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Handout #2a (pp. 1-39) 
 

Dynamic Response of 
Second Order Mechanical 
Systems with Viscous Dissipation 
forces 

 
2

( )2 ext t
d X d XM D K X F
d t d t

+ + =
 

 
Free Response to initial conditions and F(t) = 0, 
Underdamped, Critically Damped and Overdamped Systems 

 
Free Response for system with Coulomb (Dry) friction 
 
Forced Response for Step Loading F(t) = Fo 
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Second Order Mechanical Translational System: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fundamental equation of motion (about equilibrium position, X=0) 
   

  ( )X ext t D K
dVF M F F F
d t

= = − −∑  

  D
d XF DV D
d t

= =   : Viscous Damping Force 

  kF K X=     : Elastic restoring Force 

  
2

2I
d XF M a M
d t

= =   : Inertia Force 

 
where ( M, D ,K ) represent the equivalent mass, viscous damping coefficient, and 
stiffness coefficient, respectively. 
 

Since d XV
dt

= write the equation of motion as: 
2

( )2 ext t
d X d XM D K X F
d t d t

+ + =  

 
+ Initial Conditions in velocity and displacement;  at t=0:     

       (0) and (0)o oV V X X= =  
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Second Order Mechanical Torsional System: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fundamental equation of motion (about equilibrium position, θ=0) 
   

  ( )ext t D K
dTorques I T T T
d t θ θ
ω

= = − −∑  

  Tθ D = Dθ ω   : Viscous dissipation torque 
 
  T θ K = Kθ θ   : Elastic restoring torque  
  
  T θI = I dω /dt    : Inertia torque 
 
where ( I, Dθ ,Kθ ) are equivalent mass moment of inertia, rotational viscous 
damping coefficient, and rotational (torsional) stiffness coefficient, respectively. 
 

Since ω = dθ /dt , then write equation of motion as:  
 

2

( )2 ext t
d dI D K T
d t d tθ θ
θ θ θ+ + =  

+ Initial Conditions in angular velocity and displacement at t=0: 
  (0) and (0)o oω ω θ θ= =    
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(a) Free Response of Second Order 
Mechanical System 
Pure Viscous Damping Forces 

 
Let the external force be null (Fext=0) and consider the system to have an 
initial displacement Xo and initial velocity Vo.  The equation of motion for a 
2nd order system with viscous dissipation is: 
 

2

2 0d X d XM D K X
d t d t

+ + =      (1) 

with initial conditions  (0) and (0)o oV V X X= =    
 
Divide Eq. (1) by M and define:     
      

n
K

Mω = : undamped natural frequency of system 

cr

D
D

ζ =  : viscous damping ratio,  

where  2crD K M=  is known as the critical damping value 
 
With these definitions, Eqn. (1) becomes: 
 

2
2

2 2 0n n
d X d X X
d t d t

ζ ω ω+ + =     (2) 

 
The solution of the Homogeneous Second Order Ordinary Differential 
Equation with Constant Coefficients is of the form: 
 

( ) s tX t Ae=        (3) 
Where  A  is a constant yet to be found from the initial conditions. 
 
Substitute Eq. (3) into Eq. (2) and obtain: 
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( )2 22 0n ns s Aζ ω ω+ + =      (4) 
 
Note that A must be different from zero for a non trivial solution. Thus, Eq. 
(4) leads to the CHARACTERISTIC EQUATION of the system given as: 
 
 

( )2 22 0n ns sζ ω ω+ + =      (5) 
 
The roots of this 2nd order polynomial are:  
 

( )1/ 22
1,2 1n ns ζ ω ω ζ=− −∓     (6) 

 
 
The nature of the roots (eigenvalues) clearly depends on the value of the 
damping ratio ζ  .  Since there are two roots, the solution to the differential 
equation of motion is now rewritten as: 
 

1 2
1 2( ) s t s tX t A e A e= +      (7) 

 
where A1, A2 are constants determined from the initial conditions in 
displacement and velocity. 
 
 
From Eq. (6), differentiate three cases: 
 
Underdamped System:     0 < ζ  < 1,  → D < Dcr  
 
Critically Damped System:    ζ  =  1,   →  D = Dcr  
 
Overdamped System:      ζ  > 1,   → D > Dcr  
 
 
Note  that  ( )1 nτ ζω=  has units of time; and for practical purposes, it is 
regarded as an equivalent time constant for the second order system. 
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Free Response of Undamped 2nd  Order System          
 
For an undamped system, ζ   = 0, i.e. a conservative system without 
viscous dissipation, the roots of the characteristic equation are imaginary: 
 

1 2;n ns i s iω ω=− =                   (8)  

where  1i= −   is the imaginary unit. 
 
Using the complex identity  eiat = cos(at) + i sin(at), renders the 
undamped response of the conservative system as: 
 

( ) ( )1 2( ) cos sinn nX t C t C tω ω= +                (9.a) 
 

where  n
K

Mω =   is the natural frequency of the system. 
 
At time t = 0, the initial conditions are (0) and (0)o oV V X X= =    

hence   0
1 0 2and

n

VC X C
ω

= =                  (9.b) 

 
and equation (9.a) can be written as: 
 
        ( )( ) cosM nX t X tω ϕ= −                   (9.c)                  
 

Where 
2

2 0
0 2M

n

VX X
ω

= + and ( ) 0

0

tan
n

V
X

ϕ
ω

=  

XM is the maximum amplitude response. 
 
Notes:   
In a purely conservative system, the motion never dies out, it is harmonic 
and periodic.   
Motion always oscillates about the equilibrium position X = 0 
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Free Response of Underdamped 2nd  Order System  
 
For an underdamped system, 0 <  ζ < 1, the roots are complex conjugate  
(real and imaginary parts), i.e. 
 

  ( )1/ 22
1,2 1n ns iζ ω ω ζ=− −∓     (10) 

 
where 1i= −   is the imaginary unit. 
 
Using the complex identity     eiat = cos(at) + i sin(at), write the solution for 
underdamped response of the system as: 
 

( ) ( )( )1 2( ) cos sinn t
d dX t e C t C tζ ω ω ω−= +   (11) 

where  ( )1/ 221d nω ω ζ= −  is the system damped natural frequency. 
 
 
At time t = 0, the initial conditions are (0) and (0)o oV V X X= =    
 

Then   0 0
1 0 2and n

d

V XC X C ζ ω
ω

+
= =    (11.b) 

 
Equation (11) representing the system response can also be written as: 
 

        ( )( ) cosn t
M dX t e X tζ ω ω ϕ−= −          (11.c)                  

 

where 2 2
1 2MX C C= + and ( ) 2

1

tan C
C

ϕ =  

Note that as  t→ ∞,  X(t) → 0, i.e. the equilibrium position only if ζ  > 0; 
 
and XM is the largest amplitude of response only if ζ =0 (no damping). 
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Free Response  of Underdamped 2nd Order System:   
initial displacement only    damping ratio varies 
 
Xo = 1,  Vo = 0,         ωn = 1.0  rad/s         ζ  = 0,  0.1,  0.25 
 
Motion decays exponentially for ζ   > 0  
 
Faster system response as ζ   increases, i.e. faster decay 
towards equilibrium position X=0 

 
 

Free response Xo=1, Vo=0, wn=1 rad/s
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Free Response of Underdamper 2nd Order System: 
Initial velocity only      damping varies 
 
Xo = 0,  Vo = 1.0           ωn = 1.0 rad/s;     ζ  = 0,  0.1,  0.25 
 
Motion decays exponentially for   ζ   >  0 
 
Faster system response as  ζ  increases, i.e. faster decay 
towards equilibrium position X=0 

                                                          Note the initial overshoot 
 

 

Free response Xo=0, Vo=1, wn=1 rad/s
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Free Response of Overdamped 2nd  Order System 
For an overdamped system,  ζ  > 1, the roots of the characteristic equation 
are real and negative, i.e.   
 

( ) ( )1/ 2 1/ 22 2
1 21 ; 1n ns sω ζ ζ ω ζ ζ⎡ ⎤ ⎡ ⎤= − + − = − − −

⎣ ⎦ ⎣ ⎦
  (12) 

 
 
The overdamped free response of the system as: 
 

( ) ( )( )1 * 2 *( ) cosh sinhn tX t e C t C tζ ω ω ω−= +  (13) 

where  ( )1/ 22
* 1nω ω ζ= −  has units of 1/time. Do not confuse this 

term with a frequency since motion is NOT oscillatory. 
 
 
At time t = 0, the initial conditions are (0) and (0)o oV V X X= =    
 

Then          0 0
1 0 2

*

and nV XC X C ζ ω
ω

+
= =               (14) 

   
Note that as  t→ ∞,  X(t) → 0, i.e. the equilibrium position.  
 
An overdamped system does to oscillate. The larger the damping ratio 
ζ >1, the longer time it takes for the system to return to its equilibrium 
position. 
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Free Response of Critically Damped 2nd  Order System 
For a critically damped system,  ζ  = 1, the roots are real negative and 
identical, i.e.    

      1 2 ns s ζ ω= =−      (15) 
 
The solution form X(t) = A est   is no longer valid.  For repeated roots, the 
theory of ODE’s dictates that the family of solutions satisfying the 
differential equation is 

 
            ( )1 2( ) n tX t e C t Cω−= +     (16) 

 
At time t = 0, the initial conditions are (0) and (0)o oV V X X= =    
 
Then    1 0 2 0 0and nC X C V Xω= = +    (17) 
 
Note that as  t→ ∞,  X(t) → 0, i.e. the equilibrium position.  
 
A critically damped system does to oscillate, and it is the fastest to damp 
the response due to initial conditions. 
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Free Response of 2nd order system: 
Comparison between underdamped, critically damped and 
overdamped systems  
 
initial displacement only 
 
Xo = 1,  Vo = 0     ωn = 1.0 rad/s        ζ  = 0.1,   1.0,   2.0 
 
Motion decays exponentially for  ζ   >  0 
Fastest response for  ζ = 1;  i.e. fastest decay towards 
equilibrium position X = 0 
 

 

Free response Xo=1, Vo=0, wn=1 rad/s
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Free Response of 2nd order System: 
Comparison between underdamped, critically damped and 
overdamped systems  
 
Initial velocity only 
 
Xo = 0,   Vo = 1.0,       ωn = 1.0  rad/s       ζ  =  0.1, 1.0, 2.0 
 
Motion decays exponentially for  ζ   >  0 
Fastest response for  ζ    =  1.0, i.e. fastest decay towards 
equilibrium position X=0. 
              note initial overshoot  
 

Free response Xo=0, Vo=1, wn=1 rad/s
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Free Response of 2nd order System: 
Comparison between underdamped, critically damped and 
overdamped systems  
 
initial displacement and velocity 
 
Xo = 1,  Vo = 1     ωn = 1.0 rad/s        ζ  = 0.1,   1.0,   2.0 
 
Motion decays exponentially for  ζ   >  0 
Fastest decay to equilibrium position X = 0 for ζ   = 1.0 
         
 

 

Free response Xo=1, Vo=1, wn=1 rad/s
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E X A M P L E: 
A 45 gram steel ball (m) is dropped from rest through a 
vertical height of h=2 m.  The ball impacts on a solid steel 
cylinder with mass M = 0.45 kg.  The impact is perfectly 
elastic.  The cylinder is supported by a soft spring with a 
stiffness K = 1600 N/m.  The mass-spring system, initially at 
rest, deflects a maximum equal to δ = 12 mm, from its static 
equilibrium position, as a result of the impact. 
(a)   Determine the time response motion of the mass- 
       spring system.  
(b)  Sketch the time response of the mass-spring system.   
(c)  Calculate the height to which the ball will rebound.   
 
(a)  Conservation of linear momentum before impact =  just after impact: 
  

_         omV mV M x+= + �    (1) 
                              
where _ 2V gh=   =  6.26 m/s  is the steel ball velocity before impact 

              V+ = velocity of ball after impact;  and ox� :  initial mass-spring velocity. 

Mass-spring system EOM:    +     0M x K x =��     (2)  with   59.62 rad/sn
K
M

ω = =  

(from static equilibrium), the initial conditions are (0) 0 and (0) ox x x= =� �   (3) 
                             

(2) & (3) lead to the undamped free response:  ( )  sin  ( )  sin  ( )o
n n

n

xx t t tω δ ω
ω

= =
�   

given   δ = 0.012 m  as the largest deflection of the spring-mass system.  

Hence, o nx δ ω=�  = 0.715 m/s            
 
(c)  Ball velocity after impact: from Eq. (1))               (b)  Graph of motion  
       

( )M m m 6.26 7.15 0.892 
m s soV V x+ −= − = − = −�  

(upwards)                                          
 
and the height of rebound is 
 

2

    
2
Vh

g
+

+ =

⎡ ⎤
⎢ ⎥
⎣ ⎦

=  41 mm  
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The concept of logarithmic decrement for estimation of 
the viscous damping ratio from a free-response vibration test 
  

The free vibration response of an underdamped  2nd order viscous 
system (M,K,D) due to an initial displacement  Xo  is a decay oscillating 
wave with  damped natural frequency (ωd). The period of motion is  Td 
= 2π/ ωd (sec). The free vibration response is 
 

( )d( ) cos  n t
ox t X e tζω ω−=        (1)        

 

where       / ,   2 cr crD D D K Mζ = = ;   ( ) ( ) 2/1 2
nd

2/1 
n 1   ;M/K ξωωω −==  

  
 

Consider two peak amplitudes, say  X1 and X1+n, separated by  n  
periods of decaying motion.  These peaks occur at times, t1  and 

Free response of underdamped viscous system
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(t1+nTd), respectively.  The system response at these two times is from 
Eq. (1):   
 

( )1
1 1 d 1( ) cos  n t

oX x t X e tζ ω ω−= = ,  
 
and  
 

( ) ( ) ( )1-
1 1 1     cos     ,n d

d

t nT
n nT o d d dX x t X e t n Tζω ω ω+

+ += = +  

 
Or, since  .2Tdd πω =  
 

( ) ( ) ( ) ( )1 1
1 d 1 1 cos 2   cos n d n dt nT t nT

n o o dX X e t n X e tζ ω ζ ωω π ω− + − +
+ = + = , 

  (2) 
 
Now the ratio between these two peak amplitudes is: 
 

( ){ }
( ) ( ){ } ( )

( )
1 1

11

- -
11

--
1 1

   cos  
 

   cos  2  

n n
n d

n dn d

t t
o d nT

t nTt nT
n o d

X e tX e e
X eX e t

ζω ζω
ζω

ζωζω

ω

ω π ++
+

= = =
+

 

   (3) 
 
Take the natural logarithm of the ratio above: 
 

( )
( ) ( )1 1 1/ 2 1/ 22 2

2 2ln /          
1 1

n n d n

n

nX X n T n nπ π ζξω ζ ω δ
ω ζ ζ

+ = = = = ⋅
− −

     (4) 

 
and, define the logarithmic decrement as:   
 

( )
1

1/ 22
1

1 2  ln     
1-n

X
n X

π ζδ
ζ+

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
          (5) 
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Thus, the ratio between peak response amplitudes determines a useful 
relationship to identify the damping ratio of an underdamped second 
order system, i.e. once the log  dec (δ)  is determined then,  
 

( )
1/22 2 2

δζ
π δ

=
⎡ ⎤+⎣ ⎦

   (6),   

 

and for small damping ratios,  ~
2
δζ
π

. 

 
The logarithmic decrement method to identify viscous damping ratios 
should only be used if: 
a) the time decay response shows an oscillatory behavior (i.e. vibration) 

with a clear exponential envelope, i.e. damping of viscous type, 
b) the system is linear, 2nd order and underdamped, 
c) the dynamic response is very clean, i.e. without any spurious signals 

such as noise or with multiple frequency components, 
d) the dynamic response X(t) →0 as t→∞. Sometimes measurements are 

taken with some DC offset. This must be removed from your signal 
before processing the data. 

e) Use more than just two peak amplitudes separated n periods. In 
practice, it is more accurate to plot the magnitude of several peaks in 
a semi-log paper and obtain the log-decrement (δ) as the best linear fit 
to the following relationship [see below Eq. (7)].  
 
From equation (2), 

  

( ) ( ) ( )

( ) ( )

1

1

1 1 1

1 1

cos   ,

where cos 

n d n d

n

t nT nT
n o d

t
o d

X X t e X e

X X t e

ζ ω ξω

ζ ω

ω

ω

− + −
+

−

= =

=
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( )
1 1

1 1

ln( ) ln ln( ) 

ln , where ln ;

n dnT
n

n d

X X e

X T A n A X

ζ ω

ζ ω δ

−
+ = + =

− = − =
 

1ln( )nX A nδ+ = −    (7) 
 
i.e., plot the natural log of the peak magnitudes versus the period 
numbers (n=1,2,…) and obtain the logarithmic decrement from a straight 
line curve fit. In this way you will have used more than just two peaks 
for your identification of damping.  
 
Always provide the correlation number (goodness of fit = r2) for the 
linear regression curve (y=ax+b), where y=ln(X) and x=n as variables 
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E X A M P L E 
 
A wind turbine is modeled as a concentrated mass 
(the turbine) atop a weightless elastic tower of 
height L.  To determine the dynamic properties of 
the system, a large crane is brought alongside the 
tower and a lateral force F=200 lb is exerted along 
the turbine axis as shown.  This causes a horizontal 
displacement of 1.0 in. 
    The cable attaching the turbine to the crane is 
instantaneously severed, and the resulting free 
vibration of the turbine is recorded.  At the end of 
two complete cycles (periods) of motion, the time 
is 1.25 sec and the motion amplitude is 0.64 in. 
    From the data above determine: 
(a)  equivalent stiffness K (lb/in)      
(b)  damping ratio ζ      

(c)  undamped natural frequency  ωn (rad/s)      
(d)  equivalent mass of system (lb-s2/in)     
 

a)  
static   force 200  200  lb/in

static   deflection 1.0 in
lbK = = =       

 
b)  cycle    amplitude     time         Use log dec  to find the viscous damping  ratio 
       0         1.0 in         0.0 sec 
       2         0.64 in      1.25 sec 
                                                      

  

2

1 1 1.0 ln  ln  0.2231
2 0.64

ox
n x

δ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
         

2 2 2

2  ;        ~  0.035
21 4

πζ δ δδ ζ
πδ π

= = =
− +

     

          
underdamped system with 3.5% of critical damping.  

 



 

MEEN 617 Notes: Handout 2a  © Luis San Andrés (2008) 

 

2-21

c)  Damped period of motion,   Td =  sec/cyc  .
cyc

s. 6250
2
251

=  

    Damped natural frequency, 
2 10.053

secd
d

rad
T
πω = =  

    Natural frequency,         
21

d
n

ωω
ζ

= =
−

rad10.059
sec

    

d) Equivalent mass of system:   

from     n K Mω =      

 
2

2 2   1
sec

200 /in
10.059n

K lbM
ω

= =     = 1.976  lb/ sec2/in 

 
E X A M P L E 
 
A loaded railroad car weighing 35,000 lb is rolling 
at a constant speed of 15 mph when it couples with 
a spring and dashpot bumper system.  If the 
recorded displacement-time curve of the loaded 
railroad car after coupling is as shown, determine 
(a)  the logarithmic decrement δ    
(b)  the damping ratio  ζ     
(c)  the natural frequency  ω n  (rad/sec)      
(d)  the spring constant K of the bumper system 
(lb/in)    
(e)  the damping ratio ζ of the system when the 
railroad car 
    is empty. The unloaded railroad car weighs 
8,000 lbs.   
 

(a)  logarithmic decrement   
1

4.8 1.1631
1.5

oxn n
x

δ
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
A A      
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(b)  damping ratio   

( )
2 1/ 22 2

2        
1 2

πζ δδ ζ
ζ π δ

= ⇒ =
− ⎡ ⎤+⎣ ⎦

      ζ ≡ 0.1820 

 
(c)  Damped natural     period:   Td = 0.38 sec.     
          and frequency         

22 16.53 1
secd n

d

rad
T
πω ω ζ= = = −

   

 
    The natural frequency is   

2
16.816

sec1
d

n
radωω

ζ
= =

−

 

 
(d)  Bumper stiffness, 

2 2
car 2 2

1 35,000   lb  M 16.816  25612.5
sec 386.4 in/secn

lbK K
in

ω ⎡ ⎤= = = =⎢ ⎥⎣ ⎦
   

 
(e)  Damping ratio when car is full:  

full

0.182
2  M

D
K

ζ = =
  

 
Note that the physical damping coefficient (D)  does not change whether car is 

loaded or not, but ζ does change. 

    Damping ratio when car is empty   
2  e

empty

D
K M

ζ =      

 
   The ratio  

1/ 2

e
35,000     0.182 
8,000

empty full

e full empty

M M
M M

ζ ζ ζ
ζ

⎡ ⎤= ⇒ = = ⎢ ⎥⎣ ⎦
 

          
ζ e  ≡  0.381  
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EXAMPLE: 
An elevator weighing 8000 lb is attached to a steel cable that is wrapped around a drum rotating 
with a constant angular velocity of 3 rad/s.  The radius of the drum is 1 ft.  The cable has 
a net cross-sectional area of 1 in2 and an effective modulus of elasticity E = 12 (10)6 psi.  A 
malfunction in the motor drive system of the drum causes the drum to stop suddenly when the 
elevator is moving down and the length A of the cable is 50 ft.  Neglect damping and determine 
the maximum stress  in the cable. 
(Coordinate X(t) describes motion after cable stops, recall that the elastic cable is already 
stretched due to the elevator weight before the cable stops).  
 

The cable stiffness is just K = 20,000AE lb
L in

=  and M = 
in
seclb 20.70  

in/sec  386
 lb  8000 2

2
⋅

= , and 

2
rad31.08 
secnω =  

 

 At the time of stop, the eqn. of motion is       0M X K X+ =��   (1)  
           

+ I.C.  X(o)=0, and (0)  3 ft/sec 36 in/secX rω= = =�   
 

The motion [soln. of (1)] is:  n
n

( ) sin ( t).oXX t ω
ω

=
�

(2) 

With  

    maximum Dynamic Displacement is:  
 

o
d

n

XX
ω

=
�

        (3) 

     
One can also obtain (3) from  

    conservation of mechanical energy 
    Tmax  =  Vmax 

    
2 21 1     

2 2
o

o d d
n

XM X K X X
ω

= ⇒ =
��   

         Xd  ≡ 1.15 in = 0.095  ft 
 
However, there is also a static deflection due to the elevator weight  
 

 8000  lb 0.4 in
20000   lb/inS

W M g  X
K L

= = ≡ =  

 
Then the max. amplitude of deflection is  
 
A = XS + Xd = 0.4 + 1.15 in = 1.558  in = 0.1298 ft. 
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Maximum Stress in cable:

 6
2

1.558  in      12  10     31,165   psi
in 50  12  in

A lb E E
L

σ ε= = = × ⋅ =
×
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Free Response of a Mass-Spring System with 
Coulomb Damping (Dry Friction)                                                                  
 
Recall that a dry friction force opposes motion, and  F =μN,   N = W = Mg 
 
 
 
 
 
 
 
 
 
 
 
 

Consider a mass-spring system resting on top of a surface. The kinetic 
coefficient of dry friction for relative motion between two surfaces is μ. 
Assume that at t=0 sec, you release mass M from X(0)=Xo. For a not too 
large friction coefficient, the mass-spring oscillates about the equilibrium 
position X=0 with its natural period Tn = 2π/ωn.  
 

The figure below depicts the motion. The system dynamics is governed 
by different EOMs if motion is to the left (X decreasing) or to the right (X 
increasing) since the friction force changes sign. It is of importance to know 
the amplitude decay (δ) every period of motion and also the time elapsed 
until the system stops. 

  
Free response of a mass-spring system with dry-friction 

 



 

MEEN 617 Notes: Handout 2a  © Luis San Andrés (2008) 

 

2-26

Let’s analyze the motion for a full period. On the first ½ period, the mass-
spring moves to the left and the friction force points towards the right. On 
the second ½ period, the mass-spring moves to the right and the friction 
force points towards the left. The amplitude of response shows a finite 
amplitude decay each ½ period of motion. 
 
 

MOTION TO THE LEFT:  0  ≤  t  ≤   ½ τ = ½ Tn       first ½ period 
 

               
for    0
M X K X F W

X
μ+ = =

<

��
�

(1) 

 
with  I.C.,  ( ) ( ) 0 ,    0 0oX X X= =�  

 

MOTION TO THE RIGHT:  ½ τ  ≤  t  ≤  τ=Tn,  second ½ period 
 

      -        
for    0
M X K X F W

X
μ+ = − =

>

��
�

(2) 

 
with  I.C.,   

  ( ),    0
2 2oX X X Xτ τ⎛ ⎞ ⎛ ⎞= − −Δ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
�  

 
The solution of Eq. (1) or (2) is   
 

( ) ( )( )     cos    sinn nX t A t B t F Kω ω= + +
 

MOTION TO THE LEFT:    applying the initial conditions obtain 
 

( )( ) ( ) cos                 (2)o n
F FX t X t
K K

ω= − +  

 
after ½  period, at   

2 n

t τ π
ω

= =
, the position of the mass-spring 

(XL) is: 
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( )( )    ( ) cos   

2         =              (3)

L o

L o o

F FX X X
K K

FX X X X
K

τ π= = + − +

= − + = − + Δ
 

Let 2FX
K

Δ =   be the amplitude decay for the first ½ period and note that 

the velocity ( )=0x τ�   
 
The sketch below shows the response X(t) for the first ½ period of 
motion 
 
 

 
 

MOTION TO THE RIGHT:  0X >�  , second ½ period     

2
tτ τ< ≤  

 
 

     -        
for    0
M X K X N

X
μ+ =

>

��
�

(4) 

 
with  I.C.,   

  ( ),    0
2 2oX X X Xτ τ⎛ ⎞ ⎛ ⎞= − −Δ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
�  

) 
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or 
 

( ' 0); 0 ( ' 0)
2 2LX X X t X X tτ τ⎛ ⎞ ⎛ ⎞= = = = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
� �  

 

where for simplicity, define a shift in the time scale as  t’ = t – t*   with    

* 2n

t π τ
ω

= =
        (5) 

 
Then solution of Eq. (4) defining the system dynamics for motion to the 
right is: 
 

( ) ( )( )     cos    sinn nX t A t B t F Kω ω′ ′ ′ ′ ′= + −     (6) 

 
and applying the initial conditions at t′ = 0 , obtain: 
 

( )( ') ( )cos '  - L n
F FX t X t
K K

ω= +          (7) 

 

Now, at   t =Tn  (1 full period), i.e. t′ = ½ τ  ;  i.e. the mass-spring system is 
at its rightmost position (XR), as shown in the graph below 
 
  

( )

o

 ( )cos
2

2                  

                    X 2

R L

R L L

R

F FX X X
K K

FX X X X
K

X X

τ π⎛ ⎞ = = + −⎜ ⎟
⎝ ⎠

= − − = − −Δ

= − Δ

             (8) 

 
 
and note that  ( ) 0X τ =�   
 
 
 
 
 
 
 
 

X
0

-X
0

t

XR

0

XL

t’

/2

/2

   X

  2   X =  
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Then, after 1 full period of motion the amplitude decays from  
 
Xo   to   XR = Xo -2 ΔX = Xo - δ  
 

where   
42 4F WX
K K

μδ = Δ = =  

 
 
 
The motion proceeds to a stop until  
 
Friction force (μN) >  Spring restoring force (K Xstop) 
 
Does the system return to the equilibrium position X=0 given by 
the unstretched spring, or is it possible that there maybe more 
than one equilibrium position? 
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 (b) Forced Response of 2nd Order Mechanical System 
 
b.1.  Step Force 
Let the external force be a suddenly applied step force of magnitude Fo, 
and consider the system to have initial displacement X0 and velocity V0.  
Then for a system with viscous dissipation mechanism, the equation of 
motion is 
 

2

2 o
d X d XM D K X F
d t d t

+ + =      (21) 

with initial conditions  (0) and (0)o oV V X X= =    
 
Divide Eq. (1) by M and define:     
      

n
K

Mω = : undamped natural frequency of system 

cr

D
D

ζ =  : viscous damping ratio,  

where  2crD K M=  is known as the critical damping value 
 
With these definitions, Eqn. (1) becomes: 
 

2
2 2

2 2 o o
n n n

F Fd X d X X
d t d t M K

ζ ω ω ω+ + = =   (22) 

 
 

The solution of the Non-homogeneous Second Order Ordinary Differential Equation with 
Constant Coefficients is of the form (homogenous + particular): 
 

( ) s t o
H P

FX t X X Ae K= + = +                       (23) 

Where  A  is a constant found from the initial conditions        
and  XP=Fo/K  is the particular solution for the step load.     
          

Note:  Xss=Fo / K is 
equivalent to the static 
displacement if the 
force is applied very 
slowly. 
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Substitution of (23) into (22) leads to the CHARACTERISTIC EQUATION 
of the system: 
 

( )2 22 0n ns sζ ω ω+ + =      (25) 
 
The roots of this 2nd order polynomial are:  
 

( )1/ 22
1,2 1n ns ζ ω ω ζ=− −∓     (26) 

 
 
The nature of the roots (eigenvalues) clearly depends on the value of the 
damping ratio ζ .  Since there are two roots, the solution to the differential 
equation of motion is now rewritten as: 
 

1 2
1 2( ) s t s t

oX t A e A e F K= + +    (27) 
 
where A1, A2 are constants determined from the initial conditions in 
displacement and velocity. 
 
 
From Eq. (27), differentiate three cases: 
 
Underdamped System:     0 < ζ  < 1,  → D < Dcr  
 
Critically Damped System:    ζ  =  1,   →  D = Dcr  
 
Overdamped System:      ζ  > 1,   → D > Dcr  
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Step Forced Response of Underdamped 2nd  Order System     
 
For an underdamped system, 0 <  ζ < 1, the roots are complex conjugate 
( real and imaginary parts), i.e. 
 

  ( )1/ 22
1,2 1n ns iζ ω ω ζ=− −∓     (28) 

 
where 1i= −   is the imaginary unit. 
 
The solution for underdamped response of the system adds the 
homogenous and particular solutions to give: 
 

( ) ( )( )1 2( ) cos sinn t
d d ssX t e C t C t Xζ ω ω ω−= + +  (29) 

where  ( )1/ 221d nω ω ζ= −  is the system damped natural frequency. 
 
and   ss oX F K=   
 
At time t = 0, the initial conditions are (0) and (0)o oV V X X= =    
 

Then   ( ) 0 1
1 0 2and n

ss
d

V CC X X C ζ ω
ω

+
= − =   (30) 

 
Note that as  t→ ∞,  X(t) → Xss = Fo/K for   ζ > 0,   
 
i.e. the system response reaches the steady state (static) equilibrium 
position. 
 
The larger the viscous damping ratio ζ  , the fastest the motions will damp 
out to reach the static position Xss. 
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Step Forced Response of Undamped 2nd Order System:  
For an undamped system, i.e. a conservative system, ζ   = 0, and the 

dynamic forced response is given from equation (29) as: 

( ) ( )( )1 2( ) cos sinn n ssX t C t C t Xω ω= + +           (31)       
 
with Xss = Fo/K, C1 = (X0 – Xss) and  C2 = V0 /ωn   (32) 
 
 
if the initial displacement and velocity are null, i.e. X0 = V0 = 0, then  
   
 

          ( )( )( ) 1 cosss nX t X tω= −            (33) 
 
 
Note that as  t→ ∞,  X(t) does not approach Xss for  ζ = 0. 

The system oscillates forever about the static equilibrium position Xss and, 

the maximum displacement is 2Xss, i.e. twice the static displacement 

(F0/K). 
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Forced Step Response  of Underdamped Second Order System:   
damping ratio varies 
Xo = 0,  Vo = 0,         ωn = 1.0  rad/s         ζ  = 0,  0.1,  0.25 
zero initial conditions 

Fo/K = Xss =1;    
 

faster response as ζ  increases; i.e. as t  → ∞, X  → Xss for 
ζ   >  0 

 
 

Step response Xss=1, Xo=0, Vo=0, wn=1 rad/s

0

0.5

1

1.5

2

2.5

0 10 20 30 40
time (sec)

X(
t)

damping ratio=0.0
damping ratio=0.1
damping ratio=0.25
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Forced Step Response of Overdamped 2nd  Order System 
     
For an overdamped system, ζ  > 1, the roots of the characteristic eqn. are 
real and negative, i.e. 
 

( ) ( )1/ 2 1/ 22 2
1 21 ; 1n ns sω ζ ζ ω ζ ζ⎡ ⎤ ⎡ ⎤= − + − = − − −

⎣ ⎦ ⎣ ⎦
  (34) 

 
 
The overdamped forced response of the system as: 
 

( ) ( )( )1 * 2 *( ) cosh sinhn t
ssX t e C t C t Xζ ω ω ω−= + +  (35) 

where  ( )1/ 22
* 1nω ω ζ= − . Do not confuse this term with a frequency 

since motion is NOT oscillatory. 
 
 
At time t = 0, the initial conditions are (0) and (0)o oV V X X= =    
 

Then   ( ) 0 1
1 0 2

*

and n
ss

V CC X X C ζ ω
ω

+
= − =    (36) 

 
Note that as  t→ ∞,  X(t) → Xss = Fo/K for   ζ  > 1, i.e. the steady-state 
(static) equilibrium position. 
 
An overdamped system does not oscillate or vibrate. 
 
The larger the damping ratio  ζ  , the longer time it takes the 
system to reach its final equilibrium position Xss. 
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Forced Step Response of Critically Damped System 
 
For a critically damped system,  ζ  = 1, the roots are real negative and 
identical, i.e.    

      1 2 ns s ζ ω= =−            (37) 
 
The step-forced response for critically damped system is 
 

            ( )1 2( ) n t
ssX t e C t C Xω−= + +         (38) 

 
At time t = 0, the initial conditions are (0) and (0)o oV V X X= =    
 
Then    ( )1 0 2 0 1andss nC X X C V Cω= − = +    (39) 
 
 
Note that as  t→ ∞,  X(t) → Xss = Fo/K for   ζ  > 1, i.e. the steady-state 
(static) equilibrium position. 
 
A critically damped system does not oscillate and it is the fastest to reach 
the steady-state value Xss. 
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Forced Step Response  of Second Order System:    
Comparison of Underdamped, Critically Damped and 
Overdamped system responses     
Xo = 0,  Vo = 0,         ωn = 1.0  rad/s         ζ  = 0.1,1.0,2.0 
zero initial conditions 
 

Fo/K = Xss =1;   (magnitude of s-s response) 
 

Fastest response for  ζ = 1. As t → ∞, X →  Xss  for   ζ  > 0 
 
 

Step response Xss=1, Xo=0, Vo=0, wn=1 rad/s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40
time (sec)

X
(t)

damping ratio=0.1
damping ratio=1
damping ratio=2
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EXAMPLE: 
 
The equation describing the motion and initial 
conditions for the system shown are: 

2( / )  , (0) (0) 0M I R X D X K X F X X+ + + = = =�� � �
 
Given M=2.0 kg, I=0.01  kg-m2, D=7.2 N.s/m, 
K=27.0 N/m, R=0.1 m; and F =5.4 N (a step 
force),   
a)  Derive the differential equation of motion for the 
system (as given above).       
b)  Find the system natural frequency and damping 
ratio           
c)  Sketch the dynamic response of the system X(t)  
d)  Find the steady-state value of  the response  Xs-

s.      
 
(a)  Using free body diagrams:     Note that    θ= X/R   is a kinematic constraint.                                           
The EOM's are:     

    

GM X F K X D X F= − − −�� �      (1)    
       

                          GI F Rθ = ⋅��    (2) 
 

    Then from (2)   2G
XF I I

R R
θ

= =
�� ��

  (3) ; 

    (3) into (1) gives 
             

                                             2            F
IM X D X K X

R
⎛ ⎞+ + + =⎜ ⎟
⎝ ⎠

�� �              (4) 

 
or  Using the Mechanical Energy Method: 
 

(system kinetic energy): 2 2 2
2

1 1 1      
2 2 2

IT M X I M X
R

θ ⎡ ⎤= + = +⎢ ⎥⎣ ⎦
�� �        (5) 

(system potential energy): 21  
2

V K X=  
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(viscous dissipated energy) 2    DE D X dt= ∫ � , and External work:     FW dX= ∫  

Derive identical Eqn. of motion (4) from  ( )     0d

d T V E W
dt

+ + − =      (6) 

 
 

(b)  define 2 3  Kgeq
IM M

R
= + = ,  K = 27 N/m, D =  7.2 N.s/m 

 
and calculate the system natural frequency and viscous damping ratio:          

1/ 2
rad 3 
secn

eq

K
M

ω
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

;  0.4
2  

D
K M

ξ = = ,  underdamped system 

 
2  1- 2.75

secd n
radω ω ξ= = , and 

2 2.28  secd
d

T π
ω

= =   is the  damped period 

of motion 
 
 
(c)  The step response of an underdamped system with I.C.'s  (0) (0) 0X X= =�  is: 
 
 
 
 
 
 
 
 
 

(d)  At steady-state, no motion occurs, X = XSS, and 0,     0X X= =� ��
 

 
Then 

5.4 N
N27
m

ss
FX
K

= =    0.2 mssX =   

( ) ( )
2

( ) 1 cos sin
1

n t
ss d dX t X e t tζ ω ζω ω

ζ
−

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 


