 2 ( E 1/2
2 :(2—)2(;) ' k=12, (21)

o z (EV” 37(EY” 5z(EY
..a)lzii ,0)2:7— ,0)3:77
2L\ p 2L\ p 2L\ p

Associated to each natural frequency, there is a natural mode
shape

¢, =w,= sin (ﬂ'k x) il (22)

as shown in the figure below.

O(x)

0.5

1.571
4.712
7854 | L
10.996

| =

o

Function (x)

-05
0 0.25 0.5 0.75 1
/ x/L
== Mode 1
*+++ Mode 2
==- Mode 3

Fig. Natural modes shapes (I)(x) for elastic bar with fixed end-free end
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See more examples on page 13-ff.

The displacement function response u(x,t) :¢(X)V(t) equals
to the superposition of all the found responses, i.e.

Ui s :;¢(x)k V(t)k =

© (23a)
D ¢, [ Cicos(w,t) +S,sin(a,1) ]
k=1

For example 1 (fixed end —free end bar)

U, = sin(4,x)[ C, cos(w,) +S, sin(w,) ] (23b)
k=1

and velocity:

th, =Y sin(A4,x) @, | —C,sin(w,t) +S, cos(w,t) | (24)
k=1

The set of coefficients (C;, S;) are determined by satisfying the
initial conditions. That is at time =0,

U, 0= Uy =) sin(4,x)C,

. (25)

0= Uy =2 @, SIN(4,x) S,
k=1
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Orthogonality properties of the natural modes

Recall that the pair {ﬁk Wi, } satisfy the characteristic

k=1,...
equation (12b), i.e.

" 2 _
Y, +A4 v (), — 0 il s (26)

And consider two different eigenvalues A and A each satisfying
Eq. (26), i.e.

vi+A vy, =0 & yi+Ajy, =0

Multiply Eqg. on left by i ;and Eq. on right by ¥, and integrate
over the domain x € {0, L} to get:

L L

| (v dx)+ 27 | (ww,dx)=0

0 0

L L

[y} de)+ 27 | (v dx) =0 @)
0 0

Integrate by parts the term on the LHS to obtain
INT(u dv) = uv - INT (v du) |

L B L
j vy dx =(w, v ]§ - I vy, dx (28)
0 0

And recall the boundary conditions for the fixed end-free end bar

(w,] =0 & (v/]_, =0 (29)
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L
And write first of Eq. (27) as A I (1// Wi dx) =

0

substituting ll- =, A/ % one obtains:

O Ly I~

(W}W; dx) and

2
Q.

*|(p Ay, dx)=|(E Ay dx) (30a)

a)]2 (pAl//l.wj dx)z (EA(//I.’I//;. dx) (30b)

O ey I~ O Sy

Subtract Eq. (30b) from (30a) to obtain

L
(a)f—a)f)_[(pAl//iwj )dsz (31)
0
And since @, # @, , it follows that

I

L
J(pAWin )dx:O &J(EAWZ.'W;. )dx:O iri12..0  (32)
0

0

That is, the modal functions {y, | ,, are ORTHOGONAL. For

i=j, the iy, natural frequency follows from

EAv'w' )d
K (EAyjy )dx
W =—L=

Mi

1

(33)
(p Ay, )dx

O Sy I O ey

Where K ., M are the iy, mode equivalent stiffness and mass
coefficients.
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Note that the set {y/, } _ , isa COMPLETE SET of orthogonal
functions

Now, consider the initial conditions, Eq. (25)

o {Uio F B sin(4:)C

k1

Uy 0) : Z @, sin(4,x)S,
k1

Multiply both sides of Eq. (25) byy,, =sin(4,,x)xpA and
integrate over the whole domain to obtain

(25)

j(pAz//mU(x))dx ZCI (p Ay, y, )dx

And since
M

J.OL(pAl//mlﬂk)dX:{ O m whenmk} (34)

when m=#k

Then if follow that

jL( Ay,U,,)d
p Ay, U, )dx
C =" e (35)

m

And similarly

L
o b (pAv,Uy)dx
m_ W M ' m=12,.0

m m

(36)
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with M = IOL(pAw,i)dx and K = IOL(EA[dW%x]Z)dx (37)

This concludes the procedure to obtain the full solution for the
vibrations of a bar, i.e.

Uiy =D B, | Ci COS(@,2) +S, sin(a,t) | (23)
k=1
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Example 2.

A bar with both ends free.

F The boundary conditions are

U,
ou , ,

At x=0. } =0= ¢(O)V(t):> ¢(0) =0 WVt
O X o
ou , ,

At X=L, } =O=¢(L)V(t):> ¢(L)=O Yt
0 X L

Hence, from the characteristic equation ¢, =0 — S, =0 and
¢, = C,Cos(Ax)

At x=L, ¢, =0=AC,sin(AL)=0

Note that|A =0 denotes rigid body motion.| Hence, the
characteristic equation for axial motions of an elastic bar
with free-free ends is

sin(AL)=0
which has an infinite number of solutions, i.e.
AL=0,7,27,37,....00=N7T, 4.,

T
/1n =N— n=0,1,2,.....

And since A = @/ % , the natural frequencies of the free end-
free end bar are
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1/2
_ T E _
W, =K—| — Y k=012...

L\ p

Associated to each natural frequency, there is a natural mode
shape

¢k: COS(ﬂ.k x) k=0.1,2,...

And shown in the figure below.

Ox) ]
r'J
. S 0
)
0.5 - 2 A=| 3142 =
. R
’ 6.283
= ,'
s 71 K
= . []
e \ s
T ’
Y]
o.'
-05 s ’.
\ ¢ -
* '
) I4
\ /
4| ‘\_J‘ 0.,
5 0.5 0.75 1
x/L

-1
0 , 0.2
/éel
*+++" Mode 2

==- Mode 3

Fig. Natural modes shapes (I)(x) for elastic bar with both ends free. First
mode is rigid body (null natural frequency)
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Example 3.
|

A bar with both ends fixed.
The boundary conditions are

Atx=0, ugy,=0=¢yv,,=> @ =0 Vi
Atx=L,  u, ,=0=9,v,=> @, =0

Hence, from the characteristic equation ¢  =C cos(Ax)+S,sin(Ax),
then g =0 — C,=0and
d.y= S.sin(Ax)

0

Atx=L, ¢, =0=sin(AL)

Note that A # 0 denotes rigid body motion. Hence, the
characteristic equation for axial motions of a fixed end-
fixed end elastic bar is

sin(AL)=0
which has an infinite number of solutions, i.e.
AL=r27x,3x,.....0=nr, 012,

ﬂn=n£
L

n=12,.....

And since A =@ % , the natural frequencies of the free end-
free end bar are

1/2
w( E
Wy :kZ(;j ' k12,
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Associated to each natural frequency, there is a natural mode
shape
¢, = sIn (/1k x) k=0.1,2,...

And shown in the figure below.

O(x)

05| ,."

3.142
A =] 6.283
9.425

Function (x)
o
\
—

]

=== Mode 1
* Mode 2
==- Mode 3

Fig. Natural modes shapes (I)(x) for elastic bar with both ends fixed.
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MEG617 - Handout 14 (b)
Vibrations of Continuous Systems

L_ateral vibrations of elastic beams

The figure shows a uniform elasfic beam of length L, cross
section 4 and area moment of inertia /. The beam material

properties are its density p and elastic modulus E. One end of the
beam is fixed to a wall while the other end is free. The discrete

force P(?) acts at a fixed axial location while f{x,?) represents a
load distribution per unit length. The forces induces elastic

displacements on the beam and designated as V(X, ).

X

Fig. Schematic view of elastic beam undergoing lateral motions

From elementary strength of materials consider

a)  Cross-sections A remain plane and perpendicular to
the neutral axis (x) of the beam.

b)  Homogeneous material beam, linearly elastic,

¢)  Material properties (p, £ ) are constant at any given
Cross section.

d)  Stresses oy, 6, << o (flexural stress), i.e. along
beam.

MEEN 617 — HD#14 Vibrations of Continuous Systems. L. San Andrés © 2012 17
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The graph below shows the free body diagram for
motion of a differential beam element with length Ax.

fct S(x+4x.1)
AX

St

Mx,t)

M (x+4x,t)

V(x,t)

Fig. Free body diagram of small piece of elastic beam

In The FBD, S, represents the shear force and M
denotes the bending moment. Apply Newton’s 2™ law to the
material element:

oS o’
ZFy:Am ay:S—(S‘FaAX}F ]F(x,t):(pAAx)ﬁ (38)

. 0% v 0S
In the limitas Ax >0 A)— = — (39
Apply the moment equation: E M=Al,a ~0 (40)

neglecting rotary inertia A/,
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Ax?

Y M~0=M_ . ,—M,,~f : ~SAx
Then . A
“M+ZE A -M— 25 _SAx
ox 2
In the limit asAx — 0: oM =S¢ (41)
0x ’
Combining Eqgs. (41) and (39) gives:
0’ v o’ M
(pA)ﬁ - f(x,t) o axz (42)

If the slope (a%x) remains small, then the beam curvature

is 1=/ ,.From|Euler’s beam theory

El 0% v

(43)

where [:(ﬁjsxyz dAis the beam |second moment of area (m"4)

Substitute Eq. (43) into (42) to obtain the equation for
lateral motions of an elastic beam:
0* 0’ ERY
(0 ) (

.
or e og E’ﬁ] i
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The PDE is fourth-order in space and 2™ order in time.

Appropriate boundary conditions are of two types:

Essential BCs:

- specified displacement, V= Vs«

0
- specified slope, ( /ox ) -

Natural BCs:
0% v
- specified moment, M=M, =FEI ( >
ox .
2
- specified shear force, =S, = i El 0 ‘2}
ox 0Xx

See below the most typical beam configurations:

Fixed end (cantilever): v=0 & Q 0
0Xx
_ 0v
Pinnedend v=0&M =0— =0
ox
Free end
2 3
M=0&S=0->"-0& 2y
0x ox’

MEEN 617 — HD#14 Vibrations of Continuous Systems. L. San Andrés © 2012
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D V(b 1
Il
1

X

Spring supported end

Note: PDE (44) and its BCs can be derived from the Hamiltonian
principle using the definitions for kinetic (7) and potential (V)

energies of an elastic beam

17 ovY 17 v
ng_[pA(aj dx; V:EIEI(—Z] dx

0

@‘

A rewarding intellectual
pursuit, Bonus +5 to
Exam 2 (by Tuesday
04/11)

Free vibrations of elastic beam

Without external forces (point loads or distributed load, /=0), PDE

(44) reduces to

o’ v 0 o v
) LA ) i
(p4) 5 8x2( axzj

The solution of PDE (46) is of the form V( x,t) — ¢( x)V

(46)

(t) (47)

Let () =9 () =4, .. Substituting Eq. (47) into Eq (46) gives

E] vd4¢<x>

¢(x>v(r) =

pA dx* v pdg, dx’

Vo _EI 1 d4¢<x)=_a,z

Above, the LHS is only a function of time, while the RHS is only a
function of spatial coordinate x. This is possible only if both sides

MEEN 617 — HD#14 Vibrations of Continuous Systems. L. San Andrés © 2012
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are equal to a constant, i.e. (—602) . Hence, the separation of

variables gives two ordinary differential equations

" v=0| & d’¢ =0 48
Vi, to v= P -A¢= (48)
where A =0’ r4 (49)
El
The solution of the ODEs is
v, =C, cos(@t)+S, sin(wt) (50)

¢, =Cicos(Bx)+C,sin(fx)+Cscosh(Bx)+C,sinh(fx)

(51)

pA :
here =ﬂ,l/2 —w| EZ 52
W N

has units of [ 1/length].

The coefficients (C, S) are determined from satisfying the
boundary conditions for the specific beam configuration. Equation
(51) is known as the fundamental mode shape for an clastic beam,
1.e., it contains the information on natural frequencies and mode
shapes.

! The solution of ODE ¢iv — 22¢ = O = ¢iv — ﬂ4¢ = Ois ¢ :Cekx with

4 2
characteristic equation k — i - O
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Example 1. Pin-pin ends beam

x=0 x=L
Recall ¢, =Cicos(Bx)+C,sin(fx)+Cycosh(Bx)+C,sinh(Sx)

The BCs are: {for all time

- Voon=9=80Viy=> #0=0 VI (530

— 90, =C +C;
_62v "o_
M = P2 ¢(0) (f) ) — 0
— ¢(0) -G+,

Hence, C;=Cs=0 and ¢, = C, sin(f#x)+C,sinh(Sx)

- Vi =0=4, V= 4., =0 Vi

— ¢,,=0=C,sin(fSL)+C,sinh(SL)
M= / =9V = #1,=0 (53.b)
—> ¢,=0 —C,sin(fL)+C,sinh(SL)
from this two equations, since sinh( BL) # 0, it follows that
¢, = C,sin(fx) (54)
where sin(SL)=0 when S =%, e (55)
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and hence, the natural frequencies of the pin-pin beam are

% 5 s 4

EI" ¢z (EI

2 :

“=h (,OAJ L ( j .

Associated to each natural frequency, there is a natural mode
shape
: . (imx
b= sin(p-sn[ T

as shown in the graph below.

G(x)

0.5

Function (x)
(e}

! 0 0.2 0.5 0.75 1
x/L
=== Mode 1
**** Mode 2

==* Mode 3

Fig. Natural mode shapes ¢(x) for elastic beam with both ends
pinned.

The displacement function response V( x,t) — ¢( x)V(t) equals to

the superposition of all the found responses, 1.e.
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Vien =Z¢(x)k v(1), =i¢(x)k [Ck cos(w,t) +S, sin(a)kt)]

Vien = kz_; sin (5, x) [Ck cos(w,t) +S, sin (a)kt)] (58)

and velocity:

Vi =Zsin(,6’kx)a)k [—Ck sin(@,t) +S, cos(a)kt)] (59)
k=1

The set of coefficients (C;, S;) are determined by satisfying the
initial conditions. That is at time =0,

V., =D sin(Bx)C,

k=1

V(x.0)

. (60)

Vieoy =V = Z w, sin(S,x)S,
k=1

RECALL:
¢, =Cicos(fx)+C,sin(fx)+C,cosh(fx)+C,sinh(Sx)

%:—Clsin(ﬂx)+C2 cos(fx)+Cgsinh(Sx)+C,cosh(Sx)
%2 =—C,cos(fx)—C,sin(fx)+C,cosh(fx)+C,sinh(Sx)

¢mﬂ3 =Csin(fx)—C, cos(fx)+Cgsinh(Sx)+C,cosh(Sx)
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Example 2. Fixed end-free end beam

x=0 x=L
Recall @, =Cicos(Bx)+C,sin(fx)+Cycosh(Bx)+C,sinh(Sx)

The BCs. are

- Von=0=00Viy= 90,=0 VI (61a)

— ¢(0) =C,+C,

= a%x:O: ¢(’0)V(t) — ¢('0) =0 (61.b)
- B0y =C,+C,
Atx=L
M, = / ¢(L) = (”L) =0 (6l.c)
%
/' =0=—Ccos(BL)-C,sin(BL)+C,cosh(BL)+C,sinh(BL)
8.1 =" Y a=0=d v, = 4, =0 (61.d)
%

",=0=Csin(SL)—-C,cos(fL)+C,sinh(BL)+C,cosh(SL)

Solution of Egs. (a)-(d) gives

¢, =cosh (B x)—cos(f x)—al.[sinh(ﬁi x)—sin(p, x)]

(62)
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where

and

cosh(S.L)+cos(SL)
o =
" sinh(B.L)+sin(SL)

B, L=1.875104 - o, =0.734096
B,L =4.694041 - a, =1.018466
B, L =7.854757 = o, = 0.999225

etc

d)(B ,X) = cosh(B ~x) — cos(B ~X) — a(B)-(sinl{B -x) — sin(B x))

<

~—~~
X

<

—

Function (x)
o

?
’ =
’-Q~.\.....o.,.... s B
FERA Y .. s
. ?

(63)

(64)

1.875
1
4694 | —
L

7.855

,
\ ol ’ 0.734
. ..' '
\ o o =|1.018
\ 2
“ ¢ 0.999

]

Fig. Natural mode shapes ¢(x) for cantilever beam (fixed end-

free end)

MEEN 617 — HD#14 Vibrations of Continuous Systems. L. San Andrés © 2012

27


lsanandres
Line

lsanandres
Line

lsanandres
Line

l-sanandres
Line


Properties of the natural modes

Recall that the pair {/1,{, ¢(x)k }k_l satisfy the ODE
iv 2
¢ ) A ¢k =0 Lo (65)

A
h =1 = P
where in (Elj

As in the case of axial vibrations of a bar, it is easy” to show that
the natural modes {¢k } 1, Of a flexing beam satisfy the following

ORTHOGONAL properties:

j(EA¢”¢”)d Ki fori:j (66 )

.. X = a

f t 0 fori+#j

j( 44,4, )d M, fori=J (66b)
. (). X =

) pEbe 0 fori+#j

For i=j, the iy, natural frequency follows from

= (67)

Where K., M. are the iy, mode equivalent stiffness and mass
coefficients.

? Demonstration with integration by parts (twice).
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Note that {¢, |, isa COMPLETE SET of orthogonal

functions

Now, consider the initial conditions for
Ve =2 0(x), v(1), =D 4., | C, cos(w,1) +S, sin( ;1) |
k =1
Vieoy = Vg = Z¢k Cys Vi) = V(x) = Z¢ka)k Se  (68)
k=1 k=1

Using the orthogonality properties, the coefficients (C, S 1)
follow from

C __[ (,oA¢m (x))

m 5 m= o0 693
M . 1,2,... ( )
And similarly
S —I ( & (x)) (69b)
m 3 M . > m=1,2,..0

This concludes the procedure to obtain the full solution for the
lateral vibrations of a beam, 1.e.

Vi = Z D, [C cos(w,t)+S, sin (a)kt)] (70)
k=1
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Forced lateral vibrations of a beam

Consider a beam subjected to an arbitrary forcing function f ;.
The PDE describing the lateral motions of the beam is

(PSS = oo~ = ( avj (44)

0x’ ox’

Let {¢k } k:1,2...be the set of natural modes satisfying the boundary

conditions of the beam configuration (pin-pin, fixed-free ends, etc).
A solution to Eq. (44) is of the form

Ve = kz¢(x)k 91, (71)
=1

Since the set {¢k } 11, 1s complete, then any arbitrary function

Sy can be written as

Jen™ Z¢(x)k O, (72)
k=1

where
L
Q IO (pA¢m f(x,t))dx

m: > m= 0 73

M 1,2,.. (73)

Substitution of Egs. (71, 72) into Eq. (44) ) P [EI v j

(x,0) ﬁ ox®
gives
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M=

[IOA%% _¢ka+E]¢liVQk:|:O (74)

e
Il

1

but recall that each of the normal modes satisfies ¢ — A @, =0;

and hence, Eq. (74) can be written as

M=

[,OA G, —O0, +E12 q, :|¢k =0

b
I

1

and, since the natural modes are linearly independent, then it
follows that

pAqg, _Qk—l_E[/?’kzqk:O k=1,2,....c0 (75)

A
Lastly, recall that A’ =®° r4 then ' EIl =’ p A, and
k I, k

write (75) as

%"'0)1?%: kpA > k=12, (76)

Which can be easily solved for all type of excitations Q( 0y

[ See solution of undamped SDOF EOMS — Lectures #2]
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Example 3. Free-free ends beam

x=0 X=L
Recall @, =Cicos(Bx)+C,sin(fx)+Cycosh(Bx)+C,sinh(Sx)

The BCs are:

"o
- M =77 =0= gV, = ¢y =0

¢(0) -G +C; (a)

Sreo = =#oVir= #o=0
= (’g) - Cz +C, (b)
Atx=L

/ =0= (L) Vin= ¢(L) (61.c)
N
/) =0==Ceos(SL)~C,sin(fL)+C,cosh(SL)+C,sinh(SL)

(©)

St = / =#Vo=> 91,=0

¢(’Z) =0=Cgsin(SL)-C,cos(BL)+C,sinh(SL)+C,cosh(SL)
(d)
Solution of Egs. (a)-(d) gives

¢y =cosh (B, x)i]+cos(f x) -, [ sinh(3 x)+sin( x)|

correction

>
_cosh(BL)—cos(BL)
- sinh(B.L)-sin(BL)

where (63)
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and

B, L =4.730041 - o, =0.982502
oL =7853205 > o, =1.000777
B, L =10.99560—> &, =0.999966

etc

Note that the lowest natural frequency is actually zero, i.e. a
rigid body mode. Bo=0 & ¢, =1

(I)(B ,x) = cosh(B -x) + cos(B -x) - oc(B)-(sinh(ﬁ -x) + sin(B x))

<

~—~
X
~=

4.73
B=| 7.853

10.996

0.983
o =|1.001

1

Function (x)

=== Mode 3
Fig. Elastic natural mode shapes ¢(x) for beam with free-free

ends
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Characteristic (mode shape) equation for beams:

¢, =Cicos(fx)+C,sin(fx)+C,cosh(fx)+C,sinh(Sx)
%:— Csin(fx)+C,cos(fx)+Cgsinh(Sx)+C,cosh(Sx)
%2 =—C,cos(fx)—C,sin(fx)+C,cosh(Sx)+C,sinh(Sx)

¢mﬂ3 :Clsin(ﬁx)_CZ COS(,BX) 4+ C3sinh(ﬂx)+c4 COSh(,BX)

Students:

The following pages contain five worked examples for prediction of the vibration
response of bars, rods, strings, and beams.
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Axial vibrations of elastic bar LSan Andres (c) SP 08 MEEN 617

ORIGIN =1
The figure shows an elastic bar of length L and cross-sectional area A, and with density and

elastic modulus equal to p and E, respectively. The bar is rigidly attached to a wall at its left end.
At its right end, a rigid block or lumped mass M is firmly attached. Note that M/Mp,= £=0.5.

The field equation for axial motions u(x,t) of the bar is pAaaztg e Agzlj
X

a) Determine the first three natural frequencies and characteristic modes (graph the modes) of
the bar as a function of (p, E, L).

b) Using your experience, estimate the first natural frequency of the bar and block. Explain your
assumptions. How good is the estimate when compared to the ones derived in (a)?

Solution Procedure

_ | _ AEL, p M
using separation of variables,
L >
u(,H = 60V @ I X
> u(x.t)
leads to the following two ODEs:
2
T o+2%9=0  ca
2
dx
and 2 5
d—V +Qz-v =0 (2b) where )\ = Q(B)
dt° E

The solution to the ODEs is simple, i.e.:
v(t) = Apcos(Q-t) + Bysin(Q-1)
3
d(x) = AX-cos(k-x) + Bx-sin(k-x)

Satisfy the boundary conditions. At x=0, u(0,t)=0 (fixed end). Thus

$(0) = AX-cos(k-O) + Bx-sin(k-o)

_ Then: A,=0
$(0) = AX-1+ BX-O

and

o(x) = sin(A-x) @
At the right end, x=L, the appropriate boundary condition is: axial force = M accel

2
_E.A.d_u = |\/|.d_u

dx d t2 (5a)
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2

: d , _ d 2
o -E-Av—¢ = M'<|>'—2V . Noting that d—v = —QZ-V from (2a)
dx dt dt2
then, at x=L d 2
-E-A—¢ = -M-Q-d(L) (5b)
dx
recal 2%= Q% 2 - E-A-d—(l) = M-KZ-E-d)(L) (5b)
E dx p

Replacing (4) ¢(x) = Sin(X-X) & d_(l) = X-COS(K-X) into (5b) gives

dx
AL -\ - - -
P -cos(x) —X-sin(k) =0 where A=A-L
define
g = M , and write the characteristic equation as: = 1
(p-A'L) - tan() = —
(6)
gA
from experience or having worked other problems, using a calculator, = 05
1
1 N3 f(y) = tan(y) - —
guess values : y-g
y:=|2 # of roots
6
— 1.077
A_ = root(f(y),y) 5
A =] 3.643 where A = A-L & _ E
— Q=7rl=
6.578 P

And thus, the first three natural frequencies are _ _
Graphical solution

1.077 5 100
_ 1 (EY
Q= 3643 | — " an(Y)
6.578 . OF
The shape functonsare 7 VY
$1(z) = sin(x_l-z) ......... /
$2(z2) = sin(X_z-z) where 7z = % 01 012345678910

Y
— tan(y)

$3(2) = sin(x_g-z) ..... 1/(ye)



-1 | | S
0 0.25 0.5 0.75 1
= Mode 1
..... Mode 2 X/L
=== Mode 3
(b) Approximate first natural frequency. Using mode shape o(x) = X

L
recal lots of problems worked in class and homeworks, one can easily estimate the equivalent
stiffness and mass as

_AE _(p-AL : 1
Keq = Meq = ( 3 + Mj = p-A-L-(g +8j

and the estimation for natural frequency is

5
i (Keg 1 E.s 3 \®
tapprox = | e | T TG (Tves
5
£ = 1.095
1+¢-3

5
1(E
©1approx = 1.095-{:(;) }

which is just 2.5% higher than the exact value

SOl




(c) Free vibrations response:
Consider the following intitial conditions,
at t=0

u(x,0) = a-% a:=0.01 Uniform axial stretching
d—u =0 no velocity = rest condition
dt

The response for axial motions of the bar is

1
u(x,t) = z ¢i-(Ai~cos(Qi-t) + Bi-sin(Qi't))
i=1
Since the initial velocity = 0 everywhere, then it follows thatB; = 0

and  u(x,0) = a-% =" oie(A)

i=1

multiplying this equation by (I)j and integrating over the domain gives

L
X
[ (a. _j.q)i dx "Used orthogonality property of shape functions
L

L
J ¢i2 dx
0

0j(2) = sin(x_i-z)'

Define )
recall:

A= AL

1.077

1
{J z-sin(k_i-z) dz}a A_=|3.643
Aj = 0

6.578

0.01

A=| 4625x10 ° n

—2.897 x 10_3 U(X,t) = Z Sln(x—l%j(Alcos(ght))

i=1



Calculate time response at various spatial points in bar:

: N k
PHYSICAL Parameters: g ._ 20-109-—2 o= 7800-—93 L:=1m d:=01m
m m
5
a-1 L[E

L \p
T 274.443
n-— 2.1 natural frequencies

fo=| 928439 |H;

1 1.676x 10°
Tn e

fn T 3 3 4

T, = (3.644x 10 © 1.077x10 ° 5.965x 10 )S
natural periods
f X
u(x,t) = sinf A_j-— |-| Aj-cos( Qj-t
= 3 sinfne v
i=1
Response at bar: midpoint & end L
Thax = 5-Tnl
0.015

e =05

0.01 ) it !\ T
wosLy || 1) \l \/ \ﬁ \I ’\/
— M VvV ‘A . . !
acy [ VAL ../\ : V\  : /\ ﬂ iV

0005 | iff .’ h d

-0.01 u d \J N

0015 570002 0004 00061 00081 00101 00121 00142 00162 00182
t

time (s)



Axial vibrations of elastic bar (2) LSan Andres (c) SP 08 MEEN 617

The figure shows an elastic bar of length L and cross-sectional area A, and with density and elastic modulus equal to
pand E, respectively. The bar is rigidly attached to a wall at its left end. At its right end, a massless spring K
connects the bar to another fixed wall. KsL/(EA)= & =0.25.

The field equation for axial motions u(x,t) of the bar is pAGZ u_p 0%

otz ax?
a) Determine the first TWO natural frequencies and characteristic modes (graph the modes) of the bar as a

function of (p, E, L, and&). [20]

b) Using your experience, estimate the first natural frequency of the bar and block. Explain your assumptions.
How good is the estimate when compared to the ones derived in (a)? [5]

ORIGIN =1
PRYSICAL Parameters: g _ 20-109-l2 p = 7800-k—% L=1m d:=0.Lm
m m
2
A AE _smx108N
4 L m
(@) natural frequencies & mode shapes L
< >
using separation of variables, AE,p Ks
/ 4 X
u(x,t) = 0()-v() @ -
> u(xt)
leads to the following two ODEs:
2
d_¢ + }\‘2(1) =0 (2a)
2
dx
and 2 5
d—V +Qz-v =0 (2b) where )\ = Q(B)
dt? E
The solution to the ODEs is simple, i.e.:
v(t) = Apcos(Q-t) + Bysin(Q-1)
®3)

d(x) = AX-cos(k-x) + Bx-sin(k-x)

Satisfy the boundary conditions. At x=0, u(0,t)=0 (fixed end). Thus

$(0) = AX-cos(k-O) + Bx-sin(k-o)

_ Then: A,=0
$(0) = AX-1+ BX-O

and

o(x) = sin(A-x) @
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At the right end, x=L, the appropriate boundary condition is: bar axial force = Ks u = spring force

at x=L d
_E.A.d_xu = kSu (52)
or: —EAVd—d) =k 'd)'V d
: ™ S _E.A.d_(l) = ks.¢(|_) (5b) from (2a)
X
Replacing (4) d(x) = sin(x-x) & d_<|) = x-cos(k-x) : :
dx into (5b) gives
EA - (T - =
—-x-cos(k) +sin(7») =0 where A = A-L
define kgL
Ks s
€= EA , and write the characteristic equation as: tan(x) +21=0 6
- _ €
L € :=.25
guess values T n:=4 1
from graphical y := (1.71 4.76 7.88 11) # of roots f(y) :=tan(y) + —y
soln €
—
1.716 A_ := root(f(y),y)
4.765 where
= =rl e E)°
7.886 - - Q= }V[_j
11.018 P
And thus, the first four natural frequencies are
5
L\p Graphical solution
0F
T (]
o = (2747x10% 7.63x 10® 1.263x 10% 1764x10%) 24 tan(v)
S %
-Y
- =20
The shape functions are e
01(2) = sin(x_l-z)
$2(2) = sin(X_z-z) where 7z = E 40 0123456789101112
Y
$3(2) = sin(x_g-z) tan(y)

..... _(ye)

d4(2) = sin(x_4-z)



4 | -t | S, e | o]
0 0.25 0.5 0.75 1
= Mode 1
..... Mode 2
=== Mode 3
=*= Mode 4
(b) Approximate first natural frequency. Using mode shape 250 i
L
easily estimate the equivalent stiffness and mass as
L |
d ’ 2 - 2 l
Keg = EA(d—ch(x)j dx+ kg (o (L)) Meg := J p-A-(0 ()" dx
0
0
_AE _(p-AL
Keq = T + kS I\/qu = (—j
k
S
6= — A-E
. Kog = — 1+
EA eq= (1+¢)
L e =025

and the estimation for the fundamental natural frequency is
5
Keg 1 (EYP (1+6)°
Olapprox = | | T 7S
Meq L \p % . l+e¢

which is just 13% higher than the exact value

a
— =1.129 S
1 A1=1716 | 1(E
L \p

a=1.936



(c) Free vibrations response:

Consider the following intitial conditions,

at t=0 . .
u(x,0) = 0 NO axial stretching
Vg i=1.—
SS
dy=v.[X velocity ss = 3
d °L
1
The response for axial motions of the bar is
inf 58 05 ]
u(x,t) = Z (l)i-(Ai-cos(Qi-t) + Bi-sin(Qi-t))
i=1
|
%9 0.5

Since the initial displacement = 0 everywhere, then it follows

S inf
and j—tu(X,O) = VO-(%j = Z (|>i'(Bi'Qi)

i=1

Ai:0

multiplying this equation by d)j and integrating over the domain gives

L

X SS
{VO'(EJ }"*’idx
0
L
J ¢|2 dx
0

"Used orthogonality property of shape functions

Define X ; 1 recall:
z= T 0i(2) = sm(k_i.z) '
A= AL
i==1.n 1.716
Lo L | 476
Vg z -sm(k_,-z) dz -~ 7886
B' —_ . 0
'T o A 11.018
J sin(x_rz) dz
0
BT - (1586% 1074 ~3.33x 1075 7.935x10° % —297x10"®)m

n |

u(x,t) = Z sin(k_i%j-[Bi'(Si”(Qi‘t))]

i=1



Calculate time response at various spatial points in bar:

natural frequencies: 9)
fh=—
n:
natural periods ]2--1t fn-r = (437.199 1214x 10° 2.01x 10° 2.808 x 103) Hz
Ty=—
fn
T = (2287x1073 8.235x107% 4.976x107% 3561x107)s

Bar displacement: midpoint & end

for graph only
n

u(x,t) := Z sin(x_i-%)(Bi~sin(Qi-t)) Tmax = 5 Th

1
i=1
210 4
u(0.5-L,t)
u(L,t)
-0 4
0 0.0023 0.0046 0.0069 0.0091 0.0114
t
time (s)
Bar velocity: midpoint & end m 1\ m
Vg = 1— Vol o =0.125—
n s s
X
v(x,t) = sin(k_--—j- Bj-Qj-cos( Qj-t P
izl o J{Brareos{on) UMES=05 (L time) - 0.837
= S
1
05 |3 1L
v(0.5-L,1)
v(L,t)
-0.5
-1

0 0.0023 0.0046 0.0069 0.0091 0.0114

t
time (s)



|TORSIONAL VIBRATIONS OF AN ELASTIC ROD |

The figure shows an elastic rod of length L , radius R, density o and elastic
shear modulus G. The rod is rigidly attached to a wall at its left end. At the
rod right end, a massless spring Ks connects the rod to a fixed wall. The field
equation for angular motions é&Xx,t) of an elastic rod under torsion is
%zf’:c; 3 f;z? where J = % nR* is the polar moment of area and
t X

M :GJ%@ is the torsional moment. Let KsR°L/(GJ)= &=0.25.
X

pJ

a) Find the first TWO natural frequencies and characteristic modes (sketch
the modes) of the bar as a function of (p, G, L, Jand &). [35]

b) Using experience, estimate the first natural frequency of the bar and
spring. Explain your assumptions. How good is the estimate when
compared to the exact (first) value derived in (a)? [15]

If needed use the following G=12 10° Pa, p=7800 kg/m®, L=1m, R=0.05m

Top view

Ks
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Torsional vibrations of elastic rod L San Andres (c) SP 12 MEEN 617

The figure shows an elastic rod of length L, radius R, density p and elastic shear modulus G. The rod is
rigidly attached to a wall at its leftend. At the rod right end, a massless spring Ks connects therod to a
fixed wall. The field equation for angular motions @&Xx,t) of an elastic rod under torsion is

2 2
0 C;):G J 0 ? where J = % nR* is the polar moment of areaand M =G J 67@) is the torsional
ot oX 0 X
moment. Let KSRZL/(GJ)z £=0.25.

pJ

a) Find the first TWO natural frequencies and characteristic modes (sketch the modes) of the bar as a
function of (p, G,L,Jand ¢). [35]

b) Using experience, estimate the first natural frequency of the bar and spring. Explain your assumptions.
How good is the estimate when compared to the exact (first) value derived in (a)? [15]

If needed use the following G=12 10° Pa, p=7800 kg/m*, L=1m, R=0.05m

ORIGIN := 1
PHYSICAL Parameters: . 12_109_% _ 7800-k—% L= 1m d - oLm
m m
n-d? r 4
A== J:J PdA 1="" j_9817x10 °m*
0 32
Top view
Ks
L
< » Ks
U\
’ -,I -...,,_.‘ R
I R ---¥ Pae) 020
" pI—F oI
ot OX
> X (O)




(a) natural frequencies & mode shapes

using separation of variables, © ;0 = ¢()-v() ()
Substitute into the field Eq. (0) to obtain the following two ODEs:

2
Lo+rlp=0  ca 5
dx where A = Q(Bj
and d2 2 G
—V+Qv=0 (2b)
dt

The solution to the ODEs is simple, i.e.:

v(t) = At-cos(Q-t) + Bt-sin(Q-t)
3
d(x) = AX-cos(k-x) + BX-sin(k-x)

Satisfy the boundary conditions. At x=0, ©(0,t)=0 (fixed end - no angular deformation). Thus

¢(0) = A,-cos(%-0) + By-sin(1-0)

_ Then: A,=0
0(0) = A1+ By0

and

o(x) = sin(A-x) @

At the right end, x=L, the appropriate boundary condition is: rod torsional moment = spring
reaction force x moment arm
at x=L d ]
-G-J—0O = (ke'uy )R Ba) u =0;-R 5 .
dx ( S L) L L™ R:==

d 2
© —G-JV—¢ = ke-R%-0- d 2
or G-Jv dx(l) kg'R™¢-v _G_J_dxd) = kg'R™o(L) (5b) from (2a)

. . d
Replacing (4) o(x) = sin(r-x) & &d) = h-cos(A-x) into (5b) gives

-X-cos(k) +sin(7») =0 where A =A-L

define kS'R L

G.J , and write the characteristic equation as: tan(i) + 1-1 =0 (6
€

€= 0.25

guess values T LRk 1
from graphical 'y := (1.71 4.76 7.88 11) # of roots f(y) :=tan(y) + —y
€

soln



1.716
4.765 where

i = =al & E)®
7.886 - - N Q= }V(_j
11.018 P

And thus, the first four natural frequencies are

5
Q::}\‘ -i. E
=L >
rad

-
o' = (2128103 5.91x 10° 9.781x 10° 1.367x 10*) @

The shape functions are

¢1(2) = sin(n_1-2)

¢2(z) = sin(A_2z) where z= E
$3(2) := Sin(k_3-z)

d4(2) = sin(k_4-z)

_
A_ = root(f(y),y)

Graphical solution

([

01234567 89101112

Y
— tan(y)
..... _ (ye)

_ | A
1o 0.25 0.5 0.75

= Mode 1
..... MOde 2
=== Mode 3
=+= Mode 4



(b) Approximate first natural frequency. using mode shape 00 = =

easily estimate the equivalent torsional stiffness and mass moment of inertia from

L [ |
d g 2 - 2 l
Koeq = G-J-(&(p(x)j dx + kg (R-o(L)) log = L p-J- (0 (x))* dx
G-J 2
K = — +keR _ G-J _ pJL
®eq S K@eq = T(l + 8) qu = (Tj
2
| kg'R™L
with g =
G-J ¢ =0.25

and the estimation for the fundamental natural frequency is

5
) K@eq _1/(G 5 i - l+¢
®lapprox = | T | T\ o) ¢ e 1
eq p 3

a=1.936

compare to the _ 5
exact value: Ay =1716 l E
L \p

a
7¥_1 = 1129 , i.e just 13 % higher than the exact value

N
kg = 1.178x 10" =
m

Note: do realize the torsional bar vibration problem is dimensionally
and physically equivalent to the axial vibrations of an elastic bar
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a:= 15-mm diameter 0= 7800-ﬂ E_ 2.1011.£ ORIGIN := 1
L 1.m length m° m?2 beam and frame are
dropped from height h.
2 find the response.
n-d .
A = n cross-sectional area -
n-d4
|p =
64 Y Y
area moment of inertia (polar) , h:=1m
h
v
- 5
Solution Procedure free fall velocity  vj := (2:g-h)
using separation of variables, 52 Vv 82 82 Vv
A — =—— = _|EIZ=
t) = V(t 1 p
u(x,t) = o(x)-v(t) @ ( )atZ aXZ aXZ
. . 4
leads to the following two ODEs: d_¢ B x2-¢ -0 (23)
dx? A =
where A = Q- Ll
and d2 2 E-IP
—V + Q-v=0 (2b)
dt

The solution to the ODEs is simple, i.e.:
v(t) = At-cos(Q-
d(x) = AX-cos(B-x) + Bx-sin(B-x) + Cx-cosh(ﬁ-x) +

Satisfy the boundary conditions.

t) + Bt-sin(Q-t)

®)
Dx-sinh(B-x) 0.5

PINNED ENDs: no lateral disnlacement and null bending moment

At x=0, L d2
_ ——u=M=0
u=20 dx2
at x=0

¢(0) = A,-cos(B-0) + Cy-cosh(B-0) = 0

2
%q) = ~A,-cos(p-0) + C,-cosh(p-0) = 0

then A,=C,=0

x=0 x=L

since:

cos(0) =1 cosh(0) =1

(x) = By-sin(B-x) + Dy-sinh(p-x)
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at x=L
(L) = Bysin(B-L) + Dy -sinh(B-L) = 0

2
d_2¢ = -B,sin(B-L) + D,-sinh(p-L) = 0
dx
then Dy=0
sin(B-L) = 0 @) thus
(4) is the characteristic equation i 1.n
with solution: . ' )
I-7T
Bj = T

and natural frequencies

_Q
2-7

natural frequencies

f:

.
o = (187.413 749.65 1.687x 103 2.999 x 103 4.685x 10° 6.747x 10° 9183 10°)

The shape functions are

d1(x) = sin(B1-x)

MODE SHAPE

o(x) = sin(B-x) (5)

n:=7
# of roots
3.142
6.283
9.425
12.566
15.708
18.85
21.991

3|

rad

S

$2(x) = Sin(B?X) $3(2) = sin(Bg-Z)

7 — (20.828 110311 268.449 477.242 745.691 1.074x 10° 1.462x 10°) Hz

— Mode 1
Mode 2
=== Mode 3



=]
(b) Approximate first natural frequency. Using mode shape Pa(x) = sinLan

recall lots of problems worked in class Ax X
and homeworks, one can easily Pa(x) = —(1 - —)
estimate the equivalent stiffness and L ) L L
mass as Meq =p-A J Pa(x) dx
0 Megq
= 0.533
L p-A-L
2
d2
Keq = E-lp- —2(pa(x) dx Keq
dx — 1 -1333
0 48-E-lp
K
and the estimation for natural frequency is
5
la = | rad
Meg Q1 = 208.013—
rad
Q1 = 187.413— exact
S
1 T
Q
1
e 1.11
Q1
05 — ..o. o.. —
0 | | |
0 0.25 0.5 0.75 1
= Mode 1
""" approximate

(c) Free vibrations response:
Consider the following intitial conditions,

at t=0 u(x,0) =0 No initial deformation

velocity = free fall velocity

The response for lateral motions of a beam is



u(x,t) = Zn: ¢i-(Ai~cos(Qi-t) + Bi-sin(Qi't))

i=1
Since the initial displacement = 0 everywhere, then it follows that A; = 0

and for velocity .
j—tu = V0 = Z d)'(BIQI)

i=1

multiplying this equation by (I)j and integrating over the domain gives

=1.n "Used orthogonality property of shape functions
L
J sin(Bi-x) dx |-vq
Bj = E B
) 0.03|m

J S|n(Bi-x)2dx-Qi 0

0 1.114-10 -3

Calculate time response at various spatial points in beam: 0
mm ;= n— 0 select number of modes to display results 2.407:10 4 no7

5 =
mm 8.772-10 -5
u(x,9 =" sin(pix)-(Bisin(Qit)) pispi AcEMENT
i=1
mm =7
mm
VELOCITY vel(x,1) := Z sin(Bi-x)-Qi-(Bj-cos(Qi-t))
i=1 m
Vo = 4.429 —
S
T, = 1 Natural periods for graph Tmax =5Th
f 1



Displacement response at beam: midpoint (x=L/2) & x=L/4

0.04

0.02 /\

u(0.5-L, 1)
u(0.25-L, 1)
~0.02 \,,/ \../ \j
.04 0 0.021 0.042 0.063 0.084 0.1 0.13 0.15 0.17
t
time (s)
7.7 = (0034 8381x1073 3725x 1073 2.005x10°° 1341x 107 9313x10°* 6.842x10°%)s

Velocty response at beam: midpoint (x=L/2) & x=L/4

10

. 8 J:L =

i
i8b J8E

® o W "
. 4K
o
N o Y ; -
° . . .
. o . .
o : e oh  h

ol
o

vel(0.5-L,1)

D
o)
']
&
o

vel(0.25-L, t) TR

10 0 0.021 0.042 0.063 0.084 0.1 0.13 0.15 0.17
t
time (s)
XX = L vel (XX,0:-s) m
2 — . -092 V, = 4.429 —
Vo 0 S



Vibrations of a string

This problem aids to understand the tuning process of string musical
instruments. The graph shows a simple model of a taut string fixed at both
ends.

< » | |
< ,‘

The string vertical displacement u(x,t) is described by:
ou o
PP
where y=24.5 g/m is the string mass per unit length, L = 0.5 m is the string
length, and T is the tension applied to the string. When the string is plucked
at its middle, its vibration response is dominantly represented by the first
mode shape at the first natural frequency fi, (see the dotted lines for a
sketch). Then, the sound frequency components radiating from the string
are dominant with frequency (fi).
The tonal frequencies of the strings in a violin are G3 = 196 Hz, D4 =
293.7 Hz, A4 = 440 Hz, and E5 = 659.3 Hz.
Assume the strings are made of the same material (steel). p)=7800 kg/m?

T

Questions:
a) Find the relation between the frequency (f1), the string length (L), the
mass per unit length (7), and the tension (T).
b) Assuming all strings have the same diameter, find the tensions T to tune
each string. Find also the stresses and elastic deformations.
¢) Find how a tonal frequency scales with the diameter of a string. Using
the tension found in (b) for G3, determine the strings’ diameter and
elastic deformation.
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QRIGIN, = 1

The string vertical displacement u(x,t) is described by
where T is the tension in the

2 2
ou ou 0) string and y is the mass per
unit length.

N
PHYSICAL Parameters E - 30_109._ ~ = 0.0245.22 L:=05m

for a steel string: m2 m
length of string

(a) natural freqguencies & mode shapes

using separation of variables, ©(*:0 = é(x)-v(t) ()
Substitute into the field Eq. (0) to obtain the following two ODEs:
2

L o+¥o=0 e 5
dx where X\ = Q(JJ
and d2 2 T
—Vv+Qv=0 (2b) 0.5
2 .
dt Let . _ (I]
The solution to the ODEs is simple, i.e.: 0 A

a characteristic speed [m/s]
v(t) = Apcos(£2-1) + Bysin(€2-1)

©)
O(X) = Ay-cos(N-X) + By-sin(h-x)

Satisfy the boundary conditions. At x=0, ®(0,t)=0 (fixed end - no displacement). Thus

¢(0) = Ay-cos(X\-0) + By-sin(X-0) e P
$(0) = A1+ B0 o X =



and d(x) = sin(\-X) (4)is the equation for the shape funcion.

At the right end, x=L, the string is also fixed. Thus
Set |T := 4000-N

example

atx=L  @(L) =sin(\L)=0 (5a)
N = L}

which is the characteristic equation. The roots are T
L

And thus, the natural frequencies are Qj = N-¢

(T 5
S = JT(_) rad/s

" = (2539 103 5.078x 103 7.616x 103 1.016x 10*) 1

S
The shape functions are

d1(x) = sin(xﬂj
L d2(x) = sin(x~ﬂ—2j
L d3(x) = sin(xﬂTGj

. -4
d4(x) = sm(ij

etc

Mode 1

= = = \ode 3
== Mode 4



The natural frequencies in Hz (cycles/s] are fo Qi _ 5t
2'7T f_l = J—- I Hz
2L \y
The tonal frequencies for the strings in a VIOLIN are
196
296.7 _ 2
ftone = -Hz T=(f2L)"~
440
659.3

k:=1.4  (fourstrings)
considering the same density/length for all strings, the necessary tuning tension in a string is

2
k= (Z'L'ftonek) o
941.192
2157 x 10°

4.743 % 10°

1.065 x 10°

Let a string diameter d =2mm (assumption as everyone knows the strings have different diameters)

The stresses in the strings are o - T and the strains

- 2 _ o
[ .d_j &S g
4

o = (2996 108 6.865x 108 1.51x 10° 3.39x 10°) Pa
¢ — (0986107 0.023 005 0.113) d = 2mm

eT-L = (4.993 11.442 25.163 56.498)mm  Deformation for the strings are large, in
particular for one with highest tonal frequency.
Recall L = 500mm

Note: do realize the vibrations of a string is dimensionally and

physically equivalent to the axial vibrations of an elastic bar and the
torsional vibrations of a rod
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Note: do realize the vibrations of a string is dimensionally and physically equivalent to the axial vibrations of an elastic bar and the torsional vibrations of a rod


2
Note that a string mass/unit length _pAL_ md
= L p 4

where p is the material density and d is the diameter of a string. Hence, the tonal frequency as
a function of the string diameter equals

c 1(Tj'5_ 1 ( 41 \°
tone — 5, | _ = o
2L\~ 2L | poed?

co_a (T
tone = 4 0T

Set T :=T1 Tension for sound G3

T_=0941.192N

Hence, for a given tension, a string's diameter is inversely proportional to the tonal frequency

5

1 T Y
ol
I-'ftonek p-m

2
1.321
= mm
With deformation for each string 0.891
T L 0.595
6 = 2 E
’rt.—
4
5' = (4994 11.444 25168 56.508)mm L =05m
T E =3x10Pa
== (9.988x10°3 0.023 0.05 0.113)
The stresses in the taut stringsare _ _ T _ 2
. T AT (Z'L'ftone) P
since v = p-A

and the axial strains e = 2 = (Z'L'ftone)z'(gj NOT a function of the string
E diameter

with elastic deformation 5 _ o) (Z'ftone)z'(%)"-3 proportional to L"3 and tone_freq”2
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