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Lecture 14.  APPLYING LAGRANGE’S EQUATION OF
MOTION TO EXAMPLES WITH GENERALIZED
COORDINATES (NO KINEMATIC CONSTRAINTS).

Coupled Cart/Pendulum

Figure 6.3 Translating cart
with an attached pendulum

This system has the two coordinates  X ,θ and two degrees
of freedom.  Hence, the two coordinates  X ,θ are the
generalized coordinates , and their derivatives are

the generalized velocities  of Lagrange’s equations.  The

following engineering task applies: Use Lagrange’s
equations to derive the equations of motion.
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(5.183)

The kinetic energy of the cart is easily calculated as

.  

The kinetic energy of the pendulum follows from the
general kinetic energy for planar motion of a rigid body 

where is the velocity of the body’s mass center with

respect to an inertial coordinate system.  The pendulum’s
mass center is located by

Hence

and
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Hence, the system kinetic energy is

  Using a plane through the pivot point as datum for the
gravity potential energy function gives . 

The potential energy of the spring is ; hence, the

system potential energy is

and 

Proceeding with the Lagrange equations developments, the
partial derivatives with respect to generalized velocities
are:

and the derivatives of these terms with respect to time are:
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(6.29)

Once again, note the last terms in these derivatives. 
 The partial   derivatives of L with respect to the

generalized coordinates are

By substitution, the governing equations of motion are:

The right-hand terms are zero, because there are no
nonconservative forces.  Eqs.(6.29) are stated in matrix
notation as
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(6.30)

which coincides with Eq.(5.160) ( without the external
force of figure 5.38) that we derived earlier from a free-
body diagram/Newtonian approach.  Again, the results are
obtained without recourse to free-body diagrams, and only
velocities are required for the kinematics.
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Cart-Pendulum Example with External Forces

Figure 6.4  Cart-
pendulum example with
an external force  acting
on the cart and the end
of the pendulum

This example did not include external forces; however,
figure 6.4 presents the same system with external forces
acting at both the cart and the end of the pendulum. The
force on the cart is , and its point of action is

located by the position vector .  The force acting on

the end of the pendulum is , with

a point of action located by the vector
.  The engineering-analysis task

is: Use Lagrange’s equations of motion and develop the
equations of motion for the system.  Note that we have
already developed the equations of motion in Eqs.(6.29),
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(6.31)

except for the nonconservative generalized forces.  To
complete the task, we need to determine the
nonconservative generalized forces.

The differential nonconservative force produced by the
forces of figure 6.4 due to a differential change in position
of the system is

Hence, the generalized force terms are:

Inserting these terms on the right-hand side of the
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differential Eqs.(6.29) gives:

Cart-Pendulum Example with Viscous Dissipation Forces

Figure 6.5 
a. Cart-pendulum example with a
viscous damper connecting the
cart to ground and a viscous

resistance moment at the pendulum support point o.  b. Cart
free-body diagram.  c. Pendulum free-body diagram.
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Figure 6.5a illustrates the cart-pendulum assembly with
the addition of a viscous damper connecting the cart to
ground.  This damper is characterized by the linear damper
coefficient c, yielding the damping force   acting

on the cart.  The point of application of the force is defined
by the position vector .  Also, suppose that we now

have viscous damping in the pivot joint at o,  supporting
the pendulum.  This type of energy dissipation moment was
discussed in section 5.4, and is illustrated in figure 5.15.
The resistance moment due to this damping is defined by

. 

The following engineering-analysis task applies: Use
Lagrange’s equations of motion to derive the equations of
motion.   We have already developed the equations of
motion for the system, except for the nonconservative
generalized forces.  To complete the assignment, we need
to define the nonconservative forces due to damping and
then plug them into the right-hand side of Eqs.(6.29).

Figure 6.5B-C present the free-body diagrams for the
system, including this viscous force and moment.  There is
not enough space in the free-body diagram of figure 6.5B
to show the viscous moment being reacted by the cart. The
nonconservative differential work done by the dissipation
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(6.33)

(6.32)

forces during a differential change in position of the system
is

Inserting  on the right-hand side of Eqs.(6.29) gives

the differential equation of motion:

Again, the result is obtained more quickly and efficiently
with Lagrange’s equations than it could have been with a
free-body/Newtonian approach. 



1  This type of energy-dissipation moment
was introduced in section 5.4, and is illustrated
in figure 5.16.
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(6.34)

Cart-Pendulum Example with a Coulomb-Friction
Moment in the Pendulum Support Pivot.

Figure 6.6 provides a free-body diagram for the
pendulum connection of the cart-pendulum example with
Coulomb friction at the pivot-support point1 o.  Figure 6.6
shows the Coulomb friction force at the pivot pin due to the
radial reaction force N and the Coulomb-friction coefficient
μ.  The Coulomb friction force is  μN, opposing the rotation
direction of the pendulum about the pivot pin.  The pivot
pin radius is e ; hence, the resistance moment of μN  about
the center of the pin is .    In contrast to some
of the preceding examples, no external forces act on either
body, and Coulomb-friction at the joint is the only
dissipation force.  Stating the differential nonconservative
work due to the Coulomb-friction moment would seem to
be easy as

which is simply the reaction moment times the differential
rotation. The problem with this expression is that we don’t
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know N and can only obtain it by drawing a free-body
diagram and writing the components of for the

pendulum’s mass center.  

Figure 6.6  Free-body diagram for the cart-pendulum
example with Coulomb friction acting at the pinned joint 
o.
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(6.35)

From figure 6.5C:

From figures 6.5C and 6.6, ; however,

to define the reaction components  , we need to solve

for in terms of the generalized coordinates and their

derivatives.  From figure 6.5C  

Differentiating these equations twice with respect to time
gives

Substituting   into Eqs.(6.35) to obtain   , and

then solving for N gives

Substituting into Eq.(6.34) gives
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Hence,

Substituting these results back into Eq.(6.29) completes the
task as 

For this example, the perceived advantages of the
Lagrangian approach over a free-body/Newtonian approach
largely vanishes because: (i) a free-body diagram is
required, and (ii) acceleration terms are needed for the
pendulum’s mass center. 


