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Notes 0 
INTRODUCTION TO FLUID FILM BEARINGS AND SEALS  
A turbomachinery is a rotating structure where the load and/or the driver handle a process 
fluid from which power is extracted or delivered to. Examples of turbomachines include 
pumps and compressors, gas and steam turbines, turbo generators and turbo expanders, 
turbochargers, APU (auxiliary power units), etc. 
 


Most turbomachinery is supported on oil lubricated fluid film bearings, although modern 
advances and environmental restrictions are pushing towards the implementation of 
process fluid bearings and even gas bearing applications. Fluid film bearings are used due 
to their adequate load support, good damping characteristics and absence of wear if 
properly designed and operated.  
 
Turbomachines also include a number of other mechanical elements which provide 
stiffness and damping characteristics and affect the dynamics of the rotor-bearing system. 
Impeller seals, floating ring seals, thrust collars and balance pistons are a few of these 
elements.  
 
The adequate operation of a turbomachine is defined by its ability to tolerate normal (and 
even abnormal) vibrations levels without affecting significantly its overall performance 
(reliability and efficiency). 
 
The rotordynamics of turbomachinery encompasses the structural analysis of rotors 
(shafts and disks) and the design of fluid film bearings and seals that determine the best 
dynamic performance given the required operating conditions. This best performance is 
denoted by well-characterized natural frequencies (and critical speeds) with amplitudes of 
synchronous dynamic response within required standards and demonstrated absence of 
subsynchronous vibration instabilities. 
 
A rotordynamic analysis considers the interaction between the elastic and inertia 
properties of the rotor and the mechanical impedances from the fluid film bearing 
supports, oil seal rings, seals, etc. 


The most commonly recurring problems in rotordynamics are 
1. Excessive steady state synchronous vibration levels. 
2. Subharmonic rotor instabilities. 
Steady state vibration levels may be reduced by: 
a) Improving balancing. 
b) Modifying rotor-bearing systems: tune system critical speeds out of RPM operating 


range. 
c) Introducing damping to limit peak amplitudes at critical speeds that must be 


traversed. 
Subharmonic rotor instabilities may be avoided by: 
a) Raising the natural frequency of rotor system as much as possible. 
b) Eliminating the instability mechanism, i.e. change bearing design if oil whip is 


present. 
c) Introducing damping to raise onset speed above the operating speed range. 
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Rotordynamic instabilities have become more and more common as the speed and 
horsepower of turbomachinery have increased.  These instabilities can sometimes be 
erratic, seemingly increasing vibration amplitudes for no apparent reason.  A common 
denominator among many stability problems is that they tend to grow with time as the 
affected component(s) begins to wear or fatigue.  
 
For example, two typical destabilizing forces well documented in the technical literature 
are due to the aerodynamic effects of labyrinth seals and the hydrodynamic effects of 
cylindrical bearings and floating oil ring seals in centrifugal compressors. Load, gas 
molecular weight, and oil pressure and temperature appear to be among the factors 
bringing severe problems in problematic turbomachinery. 
 
The detailed study of rotordynamics demands accurate knowledge of the specific 
mechanical elements that support the rotor, i.e. fluid film bearings and seals.  
 


Fluid film bearings 
Fluid film bearings are machine elements designed to produce smooth (low friction) 
motion between solid surfaces in relative motion and to generate a load support for 
mechanical components. The lubricant or fluid between the surfaces may be a liquid, a 
gas or even a solid.  
 
Fluid film bearings, when well designed and operated, are able to support static and 
dynamic loads, and consequently, their effects on the performance of rotating machinery 
are of great importance.    
 
Our study will concentrate on the analysis of bearings with a full film separating the 
mechanical surfaces. The word film implies that the fluid thickness (gap or clearance) 
separating the surfaces is several orders of magnitude smaller than the other dimensions 
of the bearing, i.e. width and length.   
 
The basic operational principles of fluid film bearings are hydrodynamic, hydrostatic or 
hybrid (a combination of the former two). 
 
Hydrodynamic fluid film bearings or self-acting bearings 
In these bearings, see Figure 1, there is relative motion between two mechanical surfaces 
with a particular wedge shape. The fluid is dragged into the film and hydrodynamic 
pressures are generated and able to support an externally applied load.  
 
Hydrostatic fluid film bearings or externally-presurized bearings 
In these bearings, see Figure 2, an external source of pressurized fluid forces the lubricant 
or fluid between the surfaces, thus providing their separation and the ability to support a 
load without surface contact.  
 







Notes 0. Introduction to bearings and seals.      Dr. Luis San Andrés © 2010 3


Hydrodynamic or self-acting fluid film bearings  
 
Advantages Disadvantages 
Do not require external source of pressure. 
Fluid flow is dragged into the convergent 
gap in the direction of the surface relative 
motion. 
 
Support heavy loads. The load support is a 
function of the lubricant viscosity, surface 
speed, surface area, film thickness and 
geometry of the bearing.  
Long life (infinite in theory) without wear 
of surfaces. 
 
Provide stiffness and damping coefficients 
of large magnitude. 
 


Thermal effects affect performance if film 
thickness is too small or available flow rate 
is too low.  
 
Require of surface relative motion to 
generate load support. 
 
Induce large drag torque (power losses) and 
potential surface damage at start-up (before 
lift-off) and touch down. 
 
Potential to induce hydrodynamic 
instability, i.e. loss of effective damping for 
operation well above critical speed of rotor-
bearing system. 
 
  


    
 


  
 
 
Figure 1. Examples of hydrodynamic (self-acting) fluid film bearings 
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Hydrostatic or externally pressurized fluid film bearings 
 
Advantages Disadvantages 
Support very large loads. The load support 
is a function of the pressure drop across the 
bearing and the area of fluid pressure 
action.  
 
Load does not depend on film thickness nor 
lubricant viscosity. 
 
Long life (infinite in theory) without wear 
of surfaces 
 
Provide stiffness and damping coefficients 
of very large magnitude. Excellent for 
exact positioning and control. 
 
 
  


Require ancillary equipment. Larger 
installation and maintenance costs. 
 
Need of fluid filtration equipment. Loss of 
performance with fluid contamination. 
 
High power consumption because of 
pumping losses. 
 
Potential to induce hydrodynamic 
instability in hybrid mode operation. 
 
Potential to show pneumatic hammer 
instability for highly compressible fluids, 
i.e. loss of damping at low and high 
frequencies of operation due to compliance 
and time lag of trapped fluid volumes. 
 


 
 
 


 
 
 
 
 


 
 
 
 


 
 


 
 


 
 
 
 
Figure 2. Examples of hydrostatic (externally pressurized) fluid film 
bearings 
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Figure 3. Typical configurations of cylindrical journal bearings 
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Squeeze film dampers 


Oscillatory or periodic motions can also generate hydrodynamic pressures in the thin film 
separating two surfaces. This squeeze film action mechanism works effectively only for 
compressive loads, i.e. those forcing the approach of one surface to the other. Squeeze 
film dampers are routinely implemented to reduce vibration amplitudes and isolate 
structural components in gas jet engines, high performance compressors, and 
occasionally in water pumps.  
 
A squeeze film damper consists of an inner non rotating journal and a stationary outer 
bearing, both of nearly identical diameters. Figure 4 shows an idealized schematic of this 
type of fluid film bearing. A journal is mounted on the external race of a rolling element 
bearing and prevented from spinning with loose pins or a squirrel cage that provides a 
centering elastic mechanism. The annular thin film, typically less than 0.250 mm, 
between the journal and housing is filled with a lubricant provided as a splash from the 
rolling bearing elements lubrication system or by a dedicated pressurized delivery. In 
operation, as the journal moves due to dynamic forces acting on the system, the fluid is 
displaced to accommodate these motions. As a result, hydrodynamic squeeze film 
pressures exert reaction forces on the journal and provide for a mechanism to attenuate 
transmitted forces and to reduce the rotor amplitude of motion. 
 
 


 


Figure 4. Typical squeeze film damper configuration 
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Radial seals (annular, labyrinth or honeycomb) separate regions of high 
pressure and low pressure in rotating machinery and their function is to minimize the 
leakage and improve the overall efficiency of a rotating machine extracting or delivering 
power to a fluid. Typical applications include neck ring seals on impeller eyes and 
interstage seals as well as balance pistons in pump and compressor applications.  See 
Figure 5 for a depiction of these mechanical elements in a typical pump.  
 
Seals have larger clearances than load carrying fluid film bearings. Yet their impact on 
the rotordynamics of turbomachinery is of importance since seals are located at rotor 
locations where large vibrations (rotor elastic deflections) occur, as shown in Figure 6. 
 


Interstage Seal Impeller Eye Seal Balance Piston Seal
 


 


 
 
 
Figure 5. Seals in a Multistage Centrifugal Pump or Compressor 
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Figure 6. Straight-through and back-to-back bompressor configurations 
and their fundamental elastic mode shapes  
 
Extensive testing has shown that seals with macroscopic roughness; i.e. textured stator 
surfaces, offer major improvements in reducing leakage as well as cross-coupled 
stiffness coefficients. Figure 7 depicts two textured seals and a conventional labyrinth 
seal (teeth on stator).  A textured surface like a round-hole pattern or a honeycomb 
increases the friction thus reducing leakage, and aids to retard the development of the 
circumferential flow velocity -the physical condition generating the cross-coupled 
stiffness coefficients. Since the late 1990s, compressor and pump manufacturers, as well 
as end users, implement or use textured seals with noticeable improvements in pump or 
compressor efficiency and ensured rotordynamic stability.  
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Figure 7. Hole-pattern, honeycomb and labyrinth seal configurations 
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Example of a rotordynamic analysis 
 


The following brief description shows 
the major elements of a rotordynamic 
analysis performed on a seven-stage 
compressor handling a light hydrocarbon 
mixture.  
 
The objectives of a rotordynamic 
analysis are: 
 


a) To model the rotor (shaft and 
disks) and to determine its free-
free natural frequencies.   


b) To model the fluid film bearing 
and seal elements and to calculate 
the mechanical impedances 
(stiffness, damping and inertia 
force coefficients) connecting the 


rotor to its casing. 
c)  To perform an eigenvalue analysis, i.e. to predict the natural frequencies and 


damping ratios for the different modes (rigid and elastic) of vibration of the rotor 
as the rotor speed increases to magnitudes well above the design operating 
conditions. Positive damping ratios evidence the absence of rotordynamic 
instability.  


d) To perform a synchronous response analysis to calibrated imbalances in order to 
predict the maximum amplitudes of vibration, the safe passage through critical 
speeds and to estimate the loads transmitted through the bearing supports.  
 
The results of studies (c) and (d) must satisfy stringent conditions as requested by 
API norms (API 610, for example). 


 
Note that the typical rotordynamic analysis is linear, i.e. it relies on the representation of 
the bearings and seals as linear mechanical elements. That is, the second order 
differential equations describing the motion about an equilibrium position are linear. Of 
course a nonlinear analysis could also be performed but its efficiency and (improved) 
accuracy are, to this date, questionable. Furthermore, a linear analysis is mandatory to 
determine the operability of the turbomachine. 
 
It is important to stress that the tasks (objective) described above need of extensive 
experimental and field support verification. Analysis without adequate measurements is 
usually not very useful in rotordynamics. 
   
The example intends to show the complexity of a typical analysis. Figure 9 depicts the 
structural model with the rotor partitioned into 36 stations (each with inertia and inertia 
properties). The circles denote added inertias such as those from the impellers and thrust 


Figure 8. Cut-away view of a 
centrifugal compressor 
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collars. The spring-like connections to ground denote the bearing and seal elements 
supporting the rotor. 
 
Tables 1 to 3 show the physical properties of the rotor, the compressor operating 
conditions (current and desired), and a brief description of the bearings and seals in place. 
  
 


 
Figure 9. Structural rotordynamic model of a multiple-stage centrifugal 
compressor 
 


Table 1. Geometry of rotor for compressor 
 


Compresor C-2100 Physical units 
Number of impellers 7 
Shaft length 85.6 “ (2.17 m) 
Rotor weight incluydes thrust collar 1,024 lb (4,550 N)  
Center of mass from coupling side 43.65 “ – station 34 
Mass moment of inertia (transversal0 302,815 lbm-in2 


Mass moment of inertia (polar) 16,749 lbm-in2 


Static load on bearing (coupling side) 469 lb (2,085 N) 
Static load on bearing (free end) 554 lb (2,465 N) 
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Table 2. Operating conditions (actual and desired) for compresor 
Hydrocarbon mixture (molecular weight 8.72) 


 5,700 RPM  9,850 RPM  


Stage Pressure 
(bar) 


Temperature (K) Pressure 
(bar) 


Temperature (K) 


0 20.00 311.0 21.00 311 
7 27.00 338.0 33.00 360 


 
Table 3 shows the location of the mechanical impedances to ground. The rotor is 
supported on two multiple lobe cylindrical bearings operating with ISO VG 32 oil. 
Furthermore, pressurized floating oil seal rings isolate the process gas from the 
environment. There are also seven eye impeller seals and six interstage seals of the 
labyrinth type. At the free end of the compressor there is a long balance piston.  
 
Note to reader: f you have a genuine interest in the example, ask the lecturer for a more detailed description 
of the bearings and seals, i.e. dimensions and operating conditions.  
 


Table 3. Bearing and seal locations in compressor 
 


Station Mechanical element Description 
8 Hydrodynamic bearing  Three lobe bearing (coupling end) 
56 Hydrodynamic bearing  Three lobe bearing (free end) 
15 Floating ring seal Pressurized, lubricant 
50 Floating ring seal Pressurized, lubricant 
46 Balance piston Process Gas, 27 teeth 
20, 24, 28 
32, 36, 40 


Impeller seals– neck ring (eye) 
and interstage 


Labyrinth type, process gas 
4 teeth 


44 Eye Impulsor # 7 seal Labyrinth type, process gas  
 
The structural analysis predicts the free-free mode  natural frequencies of the rotor, as 
given in Table 4. q free-free mode is an elastic natural mode of the rotor without any 
connection to ground, i.e., without bearings and seals. The good correlation with the field 
measurement is encouraging. The field test usually consists of hanging the rotor from 
long cables; then raping the shaft with a heavy object; and, recording the natural 
frequency (and mode shape) of motion.  
 


Table 4. Free-free mode natural frequency of rotor (no thrust collar) 
 


 calculated  Field measurement 


Fundamental 
frequency 


14,431 (RPM) 
(240 Hz) 


14,400 (RPM) 


2nd frequency  27,081  ‘’ Not recorded 
3rd frequency 40,927 ‘’ ‘’ 


 
The rotordynamic analysis predicts the eigenvalues (damped natural frequency map, 
see Figure 10, and damping ratios, see Figure 11) of the rotor operating on its bearings 
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and seals for speeds to 20,000 rpm, twice the design value. The predictions show a lightly 
damped critical speed at 4,000 rpm. Most importantly, the analysis reveals a 
rotordynamic instability at 8,163 rpm. This speed is known as the threshold speed of 
instability. The instability is due to the loss of effective damping (needed to dissipate 
mechanical energy of vibrations) and excitation of the system (lowest) natural frequency 
with dangerously high amplitude vibrations. The field measurements evidence of the 
subsynchronous vibration at a lower speed, i.e. 7.850 rpm! 
 


Table 5. Threshold speed of instability: predicted and measured 
 


 Threshold 
speed 


Whirl 
frequency 


Whirl 
ratio 


Mode 


Predicted 8,163 rpm 4,000 rpm 0.49 Elastic 
Field data 7,850 rpm 3,532 rpm 0.44  
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Figure 10. Natural frequency versus rotor speed for multiple-stage 
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Figure 12 shows the amplitude of synchronous rotor motion versus rotor speed for a 
specified mass imbalance distribution. The predictions are shown for the rotor at one of 
the bearing locations. Figure 13 depicts the mode shape of vibration at a rotor speed of 
8,750 rpm. Note that the predicted results are not valid for rotor speeds above the 
threshold speed of instability since the rotor (would) vibrate with a subsynchronous whirl 
frequency component of much larger amplitude than the one synchronous with rotor 
speed.   
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Figure 12. Predicted rotor imbalance response at drive end bearing 
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Figure 13. Deflected rotor mode shape at 8,750 rpm 
 
The mode shape shows that at the bearing locations the rotor motion is quite small, while 
the vibration amplitude at the seal locations (rotor midspan) is much larger. Hence, the 
instability is certainly associated with a poor design of the support multiple-lobe bearings 
and the unfortunate lockup of the oil seal rings. 
 







Notes 0. Introduction to bearings and seals.      Dr. Luis San Andrés © 2010 15


 
Finally, Figure 14 presents the field recorded vibration spectra. The rotor speed is 7,860 
rpm and the dangerously high amplitude subsynchronous vibration develops at 3,532 
rpm. The rotordynamic predictions are overly conservative! 
 


 
The example evidences the importance of fluid film bearings and seals on the dynamics 
of rotating machinery.  Note that the example referred brought an unexpected stop in the 
operation of the unit with an enormous cost to the owner, several hundred thousand of 
dollars per day over an undisclosed amount of time. Fortunately, current monitoring 
techniques enabled the engineers to prevent a catastrophic failure with a potentially 
enormous financial impact and even human lives cost.  
 
Closure 
The following lectures detail the fundamentals of fluid film lubrication and 
rotordynamics that will enable the interested reader to begin analyzing fluid film bearings 
and seals for applications in rotating machinery. The course begins with a detailed 
analysis of the fundamentals of lubrication theory and its applications to oil-lubricated 
bearings and ring seals. Next, seals and squeeze film dampers are thoroughly covered. 
The importance of fluid inertia and flow turbulence on modern (currently used) bearing 
and seal applications is also covered.      
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Performance Objectives for the Modern 
Lubrication Course 
 


1. To learn about the physical concepts and mathematical models 
for the analysis and design of fluid film bearings and seals. 


 
2. To acquire knowledge based on the detailed review of the 


literature on fluid film lubrication and rotordynamics. 
 


3. To identify the mechanical effects of importance on the static and 
dynamic forced performance of fluid film bearings. 


 
4. To learn about the effects of fluid film bearings on the 


rotordynamics of turbomachinery. 
 


5. To identify the future trends in applications of bearing and seal 
technologies and the needs for further research. 


 
6. To provide the basics of efficient computational skills for the 


prediction of the static and dynamic forced performance of fluid 
film bearings. 
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Justification
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applications as portable fuel cells (< 60 kW) 
in microengines to midsize gas turbines (< 
400 kW) for distributed power and hybrid 
vehicles.


Meso-scale or MEMS turbomachinery (< 100 W) 
for Next Generation Land Warriors, Micro vehicles 
& robots, Portable electronic devices and 
systems, Smart munitions
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turbo expanders, 
compressors, 


Distributed power
(Hybrid Gas 
turbine & Fuel Cell), 
Hybrid vehicles 


Drivers:
deregulation in 
distributed 
power, 
environmental 
needs, 
increased 
reliability & 
efficiency 


International Gas Turbine Institute


Max. Power ~ 
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http://smarteconomy.typepad.com/s
mart_economy/2006/09/microgas_tu
rbin.html


Kang, S., Ph D dissertation 
(Stanford Univ.)


Portable Electronic 
Devices


< 400 kW


http://www.grc.nasa.gov/WWW/
Oilfree/turbocharger.htm


http://www.miti.cc/newsletters/150
hpcompressozr.pdf


ASME Paper No. GT2002-30404


Honeywell, Hydrogen and Fuel Cells 
Merit Review 


Auto engine and 
part / Industrial 
compressor


Distribute power
(Gas turbine &Fuel 
Cell Hybrid)







MICRO GASMICRO GAS TURBINESTURBINES


100Turbec, ABB 
& Volvo


70, 250Ingersoll
Rand


175General 
Electric


35, 60, 80, 150Elliott Energy
Systems


30, 60, 200Capstone


25, 80Bowman


OUTPUT POWER (kW)MANUFACTURER


Microturbine Power Conversion Technology Review, ORNL/TM-2003/74.


Cogeneration systems with high efficiency
• Multiple fuels (best if 
free)
• 99.99X% Reliability
• Low emissions
• Reduced maintenance
• Lower lifecycle cost


Hybrid System: MGT with Fuel Cell 
can reach efficiency > 60%


Ideal to replace reciprocating 
engines. Low footprint desirable


60kW MGT


source: Dan Lubell, 2006 IJTC, Capstone Turbine Corportation







Capstone MicroTurbine™


Combustion
chamber


Exhaust output


Recuperator


Fuel injector


Air bearings


Compressor


Generator


Air intake


Cooling fins


Turbine


No gearbox or other No gearbox or other 
mechanicalsmechanicals


Low scheduled Low scheduled 
maintenancemaintenance


OOnly one moving nly one moving 
partpart


No coolants or No coolants or 
lubricantslubricants


ContaminantContaminant--free free 
exhaustexhaust


Compact and Compact and 
lightweightlightweight


SuperSuper--low CO & low CO & 
NONOXX


source: Dan Lubell, 2006 IJTC, Capstone Turbine Corportation







Capstone’s C30 Engine


Diffuser


Compressor


Turbine 
Nozzle


Turbine


Oil-Free Radial 
Bearing


Oil-Free Thrust 
BearingThrust Runner


Oil-Free Foil 
Bearings:


>500°C
Proprietary bearing 
design and coating


Thin Dense Chrome 
journals


1.4 MDN (idle)
3.1 MDN (full speed)


~1.5 L/D
1.6 psi static load


Demonstrated Life: 
>40k hours; >6k 


cycles and over 11 
Mhrs field life


source: Dan Lubell, 2006 IJTC, Capstone Turbine Corportation







Expectation & Requirement


• Low cost – driven by materials
• Low maintenance – driven by design
• Long life – defined by the bearings 


and materials
• Efficient – driven by design
• Fully integrated solutions – system 


design


source: Dan Lubell, 2006 IJTC, Capstone Turbine Corportation







HYBRID GENERATION SYSTEMHYBRID GENERATION SYSTEM
MCRC (molten carbonate fuel cell) MT generator


Pressured, and Powered 
by reformed fuel and air 
supplied by compressor 
of MGT


Single-shaft gas turbine 
(max. 80 krpm)


R&D Review of Toyota CRDL, 41


R&D Review of Toyota CRDL, 41







MTM in your neighborhood
Microturbine Power Conversion Technology Review, ORNL/TM-2003/74.


Hybrid System : MGT with Fuel Cell can 
reach efficiency > 60%
Electricity-Heat total efficiency ~ 90%. 


http://jcwinnie.biz/wordpress/?p=2545


Hybrid Electric Bus


Reduces emissions of  Carbon & other 
air pollutants 
Supports renewable energy goals


Low emission 
Fuel Cell-Microturbine


Cogeneration systems
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Samsung Micro Turbo Master 
compressors feature gas foil 
bearings
• Pressures to 130 psig, power to 
0.13 MW


• Samsung line Turbo Master has 
pressure to 300 psig and power to 
2.4 MW. Runs on oil TPBs.


Compressor industrial applications


www.samsungtechwin.com, 2011
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HSI Turbo blower packages  (50-300 Hp)


20-40% more 
efficient


Low maintenance


Low noise


Small footprint


www.hsiblowers.com


See also www.neuros.com
for R&D and products in Korea







ULTRA MICROTURBOMACHINERYULTRA MICROTURBOMACHINERY


MEMS MTM


GT-2003-38866


Meso-scale MTM


2007, Journal of Micromechanics and 
Microengineering, Vol.17


• Palm-size power source
• Brayton cycle
• Gas foil bearings


www.m-dot.com


Small unmanned vehicles and to replace 
batteries in portable electronic devices 100 Watt & less


• Silicon wafer
• 1.2 Million rpm
• Thrust 0.1 N
• Spiral groove and hydrostatic 
gas bearings
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10 100001000100


LiSO2 Battery 
(BA5590)


Solar Cell


Micro Solar Cell
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Large Scale 
Combustor


Micro Reactor


Micro-Lithium 
Battery


http://ubisa.kist.re.kr/Teams/ubisa/mems.htm


http://www.robhaz.com/


RescueRobot


http://www2.northerntool.c
om/product/448_448.htm


Portable Generator


http://www.notebookre
view.com/http://www.wir


efly.com/


Mobile 
electronic 
equipment


Large Scale 
Combustor


http://www.uavpayloads.com/pr
oducts.php4


UAV


Micro Gas Turbine


http://www.m-dot.com/page8.html


Application of Application of MesoMeso/MEMS MTM/MEMS MTM







MEMS MTMMEMS MTM at MITat MIT


Source: GT2003-38866


Thrust: 11g (17 watts)


Turbine inlet temp
: 1600 K


Fuel burn: 16 gram/hr


Rotor Speed: 1.2 M rpm


Weight: 2 grams


Exhaust gas temp
: 1243 K







~1997: DARPA – M-Dot project


MesoscaleMesoscale MTMMTM at Stanfordat Stanford


Replace the inlet nozzle to improve 
specific thrust density.
· Inlet nozzle: major ceramic part. Tested in 
1,250°C gas
· 7% performance (thrust/weight)
improvement expected
· Ceramic turbine built but not tested.


M-DOT micro-turbine engine


Silicon nitride inlet nozzle 
and turbine


Palm size gas turbine engine (thrust type)
φ25 mm turbine, 400k rpm
All metal components
Ran a few minutes. 
Turbine blades melted!


1998: DARPA – M-Dot 
– Stanford – Carnegie Mellon project


Figures and text: Kang, S.,2001, Ph.D dissertation, Stanford Univ.
& Personal communication with Kang, S.







Materials & Reliability


• High temperature durability
• Light weight


GT2004-53493


Fabrication


•Mold SDM
•Precision 3D Milling
•MEMS 


GT2003-38866


DRIE process


Mold SDM process


GT2003-38933


GT2003- 38151


3D Milling


MTM materials & fabricationMTM materials & fabrication







• Oil-Free 
• NO DN limit
• Low friction and power loss
• Thermal management


GAS BEARINGS


AIAA-2004-5720-984


Gas Foil Bearing


GT 2004-53621


Flexure Pivot Bearing


AIAA 2004-4189


Rolling element bearings


PowerMEMS 2003


• Low temperatures
• Low DN limit (< 2 M)
• Need lubrication system


NICH Center, 
Tohoku University


Herringbone grooved bearing


• Precision fabrication process
• Low load capacity and stiffness 
and little damping


Available Bearing TechnologiesAvailable Bearing Technologies







PV turbocharger system


conventional
Oil-Bearing


Honeywell Oil-Less
Bearing System 


(2007)


Foil Bearings
chosen


A challenge!







C T


Engine oil TC
W=100 gram


Bearings 5W-30 oil lubricated
T=150 C, 1.2 cPoise


(d=6 mm, l=4 mm, c=0.012 mm, 
78.5 m/s)


C T


Gas bearing TC
W~230 gram


air lubricated bearings
T=150 C, 0.0239 cPoise


(d=25 mm, l=40 mm 
c=0.007 mm, 


412 m/s)


PV turbocharger Max. 240 krpm


L=109 mm, D=45 mm, tip speed=589 m/s







Largest power to weight 
ratio, 
Compact & low # of parts 


Reliability and efficiency,
Low maintenance                          


Extreme temperature and 
pressure


Environmentally safe (low 
emissions)


Lower lifecycle cost ($ kW)


High speed


Materials


Manufacturing


Processes & Cycles


Fuels


Rotordynamics & 
(Oil-free) Bearings & Sealing


Coatings: surface conditioning for 
low friction and wear
Ceramic rotors and components


Automated agile processes
Cost & number


Low-NOx combustors for liquid & 
gas fuels
TH scaling (low Reynolds #)


Best if free (bio-fuels)


MTM – Needs, Hurdles & Issues







intermittent contact and 
damaging wear at startup & shut 
down, and temporary rubs during 
normal operating conditions


Current research focuses on
coatings (materials), 
rotordynamics (stability) & 
high temperature (thermal 
management)


Need a 
low cost 
& long 
life 
solution!


Pressing challenges for gas bearing technology







Useful websites
NASA Oil-Free Turbomachinery Program
http://www.grc.nasa.gov/WWW/Oilfree/


DOE 
http://www.eere.energy.gov/de/microturbines/


Capstone micro turbine
http://www.capstoneturbine.com/


Mohawk Innovative Technology, Inc.
http://www.miti.cc/


MIT Gas Turbine Lab.
http://web.mit.edu/aeroastro/www/labs/GTL/








1


Tribology needs for the 2000’s
Dr. Luis San AndresAugust 2012


Tribology?
What is it for? 


Will I ever use it?
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Tribology needs for the 2000’s
Dr. Luis San AndresAugust 2012


Tribology embodies the study of 
friction, lubrication and wear.


and involves mechanical processes (motion and deformation).


A tribologist performs engineering work to predict and improve 
the performance (how much) and reliability (for how long) of
a mechanical system. 


Fluid mechanics


Solid mechanics


Material science


Manufacturing 


Tribology
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Tribology needs for the 2000’s
Dr. Luis San AndresAugust 2012


Applications:
Ultra-performance (reinjection)
compressors: > 10,000 psi (700 bar)


Dual gas turbines (fuel and coal):
secondary combustion on turbine side


Smart engines and structures:
control of surge and stall in compressors,  elimination of 
vibration and noise through changes in configuration,


Unmanned Aerial Vehicles:
war at a distance, no casualties
surveillance


Rotordynamics,
materials,
hydrodynamics


composite materials,
coatings,
extreme environments


electronics
coatings: nanopowders
elasto-hydrodynamics


surface engineering,
materials,
controls and
electronics.
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Tribology needs for the 2000’s
Dr. Luis San AndresAugust 2012


Applications:


Meso-micro turbomachinery: 
dime size fuel cells (4 kW), 1 million rpm


Reusable rocket engines:
LH2 and LOx fluid film bearings and seals


Oil-free gas turbines and generators:
(mid size to 0.5 MW): foil gas bearings,
damper seals.


Information storage > 100 Gbytes/in2:
lubricated bearings and textured surfaces
with operation films or gaps less than 0.1 m


Rotordynamics,
litho processes,
materials


hydrodynamic 
lubrication (turbulent
flow)


coatings: nanopowders
gas lubrication & 
materials


surface engineering,
hydrodynamics
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Tribology needs for the 2000’s
Dr. Luis San AndresAugust 2012


Other applications:


Sports equipment: 
compliant, durable, tough, better performance
(less friction and less wear)


Medicine:
Hip-joint replacements,
miniature pumps for fluid injection/removal,
heart pumps and implants,
1 MRPM dental hand drills


Ultra-hard drilling equipment:
no wear and tear, i.e. infinite life


Surface engineering,
materials.


Surface engineering,
materials,
lubricants.


Gas hydrodynamics


Nanopowder
coatings,
Surface engineering
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Tribology needs for the 2000’s
Dr. Luis San AndresAugust 2012Largest power to weight 


ratio, 
Compact & low # of parts 


Reliability and efficiency,
Low maintenance                          


Extreme temperature and 
pressure


Environmentally safe (low 
emissions)


Lower lifecycle cost ($ kW)


High speed


Materials


Manufacturing


Processes & Cycles


Fuels


Rotordynamics & 
(Oil-free) Bearings & Sealing


Coatings: surface conditioning for 
low friction and wear
Ceramic rotors and components


Automated agile processes
Cost & number


Low-NOx combustors for liquid & 
gas fuels
TH scaling (low Reynolds #)


Best if free (bio-fuels)


Turbomachinery needs:
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Tribology needs for the 2000’s
Dr. Luis San AndresAugust 2012
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Large Scale 
Combustor


Micro Reactor


Micro-Lithium 
Battery


http://ubisa.kist.re.kr/Teams/ubisa/mems.htm


http://www.robhaz.com/


RescueRobot


http://www2.northerntool.c
om/product/448_448.htm


Portable Generator


http://www.notebookre
view.com/http://www.wir


efly.com/


Mobile 
electronic 
equipment


Large Scale 
Combustor


http://www.uavpayloads.com/pr
oducts.php4


UAV


Micro Gas Turbine


http://www.m-dot.com/page8.html


Application of Application of MesoMeso/MEMS MTM/MEMS MTM







8


Tribology needs for the 2000’s
Dr. Luis San AndresAugust 2012


Useful websites
NASA Oil-Free Turbomachinery Program http://www.grc.nasa.gov/WWW/Oilfree/


DOE http://www.eere.energy.gov/de/microturbines/


Capstone micro turbine http://www.capstoneturbine.com/


Mohawk Innovative Technology, Inc. http://www.miti.cc/


MIT Gas Turbine Lab. http://web.mit.edu/aeroastro/www/labs/GTL/


Read ppp: Microturbomachinery Applications 2012
for more details
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NOTES 1 
THE FUNDAMENTAL ASSUMPTIONS OF HYDRODYNAMIC 


LUBRICATION  
 
Fluid film lubrication is a hydrodynamic phenomenon characterized by a lubricant flowing in the 
narrow gap between two closely spaced surfaces. Notes 1 develops, from the fundamental 
equations of fluid mechanics – mass and momentum transport of a Newtonian fluid, the classical 
equations for motion of a lubricant in a thin film. An order of magnitude analysis reveals that the 
pressure does not vary across the film, and hence, one momentum transport equation is not 
needed. In addition, the analysis reveals that fluid inertia effects are seldom important in most 
thin film lubricant configurations, i.e. those in which the film thickness is orders of magnitude 
smaller than the wetted surfaces dimensions. Reynolds numbers for shear type flow and squeeze 
film type flow are defined. Applications where thin film fluid inertia effects are important are 
noted. Incidentally, abrupt changes in film geometry, like at the inlet and outlet sections of a film 
region are a common source for fluid inertia induced pressure drops (or rises).  
 
Nomenclature 
C Characteristic film clearance. = RB -RJ, journal bearing radial clearance 


h  Film thickness 


L* Characteristic length  
P Hydrodynamic pressure 


p 2


* *


PC


U L
. Dimensionless pressure 


RB , RJ Bearing and Journal Radii 
Re *U C



. Shear flow Reynolds number 


Re* 
*


*


U C C


L






 
 
 


. Modified shear flow Reynolds number 


Res 2
*C



, Squeeze film Reynolds number 


Vx,Vy, Vz Fluid velocities along x, y, z directions 


vx, vy, vz 


* * *
, ,yx z
VV V


U V U Dimensionless fluid velocities  


U* , V* Characteristic fluid speeds – along & across film thickness * * *V U C L  


t Time 


x, y, z Coordinate system on plane of bearing 
, ,x y z  


* *x L , y C, z L . Dimensionless coordinates 


  Fluid density 
  Fluid absolute viscosity 


*  Characteristic frequency for unsteady or transient motions  
  Journal angular speed (rad/s) 
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Fluid flow in a general physical domain is governed by the principles of: 
a) conservation of mass (l equation), 
b) conservation of linear momentum (3 equations), and  
c) conservation (transport) of energy (1 equation), 
 
In an Eulerian frame of reference, the fluid flow is fully defined by the velocity components 
V=(Vx,Vy, Vz),the pressure (P), and the temperature (T) fields. The material properties of the 
fluid, density and viscosity, are in general, functions of its thermophysical state, i.e., f(P,T). 
 
Figure 1 depicts an idealized geometry of a fluid film bearing. The major characteristic of a 
lubricant film, and which allows a major simplification of its analysis, is that the thickness of 
the film (h) is very small when compared to its length (L) or to its radius of curvature (R),  
i.e. 


(h/L) or (h/R)   <<< 1. 
 
 
 


For example, in journal bearings, the film thickness is approximately equal to the film radial 
clearance, h=C= (RB – RJ); where RB and RJ are the radii of the bearing and the journal, 


x 


y 


z 


Lz 


Lx 


h(x,z,t)
U 


V 


(U,V) surface velocities 


Vx 


Vy 


Vz 


h << Lx,Lz


y 


y 


x 
Lx 


h(x,z,t)


U 


V 


Vz 


Vy 


Vx 


Figure 1. Geometry of flow region in a fluid film bearing (h << Lx , Lz) 
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respectively. The characteristic geometrical dimension is either the bearing radius RB or its axial 
length L. 
 


In most thin fluid film applications 
with incompressible liquids, C/RB 
=0.001 = 10-3; while in gas film 
bearings, C/RB=0.0001=10-4 
typically. 
 
As a consequence of the smallness 
in film thickness, the effects of the 
film curvature are negligible on 
the operation of the thin film 
bearing. 
 


This assumption allows the prescription of an orthogonal Cartesian coordinate system (x, y, z) on 
the plane of the lubricant film, see Figure 1. The x-axis lies in the direction of the relative motion 
of the bearing surfaces, and the y-axis is along the direction of the minimum film dimension, i.e. 
across the film thickness. 
 
For an incompressible, isoviscous Newtonian fluid, the equations of laminar flow continuity and 
momentum transport within the film region are: 
 
continuity equation: 


0





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momentum transport equations: 
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with the Laplacian operator      
2
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DB=2 RB 
DJ=2 RJ 


Schematic view of a cylindrical bearing 
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and where (Vx, Vy, Vz ) are the fluid velocity components, P is the hydrodynamic pressure, and 
(, µ) correspond to the material fluid density and absolute viscosity, respectively. 
 
Dimensionless equations of motion 
An analysis of the relative magnitude of each term in the equations of motion determines their 
relative importance on the flow mechanics. The order of magnitude analysis enables further 
simplifications adequate to model fluid flows in thin film geometries.  
 
Define dimensionless spatial coordinates and time as 
 


** LzzC,yy,Lxx   * t    (1.6) 
 


where L* is a characteristic length and C is a characteristic film thickness, * is a characteristic 
frequency for unsteady or transient motions of the bearing surfaces. Note that the dimensionless 
variables above are of order (1), i.e. unit value. Dimensionless fluid film velocities follow as 
 


;;;
*** V


V
v
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V
v
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V
v y
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z
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where U* is a characteristic fluid speed, typically the sliding velocity of the runner surface. For 
example, in journal bearings U*=RJ  where  is the journal angular speed in rad/s. 
 
Substitution of the dimensionless variables into the continuity equation (1) renders the following 
expression 
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Multiplying this expression by (L*/U*) gives 
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Thus, the characteristic cross-film velocity (V* ) must be defined as  
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for all terms in the dimensionless continuity equation to be of the same order, i.e. 
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Thus, the cross film velocity Vy <<< ( Vx, Vz)  is much smaller than the other two flow velocities 
in the plane of the fluid flow. This also means that small changes in the cross-film velocity Vy 
causes large variations in the fluid velocities along the (x, y) directions. 
 
For hydrodynamic thin films, the dimensionless pressure (p) is defined according to 
 


**


2


LU


CP
p



        (1.12) 


 
Note that the product (U*L*/C


2) is a characteristic pressure proportional to the fluid viscosity, 
the surface sliding speed, and inversely proportional to the film thickness squared.  
 
Substitution of the dimensionless coordinates and variables into the momentum equations (1.2) 
thru (1.4) renders the momentum equations in the plane of motion, (x, z) directions, as: 
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and the momentum equation across the film, (y) direction, as:  
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(1.15) 
 
The smallness of (C/L*)<<1 (gap to length ratio) permits to disregard the flow terms of order 
(C/L*)


2 and  higher in the equations above. Thus, the momentum transport equations in the 
plane of motion, (x, z) directions, reduce to: 
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and the momentum equation for fluid motions across the film, y direction, reduces to: 


                      y


p






0                               (1.16) 


 
This equation shows that the fluid pressure is uniform or constant across the film thickness, i.e. 
p=ƒ(x, z, t) only, regardless of the fluid inertia (or turbulent) character of the flow. 
 
The following flow parameters appear in equations (1.14-15),  
  


Re*=Re (C/L*),  *U C



Re     (17) 


 
Re is the flow Reynolds number based on the characteristic speed (U*). This number denotes 


the ratio between fluid inertia (advection) forces and viscous-shear forces, i.e. 
2
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U
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is the squeeze film Reynolds number denoting the ratio between temporal fluid inertia forces 


due to transient motions and viscous-shear forces, i.e. * *
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Fluid inertia effects in thin film flows are of importance only in those applications where both 
Reynolds numbers are larger than ONE1, i.e. Re*, Res >> 1.  
 
As noted earlier, the film thickness to length ratio (C/L*) in thin film flows is typically very 
small. Thus, fluid inertia terms are to be retained for flows with Reynolds numbers of the order: 
 


Re  >  (L*/C) x 1  >  1, 000 for  (C/L*) = 0.001=10-3     (1.19) 
 
Note that in hydrodynamic journal bearings, * = and U*=RJ, then Res= Re*  
 
Classical lubrication is based on the assumption that fluid inertia effects are negligible.  In most 
practical applications handling mineral oils, (Res, Re*)  0. Hence, one can assume effectively 
the fluid is inertialess or purely viscous.   
 


                                                           
1 In actuality, Re > 12 for steady flow film bearing as will be demonstrated in later developments in these notes. 
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Thus, the thin film laminar flow of an incompressible, inertialess, and isoviscous fluid is 
governed by the following equations, in dimensional form given as: 
 
continuity (mass conservation): 
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(x, z) –momentum  transport: 
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with P=ƒ(x, z, t). Equations (1.21) and (1.22) establish a quasi-static balance of pressure 
forces equaling viscous shear forces. Note also that the time coordinate disappears from the 
governing equations. This means that time is just a parameter in inertialess thin film flows. 
 
Table 1 shows the Reynolds numbers (Re) for a typical journal bearing application operating 
with different fluids. The example bearing is a 3 inch diameter (2RJ) journal and the clearance to 
radius ratio (C/RJ) is 0.001, a typical value for journal bearings. Two rotational speeds of 1,000 
and 10,000 rpm (=104.7 and 1,047 rad/s) are noted in the table. Recall that the shear flow 
Reynolds number is  
 


Re=U*C/µ=  RJC/µ= RJC/, where =/ is the fluid kinematic viscosity.  
 
The Re magnitudes reported reveal that bearing applications with mineral oils and air do not 
need to include fluid inertia effects, i.e. Re < 1,000. However, process fluid applications using 
water, R134a refrigerant and cryogenic fluids show large Reynolds numbers at a speed of 10,000 
rpm.  
 
Note that current bearing applications using process liquids to replace mineral oils may operate 
at speeds well above 10,000 rpm. Incidentally, the operating speed of cryogenic turbopumps 
ranges from 25 krpm – 110 krpm, and future applications (currently in the works) will operate at 
speeds close to 200 krpm! 
Incidentally, process gas and liquid annular seals, isolating regions of high and low pressures in 
a typical compressor or pump, have larger radial clearances than load supporting fluid film 
bearings. For example, in water neck-ring and interstage seals in pumps, R/C ~ 250, and thus 
fluid inertia effects are of importance even at relatively low rotational speeds (~1,000 rpm and 
higher). 
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Table 1. Importance of fluid inertia effects on several fluid film bearing applications. 
(c/R)=0.001, RJ =38.1 mm (1.5 inch) 
  
fluid Absolute 


viscosity (µ) 
lbm-ft.s x 10-5 


Kinematic 
viscosity () 
ft2/s x 10-6 


Kinematic 
viscosity () 
centistokes 


Re at 1,000 rpm Re at 10,000 rpm 


Air 1.23 165.5 15.4 9.88 98.8 
Thick oil  
ISO VG 32 


1,682 323 30.0 5.07 50.7 


Light oil 
ISO VG 3 


120 23 2.14 71.1 711.3 


Water 64 10.3 1.00 158.8 1,588 
Liquid hydrogen 1.075 2.32 0.216 705.2 7,052 
Liquid oxygen 10.47 2.06 0.191 794.2 7,942 
Liquid nitrogen 13.93 1.93 0.179 847.7 8,477 
R134 refrigerant 13.30 1.76 0.163 929.6 9,296 


 
Other fluid inertia effects 
The analysis above addressed to the importance of fluid inertia effects within the thin film flow 
domain. However, fluid inertia effects may also be of great importance at the inlet to the film and 
discharge from the film sections in a typical pad bearing or seal application. Depending on the 
flow conditions upstream of a sudden contraction or a sudden enlargement, a fraction of the 
dynamic pressure head, typically given as (½U2), is lost or recovered.  
 
Sudden pressure losses are typical at the recess edges of a recess of pocket in a hydrostatic 
bearing and at the inlet section 
of an annular pressure seal. The 
same phenomenon also occurs 
at the leading edge of a bearing 
pad in high speed tilting pad 
bearings. A sudden pressure 
recovery is also quite typical at 
the discharge plane of a 
pressurized annular or labyrinth 
seal. Note that the importance of 
fluid inertia effects may be 
restricted only to the inlet and 
discharge sections, and may not 
be relevant within the thin film 
flow domain.  
 


P ~ ½ U2


P P


U U


Pressure drop/rise at sudden changes in film 
thickness 
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Mobil Velocite Oil
Numbered Series
Spindle and Hydraulic Oils


Product Description


The Mobil Velocite Oil Numbered Series oils are premium performance products primarily designed for the lubrication of high-speed
spindles in machine tools.  They are also used in some critical hydraulic, circulation systems and air line oilers where the appropriate
viscosity grade is selected.  They are formulated from select high-quality, low viscosity base oils and additives that impart good
resistance to oxidation and protection from rust and corrosion.  They possess very good resistance to foaming and separate readily
from water.


Features & Benefits


The Mobil Velocite Oil Numbered Series provide exceptional lubrication of close-tolerance bearings which helps keep the bearings
running cool and helps maintain the precision required by many of today's critical machine tools.  Although the Mobil Velocite Oil
Numbered Series oils were designed for spindle bearings, they exhibit the required properties to function as low pressure hydraulic and
circulating oils as long as the proper viscosity is selected.  This feature can help minimise inventory costs and reduce the potential for
product misapplication.


Features Advantages and Potential Benefits
Good Oxidation Resistance Helps reduce critical deposit formation


Improves oil life
Very Good Rust and Corrosion Protection Improves equipment life


Provides increased precision long-term
Effective Water Separation Resists emulsion formation


Keeps moisture out of critical lubrication areas
Allows easy removal of moisture from system reservoirs


Applications


� High speed spindle bearings in machine tools and equipment where high speeds and fine clearances are involved
� Precision grinders, lathes, jig borers and tracer mechanisms
� For sleeve type spindle bearings having greater clearances, the choice of viscosity depends on the relation between clearance and


spindle speed
� Low pressure hydraulic systems where appropriate viscosity is selected
� Air line oilers (Mobil Velocite Oil No. 10)
� For some sensitive instruments such as telescopes, laboratory equipment, etc.
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Due to continual product research and development, the information contained herein is subject to change without notification.
Typical properties may vary slightly. Additional health and safety information on this product can be found on the Material Safety Data Sheet, which is available on line at
www.imperialoil.ca, or by contacting Lubricants and Petroleum Specialties, Technical Help Desk, 1-800-268-3183.
© 2003 Imperial Oil.


Specifications & Approvals


Mobil Velocite Oil Numbered Series meets or exceeds the following industry
specifications:


No 6 No 10


Cincinnati Machine P-62 X -
Cincinnati Machine P-45 - X


Typical Properties
Mobil Velocite Oil Numbered Series No 6 No 10
ISO VG 10 22
Viscosity, ASTM D 445 
cSt @ 40ºC 10.0 22.0
cSt @ 100ºC 2.62 4.0
Total Acid Number, ASTM D 974, mgKOH/g 0.06 0.1
Copper Strip Corrosion, 3 hrs @ 100ºC, ASTM D 130 1A 1A
Rust Characteristics, Proc A, ASTM D 665 Pass Pass
Pour Point, ºC,  ASTM D 97 -15 -30
Flash Point, ºC,  ASTM D 92 180 212
Density @ 15ºC, ASTM D 4052, kg/L 0.844 0.862


Precautions


MOBIL VELOCITE is manufactured from high quality petroleum base stocks, carefully blended with selected additives.  As with all
petroleum products, good personal hygiene and careful handling should always be practiced.  Avoid prolonged contact to skin,
splashing into the eyes, ingestion or vapour inhalation.  Please refer to our Imperial Oil Material Safety Data Sheet for further
information.


Note: This product is not controlled under Canadian WHMIS legislation.


The Mobil logotype and the Pegasus design are trademarks of Exxon Mobil Corporation, or one of its subsidiaries.
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ExxonMobil is comprised of numerous affiliates and subsidiaries, many with names that include Esso, Mobil, or ExxonMobil.  Nothing in this document is intended to override or
supersede the corporate separateness of local entities.  Responsibility for local action and accountability remains with the local ExxonMobil-affiliate entities.   Due to continual
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Premium Performance Turbine Oils


Product Description


Mobil DTE 790 Series lubricants are premium performance turbine oils that are engineered to meet the requirements of the most
severe steam turbine designs and operation, with maximum oil charge life. Mobil DTE 790 Series oils are based on proprietary, very
high quality, hydrotreated base stocks and selected additives which provide outstanding resistance to oxidation and chemical
degradation over time, which is exemplified by exceptional color stability,  a key factor in assessing oil stability in some regions of the
world. Mobil DTE 790 lubricants also exhibit excellent water separability, resistance to emulsion formation and anti-foaming
characteristics which provides efficient operation, and good air release properties which is critical for hydraulic control mechanisms.


The exceptional oxidation stability performance of Mobil DTE 790 oils  has resulted in outstanding performance in even the most
severe, and largest capacity steam turbine applications. These products have an outstanding reputation for equipment reliability and
avoiding unscheduled downtime. This reputation is exemplified by the very high percent of nuclear turbine operators who choose Mobil
DTE 790 lubricants. Their performance in service is also recognized to provide very long charge life, in excess of conventional turbine
oils, and high resistance to deposit formation and filter plugging. While primarily engineered for steam turbine service, Mobil DTE 790
Series oils also find application in non-geared gas turbine service.


The performance features of Mobil DTE 790 Series oils translate into excellent equipment protection, reliable operation, with reduced
downtime and extended oil charge life.  Mobil DTE 790 Series oils, in the appropriate grade, meet or exceed the requirements of major
steam and gas turbine builders.


Features & Benefits


The Mobil DTE  family of products is well known and highly regarded worldwide based on their outstanding performance and the R&D
expertise and the global technical support which stand behind the brand. The exceptional performance of one series of oils which make
up this family,  Mobil DTE 790 Series,  has made it the choice of steam turbine operators around the world for many decades.


Close contacts with steam turbine designers worldwide is the key factor in our understanding of the challenges for the lubricant in the
most advanced designs. Our research scientists use this information, along with proprietary tests, to simulate the severity of the latest
generation turbine designs in advancing Mobil DTE 790 formulation technology.


For Mobil DTE 790 Series oils this work has resulted in a formulation based on a special hydrotreated basestock, along with specially
chosen additives to provide exceptional oxidation stability and deposit control which results in superb equipment protection, highly
reliable operation and long oil charge life. A review of the features, advantages and potential benefits of the product are shown below:
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Features Advantages and Potential Benefits
Superb oxidation, chemical and color stability Extended oil charge life and reduced oil changeout costs


Reduced filter plugging and equipment fouling for reduced
downtime and  maintenance costs
High level of turbine system reliability and reduced unanticipated
downtime


Excellent water seperability and foam control Improved operating efficiency and reduced operating expenses
Very good air release properties Avoids erratic operation and pump cavitation, reducing pump


replacement


Applications


Mobil DTE 790 Series lubricants are premium performance turbine oils engineered to meet the requirements of:  circulation systems of
direct-connected steam turbine and gas turbines; ring-oiled bearings of geared and direct-connected turbines; hydraulic control systems
of turbines. Specific applications include:


� Electric power generation by utilities, including nuclear plants.
� Electric power generation by industrial users, such as paper mills


Specifications & Approvals


Mobil DTE 790 Series meets or exceeds the following industry
specifications


797 798


Alstom Power Sweden MAT 812101 X
Alstom Power Sweden MAT 812102 X
GEC Alstom NBA P 50001 X X
GE GEK 28143-A X X
GE GEK 46506-D X
GE GEK 27070 X
DIN 51515-1 L-TD 32 L-TD 46


Mobil DTE 790 Series has the following builder approvals 797 798
Alstom Power HTGD 90 117, non-geared X X
Siemens TLV 9013 04, non-geared X X







 ExxonMobil Lubricants & Specialties
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ExxonMobil is comprised of numerous affiliates and subsidiaries, many with names that include Esso, Mobil, or ExxonMobil.  Nothing in this document is intended to override or
supersede the corporate separateness of local entities.  Responsibility for local action and accountability remains with the local ExxonMobil-affiliate entities.   Due to continual
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Typical Properties


Mobil DTE 790 Series 797 798
ISO Viscosity Grade 32 46
Viscosity, ASTM D 445
cSt @ 40º C 30.1 44.3
cSt @ 100º C 5.4 6.8
Viscosity Index, ASTM D 2270 110 106
Pour Point, ºC,  ASTM D 97 -30 -30
Flash Point, ºC,  ASTM D 92 221 232
Density @15º C,  ASTM D 1298, kg/l 0.85 0.86
TOST, ASTM D 943, Hours to 2 NN 6500 5500
Rust Prevention, ASTM D 665,
Distilled Water Pass Pass
Sea Water Pass Pass
Water Seperability, ASTM D 1401, Min. to 3 ml emulsion @ 54º C 15 20
Copper Strip Corrosion, ASTM D 130, 3 hrs @ 100º C 1A 1A
Foam Test, ASTM D 892, Seq I Tendency / Stability, ml/ml 20/0 20/0
Air Release, ASTM D 3427, 50º C, min. 2 3


Health & Safety


Based on available information, this product is not expected to produce adverse effects on health when used for the intended
application and the recommendations provided in the Material Safety Data Sheet (MSDS) are followed.  MSDS's are available upon
request through your sales contract office, or via the Internet.  This product should not be used for purposes other than its intended use.
If disposing of used product, take care to protect the environment.


The Mobil logotype, the Pegasus design and Delvac are trademarks of ExxonMobil Corporation, or one of its subsidiaries.
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NOTES 2 
DERIVATION OF THE CLASSICAL REYNOLDS EQUATION FOR 


THIN FILM FLOWS 
 
The lecture presents the derivation of the Reynolds equation of classical lubrication theory. 
Consider a liquid flowing through a thin film region separated by two closely spaced moving 
surfaces. The fluid pressure does not vary across the film thickness and fluid inertia effects are 
ignored. From the momentum transport and continuity equations, the analysis leads to a single 
elliptic differential equation, namely Reynolds Eqn., for the generation of hydrodynamic 
pressure in the film flow region. Appropriate boundary conditions, either pressure or flow 
conditions known, are noted for solution of Reynolds Eqn. A brief description of lubricant 
cavitation follows. Formulas for fluid mean velocities and wall shear stress differences are also 
derived. Appendices detail the one-dimensional fluid flow analysis of pressure generation and 
load capacity in plane slider bearings, Rayleigh step bearings and simple squeeze film dampers. 
 
Nomenclature 
h  Film thickness 
P Hydrodynamic pressure 
Psat Liquid saturation pressure or dissolved gases saturation pressure 
Mx, Mz 


0 0


,
h h


x zV dy V dy   . Mass flow rates per unit length 


Vx,Vy, Vz Fluid velocities along x, y, z directions 
,x zV V  ,x z


A A


M M


h h 
. Mean flow velocities  


U* , V* Characteristic fluid speeds – along & across film thickness * * *V U C L  


t Time 
x, y, z Coordinate system on plane of bearing 
  Fluid density 


A  Average fluid density across film thickness 
  Fluid absolute viscosity 


,xy zy   
,z zV V


y y
  
 


. Fluid shear stresses across film. 


,xy zy    
0 0


,
y h y h


xy zyy y
 


 


 
. Wall shear stress differences 
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Figure 2.1 depicts a typical thin film geometry with the {x, y, z} as a coordinate system in the 
plane of the thin film bearing and with the y axis directed across the film thickness h(x, z, t). The 
flow of a Newtonian, inertialess, isoviscous fluid in the thin film region is governed by the 
following equations: 


continuity (mass conservation):   
     


0


















z


V


y


V


x


V zyx 
  (2.1) 


 
(x,z) –momentum  transport: 
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with  the pressure P=ƒ(x, z, t) not varying across the film thickness.   
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          Figure 2.1 Geometry of fluid film bearing (h << Lx , Lz) and flow velocities 
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In the flow region of interest, the bottom surface y=0 is stationary, while the top surface, 
y=h(x,z,t), moves with velocity components U and V in the x and y directions, respectively. The 
lubricant adheres (non-slips) to the bounding surfaces. Thus, the boundary conditions for the 
fluid velocities are: 
 


0,0,0,0  yzx VVVyat      (2.4) 


 
VVVUVhyat yzx  ,0,,     (2.5) 


 
From simple kinematics, the normal velocity V of the top surface equals to the temporal change 
in film thickness (h) plus the spatial change (advection) of the film thickness due to the lateral 
motion of the surface with velocity U, i.e. 
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       (2.6) 


 
Integration of the x- and z-momentum transport equations across the film (y-direction) is 
straightforward since the pressure (P) is constant across the film thickness. This procedure and 
application of the boundary conditions lead to: 
 


  U
h


y
hyy


x
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Vx 



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      (2.7) 


 


 hyy
z


P
Vz 



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 2


2


1



      (2.8) 


 
Note that the fluid velocities show the superposition of two distinct effects. The fluid moves due 
to an imposed pressure gradient (Poiseuille flow) and flows by a shear driven effect induced by 
the motion of the top surface (Couette flow). The Poiseuille flow brings a parabolic velocity 
distribution across the film, while the Couette flow results in a linear velocity profile.  
 
Figure 2.2 shows the (Vx/U) velocity profile for three pressure gradient conditions, 
a=[(h2/2)(dP/dx)/U] = -5, 0 and 5, respectively.  The first case corresponds to a pressure 
gradient decreasing in the direction of the shear induced flow, i.e. dP/dx<0, while the second 
case denotes pure shear flow, i.e. dP/dx=0. Note that a positive pressure gradient, dP/dx > 0, 
causes a region of back flow closest to the stationary surface y=0. 
 







NOTES 2. DERIVATION OF THE CLASSICAL REYNOLDS EQUATION FOR THIN FILM FLOWS © Dr. Luis San Andrés (2010) 4


0 0.5 1
1


0


1


2


a=-5
a=0
a=5


velocity profiles


cross-film coordinate (y/h)


ve
lo


ci
ty


 v
x/


U


 
 
 
Mass flow rates across the film thickness and mean flow velocities in the x- and z- directions are 
defined as: 
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where 
h


A dy
h 0


1  is an average fluid density across the film thickness. Note that if the fluid 


density is only a function of pressure, i.e.   = (P), and since the pressure does not vary across 
the film thickness, A=. Barotropic1 liquids and most gas fluid flows undergoing isentropic or 
adiabatic or isothermal processes show this type of relationship.  
 
On the other hand, there are thin film flows where the fluid temperature changes dramatically 
across the film thickness. In this case not only viscosity variations but also density changes need 
be accounted for. The analysis of heavily loaded cylindrical and tilting pad bearings usually calls 
for the inclusion of thermal effects across the film: an energy transport equation must be used for 
adequate predictive analysis. Further details on the physical aspects and implementation of 
thermal effects are given later.  
 


                         
1 Barotropic fluid: one whose material properties depend on pressure only AND not temperature 


Figure 2.2. Dimensionless velocity 
profiles across film thickness. 
Pressure gradient varies, 
a=[(h2/2)(dP/dx)/U] 


Bottom y=0 Top y=h 
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Substitution of the velocity profiles, equations (2.7-8), into equations (2.9-10) gives, for an 
isoviscous & barotropic fluid, the following mass flow rates (per unit length) and average 
velocities as2: 
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     (2.12) 


 
The mass flow rates (and mean velocities) are the superposition of the pressure flow (Poiseuille 
flow) and the shear flow (Couette flow) components. Note that the average shear driven fluid 
velocity ( xV )equals 50% of the (top) surface speed U. 


 
Later on, in the study of turbulence in fluid film bearings, the mean flow velocities will be 
renamed as bulk-flow velocity components. 
 
Integration of the mass flow conservation equation (2.1) across the film thickness (h) gives, 
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and using Leibniz's integration formulae3: 
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    (2.15)  


 


                         
2 The fluid viscosity is assumed uniform across the film thickness. This assumption is not valid in thin film flows 
with significant temperature gradients across the film.  
3 Application of eqn. (2.14) requires of continuity of the function h()  
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The non-slip boundary conditions for the velocities at the bottom and top surfaces, eqns. 
(2.4,2.5), are 
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And applied into equation (2.15). With the definition of mass flow rates (Mx, Mz), the 
conservation of mass equation becomes, 
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Simplifying like-terms leads to the conservation of mass equation across the film thickness: 
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or in terms of the mean flow velocities: 
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Note that to arrive to the equations above, the common lubrication assumption C/L << 1 is not 
needed. Thus, equation (2.16) is valid for any type of fluid flow bounded between two surfaces. 
 


Substitution of the mass flow rates across the film, 
z


Ph
M


Uh


x


Ph
M zx 



















12


;
212


33


 


Into the conservation of mass equation (2.16) renders the Reynolds equation of classical 
lubrication theory, i.e.  
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  (2.18) 


 
The terms on the right hand side of Reynolds equation represent the flow due to pressure 
gradients. The left hand side shows the flows induced by normal (squeeze) motions of the 
bounding surface and the shear induced flow by the (top) surface sliding with velocity U. 
 
Thus, the fluid flow in thin film geometries is reduced a single differential equation of elliptic 
type for the hydrodynamic pressure field P(x, z, t). Appropriate boundary conditions for the 
pressure are required on the closure or boundaries of the flow domain as discussed later. 
 
Once the pressure field is obtained, i.e., eqn. (2.18) solved, the fluid film velocity components 
are evaluated from equations (2.7, 2.8), i.e. 
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It is of importance to evaluate the wall shear stresses (xy, zy) at the bottom and top bearing 
surfaces. In the x- and z- directions,  
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and at the bottom y=0 surface and top y=h surface, 
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The wall shear stresses show clearly distinct functions for the pressure and shear driven flows. 
Figure 2.3 depicts in schematic form typical shear stress distributions due to Poiseuille and 
Couette type flows. 
 
The wall shear stress differences are  
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and since the pressure gradients are related to the mean flow velocity components, equations 
(2.12), then 
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The wall shear stress differences are, in terms of the mean flow velocity components, 
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The wall shear stress differences appear as simple functions of the mean flow velocity 
components. Thus, there is no need to know with detail the velocity profiles across the thin film. 
Note that equation (2.24) shows a local (quasi-static) balance of forces, pressure gradient forces 







NOTES 2. DERIVATION OF THE CLASSICAL REYNOLDS EQUATION FOR THIN FILM FLOWS © Dr. Luis San Andrés (2010) 8


equal to the wall shear induced surface forces. Later, the formulas above will aid in the analysis 
of turbulent flows in thin film bearings. 
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Figure 2.3 Velocity and shear stress profiles in a fluid film bearing 
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Boundary Conditions for the Reynolds equation 
The Reynolds equation governing the generation of hydrodynamic pressure in the fluid film 
bearing is of elliptic type. Consequently, appropriate boundary conditions are needed over the 
entire closure or boundary (x, z) of the flow domain (x, z). 


 
First, note that a Newtonian fluid is a material not able to sustain tension. A liquid will cavitate 
(evaporate) before it reaches its absolute zero pressure. This occurs at its saturation pressure 
(Psat). Also, if there are dissolved gases (most likely air) in the liquid, these will be released at 
their saturation pressure (Pambient) and the fluid could not undergo a further reduction in 
pressure. Hence, the liquid pressure needs to be greater than its saturation pressure (> zero 
absolute) everywhere in the flow domain. 
 


P(x, z, t) > 0  in (x, z)        (2.25) 
 


Most fluids under normal working conditions can sustain small levels of tension. Sometimes if 
the actions imposed on the fluid are very fast, then the liquid is able to support large tensile 
stresses over short periods of time. The likelihood of fluid tensile stresses is (usually) not 
accounted for in classical hydrodynamic lubrication theory.  
 
The brief discussion above points out to a more complicated process yet to be well understood 
(and modeled) in fluid film bearing performance.  The distinctions made call for two different 
types of cavitation regimes: 
 
a) Gaseous cavitation when dissolved gases in the lubricant come out of solution. Thus, 
 


P  Psaturation gases Pambient    (2.26a) 
 


b) Vapor cavitation  when a pure liquid reaches its saturation pressure and evaporates (a 
phase change) 


P  Psaturation liquid     (2.26b) 
 
The saturation pressure of most liquids usually amounts to a minute fraction of one atmosphere, 
i.e. it is very close to zero absolute. 
 
Finally, note that Reynolds equation is not valid within the fluid cavitation region since, for its 
derivation, the fluid is regarded as a single-phase component. Furthermore, no fluid phase-
changes are accounted for within the flow region when deriving Reynolds equation.  
 
A later section (See Notes 6-a) describes in detail the phenomenon of lubricant cavitation, 
including a (well accepted) sound physical model and a discussion on whether the cavitation 
zone actually includes lubricant vapor or released gases. The phenomenon of air entrainment in 
fluid film bearings, and in particular squeeze film dampers, is of utmost importance under 
dynamic force operating conditions. This aspect of modern lubrication will also be considered in 
detail later (See Notes 13). 
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Other type of fluid “cavitation” arises due to thermal heating as the fluid flows through thin film 
thickness, i.e., the fluid flashes (boils) when reaching its critical temperature. This condition is 
prevalent in many face seal applications handling volatile fluids, water included. 
 
Consider the boundary  of the flow domain  to be composed 
of two separate regions ( 1 2    ). 


 
       


 
Along 1  the pressure is known (essential or Dirichlett type 
boundary condition), i.e. 
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And, along 2 the mass flow rate leaving through the boundary is known, 
i.e., 
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with (x ,z ) as the components of the outward normal vector to the boundary 2. 
 
A typical boundary condition of this type occurs when a bearing has symmetry along the z-plane 
(axial). Since Mz = 0, then, 
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Notes  2. Appendix  
One-Dimensional Fluid Film Bearings 
 
Analysis for load capacity and drag in 
A. Plane Slider Bearing 
B. Rayleigh Step Bearing 
C. Elementary Squeeze Film Flow  
 
Objective: To understand the static load performance 
of simple 1D bearings. Actual configurations in 
practice follow similar design guidelines to ensure 
optimum performance.   
 
Modern Lubrication. Luis San Andrés © 2009 



lsanandres

Callout

 read about the Kingsbury bearing at  
 the end of this document  (Aug 2012)







Analysis of 1D slider bearing: Luis San Andres (c) 2009 (NUS)


Figure 1 shows the geometry and coordinate system of a one-dimensional slider (thrust) bearing. The film
thickness (h) has a linear taper along the direction of the surface velocity U. The film wedge generates a
hydrodynamic pressure field that supports an applied load w. 


Note that the (exit) minimum film thickness h2 is unknown and must be determined as part of the bearing design.
The bearing taper (h1-h2) is a design parameter (determined from analysis).
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Fig. 1 Geometry of taper slider bearing
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- steady state operation, dh/dt=0
- width B >> L
- no fluid inertia effects
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L bearing length
B bearing width, B>>L
μ lubricant viscosity







Reynolds eqn.  for generation of hydrodynamic pressure (p) reduces to:


with p=0 (ambient) at x=0 and L
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A first integral of this equation renders a constant, proportional to the flow rate Qx, i.e.
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Integration of Eq. (4) is rather simple for the film  tapered  profile. After some algebraic manipulation and
application of the pressure boundary conditions at the inlet and exit planes of the bearing, the end result is
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Figure 2 depicts the pressure profile for four film taper ratios, α=1.5, 2, 3 and 4. Note that as α increases the
peak pressure increases. However, for α>2.2 the peak pressure levels off.    
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Fig 2. Dimensionless pressure for 1D-slider bearing and increasing film thickness  (inlet/exit) ratios
α







The analysis determines (6)
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Integration of the pressure field over the pad surface renders the bearing reaction force opposing the applied







load w, i.e
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Substitution of the pressure field above gives, after considerable algebraic manipulation: 
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There is an optimum film ratio α that determines the  largest
load capacity. This optimum ratio is determined from


α
W α( )d


d
0=


αopt 2.1889:=


W αopt( ) 0.0267=


α
h1
h2


=


Note that too large taper ratios, α > αopt act to reduce the load capacity. The formula above shows that the
machined taper (h1-h2) ~ 2.18 h1 for maximum load carrying. 


It is also important to determine the  shear force  due to the fluid being dragged into the thin film region. This
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The fluid velocity field Vx adds the Poiseuille and Couette contributions, i.e. due to pressure and shear,
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Substitution of the  pressure profile above and integration over the pad surface gives a shear force 
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The  power lost dragging the fluid is


Pw f U⋅= (11)


It is customary to define a  coefficient of friction  μf  relating the shear force to the applied load,  i.e


μf
f
w


=
h2
L


μμ α( )⋅= μμ α( )
F α( )


W α( ) 6⋅
:=







2 3 4
4


6


8


10


12


Film thickness ratio h1/h2


fr
ic


tio
n 


co
ef


fic
ie


nt


Since h2/L << 1, the friction coefficient   μf   is actually much smaller than the dimensionless coefficient     μμ
displayed in the graph above.







Figure 3 below depicts the dimensionless peak pressure, load capacity, shear force and flow rate for the
1D-slider bearing as a function of the film thicknesses ratio   α
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Fig 3. Performance parameters for tapered 1D-slider bearing. Increasing film ratios α







Thermal effects
Thus far the analysis considers the lubricant viscosity to remain invariant. However, most lubricants (mineral oils)
have a viscosity strongly dependent on its temperature. In actuality, as the lubricant flows through the film thickness
it becomes hotter beacuse it must carry away the mechanical power dissipated withn the film. 


Analysis of fluid film bearings with thermal effects is complicated since the film temperature changes even across
the film thickness. Such analysis is presently out of  scope, i.e. within the framework of the notes hereby
presented. 


Nonetheless, a simple method follows to estimate in a global form -as in a  lumped system-   the overall
temperature raise of the lubricant and its effective lubricant viscosity to use in the analysis and design of a bearing.


The mechanical power is not only carried away by the lubricant flow but also conducted to and through the bearing
bounding solid surfaces - bearing and moving collar. 
Recall that the mechanical power dissipated equals   Pw=f U   and converted into heat that is carried away by the
lubricant. A balance of mechanical power and heat flow gives


κ PW⋅ ρ Cp⋅ qx⋅ ΔT⋅= ΔT Texit Tinlet−= (12)


where ρ and Cp are the lubricant density and heat capacity, respectively; qx is the flow rate, and ΔT is the
temperature raise. Above κ is an (empirical) coefficient denoting the fraction of mechanical power converted into
heat. Typically κ=0.8.


Substitution of the shear force (f) and flow rate (qx) into the equation above gives 
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⋅ δT α( )⋅= δT α( )
F α( )


Qx α( )
:= (13)







In the expression above, the viscosity is evaluated at an effective temperature, Teff, which is taken as a weghted
average between the inlet or supply temperature and the calculated exit temperature. Typically,
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In general, for applications not generating very high
hydrodyamic pressures (GPa), the lubricant
viscosity is an exponential decaying function of
temperature. 


μlub T( ) μref e
αv− T Tref−( )⋅


⋅= (15)


where Tref an
d


μref are reference lubricant temperature and viscosity, respectively. 
αv is a viscosity temperature coefficient







Lubricant technical specification charts provide the lubricant viscosity at two temperatures, 40C and 100C. Thus,
the viscosity-temperature coefficient follows from, for example:
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The bearing engineering design procedure follows an iterative procedure. Given the taper for the
bearing  (h2-h1), surface velocity U and applied load w: 
   a. assume exit film thickness h2 and effective temperature, set effective viscosity and
   b. calculate bearing reaction load, flow rate, shear force and temperature raise
       if bearing load > applied load, film thickness h2 is too small, increase h2


       if bearing load < applied load, film thickness h2 is too large, reduce h2


  c. once b. is satisfied, check the effective temperature, if same as prior calculted then process has
converged. Otherwise,reset effective temperature, calculate new viscosity and return to b 
A MATHCAD worksheet is provided for you to perform the analysis.







Luis San Andres (c) 2009Analysis of 1D Rayleigh step bearing:
Figure 1 shows the geometry and coordinate system of a one-dimensional Rayleigh step bearing. The film
thickness h is a constant over each flow region, namely the ridge or step and the film land. The bottom surface
moves with velocity U. The sudden change in film thickness generates a hydrodynamic pressure field that supports
an applied load w. 
Note that the minimum film thickness h2 is unknown and must be determined as part of the bearing design.  The
bearing step height (h1-h2) is a design parameter determined from the analysis. 
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Fig. 1 Geometry of Rayleigh step bearing
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Two coordinate systems x1 and x2 aid to formulate
the analysis


0 x1≤ L1≤ h x1( ) h1= h1 h2>


0 x2≤ L1≤ h x2( ) h2= (1)


Nomenclature: Assumptions:


U surface speed w Load - incompressible lubricant, isoviscous,
- steady state operation, dh/dt=0
- width B >> L
- no fluid inertia effects
- rigid surfaces


L bearing length
B bearing width, B>>L
μ lubricant viscosity







Over each region, Reynolds eqn. for generation of hydrodynamic pressure (p) reduces to:
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Integration of Reynolds Eqn over each flow region (step and land) is straighforward since the film thicknes is
constant
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where qx is the volumetric flow rate per unit width B. This flow rate is contant and equal in the two zones. Note that
Eq. (3) shows the pressure gradient to be constant over each region, step and land; thus, the pressure varies
linearly within each region, as shown in Figure 2. 
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for the step region, the boundary conditions are 


at x1 0:= p1 0( ) 0=
(4a)at x1 L1= p1 0( ) pstep=


while for the land region, the boundary conditions are 


at x2 0:= p2 0( ) pstep= (4b)


at x2 L2= p1 0( ) 0=


where pstep is the pressure at the step-land interface.Note
tha this pressure is also the highest within the film flow
region. The step pressure is determined by equating the
flow rates in Eqs. (3)







Define the following dimensionless parameters
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The analysis determines the step pressure to equal
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Since the pressure is linear over each region, integration of the pressure field over the bearing surface is
straightforward and renders the bearing reaction force opposing the applied load w, i.e
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It is more meaningful to define the load in terms of the following land to total length ratio:


Hence, β γ( )
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Figure 3 depicts the dimensionless load factor versus step to land ratio for four land to bearing length ratios γ. Clearly
the maximum load occurs over a narrow range of film thickness ratios (1.5 to 2.25) and for land lengths around 30%
of the total bearing length, i.e. steps extending to 70% of the bearing length.
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Fig. 3 Load factor for Rayleigh
step bearing for three land
lengths
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Using MATHCAD one can determine easily the optimum film thickness ratio for a range of land lengths
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Set γ: L2
L


γ .30:= change as needed
<3


αg 1.7:=guess α:


Solve for g 0= αopt root g αg γ, ( ) αg, 1.2, 3, ( ):=


αopt 1.843= W γ αopt, ( ) 0.0343=


αopt 2.1889:=


W αopt( ) 0.0267=


Compare with slider-bearing:
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Luis San Andres (c) 2009Analysis of simple squeeze film flow
Figure 1 shows the simplest squeeze film flow. Consider two circular (rigid) plates fully immersed in a lubricant pool.
The plates are perfectly smooth and aligned with each other at all times. The film thickness separating the plates is a
function of time only.  


The top circular plate (of radius R) moves towards or away from the bottom plate with velocity V=dh/dt (rate of change of
film thickness). None of the plates rotates. There is no mechanical deformation of the plates 
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Fig. 1 Geometry of two circular plates for squeeze film flow. 
Plates submerged in a lubricant pool.
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Fig. 1 Geometry of two circular plates for squeeze film flow. 
Plates submerged in a lubricant pool.
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Assumptions:


- incompressible lubricant, isoviscous,
- unsteady operation, dh/dt <> 0
- no fluid inertia effects
- no air entrainment
- rigid plates
- plates are fully submerged in a lubricant bath (to
avoid air entrainment)


Nomenclature:
R plate outer radiush t( )  film thickness, only a function of time
μ lubricant viscosity


V
t
hd


d
= top surface speed F squeeze film force







The film thickness is NOT a function of the radial (r) or angular (θ) coordinates. (Axisymmetric flow). Hence,
Reynolds equation in polar coordinate reduces to 
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where qr is the radial flow rate qr
h3−


12 μ⋅ r
Pd


d
⋅= (2)


qr V−
r
2


⋅=A first integral of Reynolds Eqn. is straightforward, (3)


Note that qr = 0 at r=0 because there cannot be any flow in or out of the center of the plates (a uniqueness condition). In
addition, the radial flow increases linearly with the radial coordinate, being a maximum at r=R.


qr >0, flow leaves the plates, if V=dh/dt<0, that is when the film thickness is decreasing; while there is lubricant inflow.
qr<0 if V>0, when the film thickness is increasing. This last condition occurs if and only if the plates are submerged in a pool
of lubricant. Otherwise, air entrains into the film; thus invalidating the major assumption for the analysis.   


Substitution of (2) into (3) and integration leads to the pressure
field 


P r( ) Pa 3 μ⋅
V


h3
⋅ R2 r2−( )⋅−= (4)


where Pa is the ambient pressure at the plate boundary, r=R. Eq. (4) shows that the pressure has a parabollic shape with
a peak (max or min) value at the plate center, r=0.   







The peak pressure, above the ambient value is


Ppeak 3− μ⋅
V


h3
⋅ R2⋅= (5) Note that the peak pressure >0 if V<0, when the film thickness is decreasing


Figures 2 and 3 show details of the pressure profile and exit flow out or into the gap between the plates for the conditions
of positive squeeze (V<0) and negative squeze (V>0), respectively.
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Fig. 3 Negative squeeze film flow, dh/dt >0, 
P<Pambient, inflow into gap
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Fig. 3 Negative squeeze film flow, dh/dt >0, 
P<Pambient, inflow into gap
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Fig. 2 Positive squeeze film flow, dh/dt <0, 
P>Pambient, flow leaving gap
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Fig. 2 Positive squeeze film flow, dh/dt <0, 
P>Pambient, flow leaving gap
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The pressure acting on the plates generates a dynamic force, F, given by 
F
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d 2 π⋅( )⋅= (6a)


Substitution of (4) into (eq. (6a) renders
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= and h t( ) are the instantaneous velocity and film thickness


(6b)


a) If V 0:= then F 0:= a squezee film cannot generate a force unless V 0≠
If V 0< then F 0> a support load, opposite to the velocity of approach of both plates


(positive squeeze action)b)


c) If V 0> then F 0< a load opposing the velocity of separation of both plates
(negative squeeze action)


Clearly (c) occurs provided there is no lubricant cavitation, since Ppeak<0. This condition will only happen for sufficiently
large ambient pressures. In practice, however, the needed static pressure is too large, and thus impractical to implement.  


Consider (top) plate periodic motions with frequency ω h t( ) ho Δh sin ω t⋅( )⋅+=


Δh ho<


in this case,
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and the squeeze film reaction force equals F
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Define the following
dimensionless
variables
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define g ΔH τ, ( ) ΔH−
cos τ( )


1 ΔH sin τ( )⋅+( )3
⋅:=


and graph the dynamic pressure field for one period of dynamic motion (2π/ω). Note how quickly the squeeze fillm
pressure increases as the amplitude ΔH grows and approaches H=1. Furthermore, the film pressure, albeit periodic, has
multiple super frequency components as ΔH>>0.


In the graphs below, note the change in scale (vertical)
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Closure:
The analysis above neglects fluid inertia  (a severe ommission) and assumes there is
NO air entrainment or  fluid cavitation (gaseous or vapor) [ a more severe ommission]







The American Society of
Mechanical Engineers


The American Society of Me-
chanical Engineers designates
the first Kingsbury thrust bear-
ing at Holtwood Hydroelectric
Station as an International His-
toric Mechanical Engineering
Landmark on June 27, 1987.







The Kingsbury bearing at Holtwood







There’s an invention that’s been working for
75 years along the Susquehanna River in
Lancaster County, Pa., with negligible wear,
while withstanding a force of more than
220 tons.


The Susquehanna Section of the American
Society of Mechanical Engineers dedicated
that invention — a 48-inch-diameter thrust
bearing — on Saturday, June 27, 1987, as
its 23rd International Historic Mechanical
Engineering Landmark.


The bearing is the brainchild of the late
professor Albert Kingsbury, an engineering
genius who personally supervised its installa-
tion in the 10,000-horsepower Unit 5 of the
10-unit Holtwood Hydroelectric Station, June 22
through 27, 1912. Holtwood today is owned
and operated by Pennsylvania Power & Light
Co. It was built and operated until 1955 by
Pennsylvania Water & Power Co.


All bearings in rotating machinery need to
overcome the effects of friction between re-
volving parts and stationary parts. A thrust
bearing specifically overcomes the friction
created when a shaft exerts a force in a
direction parallel to its axis of rotation.


Helicopter rotors and airplane or boat pro-
pellers, for instance, need thrust bearings on
their shafts. So do hydroelectric turbine-
generator units.


Until Kingsbury came onto the scene, units
like Holtwood’s represented the upper size
limit of hydroelectric design. The rotating
elements at Holtwood Unit 5 have a com-
bined weight of more than 180 tons, and
the downward force of water passing
through the turbine adds another 45 tons.


Roller thrust bearings once used in such
installations rarely lasted more than two
months before needing repair or replacement.


Then Kingsbury came along with the de-
ceptively simple idea that instead of roller or
ball bearings, a thin film of oil could support
the massive weight — and practically elimi-
nate mechanical wear in the bargain.


The principle of the discovery — in Kings-
bury’s own words — was this:


In reading (a) paper dealing with flat
surfaces, it occurred to me that here
was a possible solution to the trou-
blesome problem of thrust bearings
...if an extensive flat surface rubbed
over a flat surface slightly inclined
thereto, oil being present, there
would be a pressure distributed
about as sketched...


Former Holtwood superintendent W. Roger Small Jr.
checks the glass inspection port on the Unit 5
thrust deck that enables operators to view the
oil-bathed bearing during operation.


The maximum pressure would occur


somewhat beyond the center of the


bearing block in the direction of mo-


tion and the resultant would be be-


tween that maximum and the center


line of the block. It occurred to me


that if the block were supported


from below on a pivot, at about the


theoretical center of pressure, the oil


pressures would automatically take


the theoretical form, with a resulting


small bearing friction and absence of


wear of the metal parts, and that in


this way a thrust bearing could be


made, with several such blocks set


around in a circle and with proper


arrangements for lubrication.


The diagram at left is taken from a sketch by Kings-
bury himself, showing his insight into the pressure
distribution in an offset bearing shoe. Below, a model
of the Kingsbury thrust bearing is affixed to Holtwood’s
Unit 5 generator, so that visitors can see the inge-
nious way its parts interact.







On the 25th anniversary of its installation,
Kingsbury (right) returned to Holtwood for
a look at the Unit 5 thrust bearing. With
him is Frederick A. Allner, who eventually
became a Pennsylvania Water & Power Co
vice president. The arc-shaped piece in
front of Allner is one of the bearing shoes
that had been removed for the occasion.


Kingsbury’s design could support 100
times the load of the previously used roller
bearings.


The top half of his bearing design is a flat,
cast-iron ring, called a “runner.” The runner
rests on six flat shoes, shaped like wedges
of pie to match the shape of the ring.


The entire bearing is bathed in 570 gal-
lons of oil. Each of the shoes is pivot-
mounted so that it can rock a bit. How this
happens is shown in the diagram, copied
from Kingsbury’s original sketch in which he
showed the pressure distribution in the offset
shoes.


The rotating motion of the cast-iron runner
squeezes oil between it and the shoes, and
the oil actually supports the weight, with no
physical contact between the runner and the
shoes.


As a kind of engineering “bonus,” the
design is such that the faster a unit runs,
the more weight the bearing is capable of
carrying.


Kingsbury returned to Holtwood once —
to mark the 25th anniversary of the installa-
tion of bearing No. 1 in the plant’s Unit 5.
Amid all the pomp and ceremony of the oc-
casion, he took time out to smear his initials
in the oil film of a Kingsbury bearing shoe
that the owners had on display.


Incidentally, the contract between PW&P
and Kingsbury, which agreement the profes-
sor described as “a stiff one,” was for $2,650
for the construction and installation of that
first bearing.


At Holtwood today, a model of the bear-
ing is attached to Unit 5, along with a plaque
reading:


“The first Kingsbury thrust bearing ever
installed on a hydro-electric generation
unit was put into service in this machine
on June 22, 1912. It carries a weight of
220 tons.


“When  the generator  was rebuilt for
60-cycle service in 1950, the original
Kingsbury bearing was retained, as it was
in perfect condition.


“Not a single part has ever been
replaced.”


The Kingsbury company


Albert Kingsbury was born in Morris, Ill.,
in 1863, the son of a Quaker mother and
Presbyterian father. His lineage went back to
English immigrants who landed in Massa-
chusetts in the 17th century.


A well-rounded individual with a sense of
humor, Kingsbury was equally at ease work-
ing with machinery, singing, playing the
flute or reading in Spanish, Italian, Greek,
French, German or Danish.


Throughout his early life, there remained a
thread of interest in coefficients of friction
that appeared to have begun when he under-
took the testing of bearing metals while
studying mechanical engineering at Cornell
University.


Kingsbury took over the testing of half-
journal bearings at Cornell in research under-
written by the Pennsylvania Railroad Co.
After carefully scraping and refitting all the
test bearings there, he discovered that they
exhibited identical characteristics and showed
no detectable wear.


He was to remain intrigued by the mys-
teries of friction and the properties of lubri-
cants for the rest of his life, whether teaching
at New Hampshire College (Durham) after his
graduation, working in private industry or
teaching again at Worcester Polytechnic
Institute.


The inspiration for Kingsbury’s tilting-pad
bearing came when he read an 1886 paper
by Osborne Reynolds on properties of fluid-
film-lubricated bearings. Kingsbury built a
successful thrust bearing in 1898, while at
New Hampshire College.


Eventually lured away from the academic
life by his desire to work more closely with
lubrication problems, Kingsbury nonetheless
was awarded two honorary doctorates in
recognition of his contributions to the
knowledge of tribology — the study of fric-
tion and ways to overcome its effects.


He applied for a U.S. patent in 1907, and
eventually was awarded Patent No. 947,242
in 1910.


It was when Kingsbury was working at
the East Pittsburgh works of the Westing-
house Electric and Manufacturing Co. that
this daringly innovative engineer chanced
upon a daringly innovative company —
Pennsylvania Water & Power Co. — that was
in need of a bearing of the sort Kingsbury
wanted to demonstrate on a commercial
scale.


PW&P was a struggling company between
1910 — when Holtwood went into operation
— and 1914, when the utility was able to
turn around its financial fortunes.


Kingsbury, for his part, took the money
from a matured insurance policy and used it
to pay Westinghouse for building the first
thrust bearing that was installed at Holtwood.







Both he and PW&P were betting their fu-
tures on the success of his bearing in replac-
ing the roller bearings that used to wear out
in a matter of months at Holtwood and sim-
ilar hydroelectric installations.


The first time it was installed, it looked
like an overheated failure. But Kingsbury
took it back to East Pittsburgh and applied
that same careful scraping technique whose
results puzzled him at Cornell. Within five
days, the bearing was installed and running
without problems.


After three months, the bearing was taken
apart and found to be in perfect condition.
PW&P bought more, and eventually put them
on all 10 Holtwood hydroelectric units. Cal-
culations after that first inspection showed
that the bearing should last 330 years be-
fore the shoes’ bearing surface would be
half worn away.


After four years and another inspection,
recalculation indicated a more than
1,320-year life span.


When the unit was again inspected in
1969, the bearing was stall in nearly new
condition.


Kingsbury’s bearing made possible the
design of much larger hydroelectric units,
such as those of the Tennessee Valley Au-
thority and Bonneville Power Authority and
at the Hoover and Grand Coulee dams.


In addition, Kingsbury bearings have been
used extensively in marine propulsion — for
the propeller shafts of large ships and even
nuclear-powered submarines. The first such
application was on U.S. Navy ships in 1917.


History of Holtwood Hydro
The Holtwood Hydroelectric Station was


built between 1905 and 1910 by the Penn-
sylvania Water & Power Co. PW&P merged
with Pennsylvania Power & Light Co., the
plant’s present owner and operator, in 1955.


The Kingsbury thrust bearing is far from
the only technology pioneered at Holtwood.


A hydraulic laboratory existed there for
many years, and in it were tested not only
the runner (turbine blade) design for the Safe
Harbor Hydroelectric Development, eight
miles upriver from Holtwood, but also run-
ners for many large hydroelectric develop-
ments throughout the country, including
Bonneville and Santee-Cooper.


Another interesting facet of “river technol-
ogy” was the dredging and burning of an-
thracite culm, or “fines” (waste coal that
washed into the river from the anthracite
belt as far north as Luzerne and Lackawan-
na counties).


For years, commercial dredging was done
in the Holtwood impoundment (Lake Aldred),
and later in the Safe Harbor impoundment
(Lake Clarke). Indeed, Holtwood Steam Elec-
tric Station was built to burn river coal, and
did so until cleaner coal-mining and process-
ing methods shut off the flow of available
“fines” and environmental regulations in 1972
made it impractical to continue dredging.


Other technological pioneering at Holt-
wood included PW&P’s testing of lightning-
protection systems and water-deluge fire-


fighting systems to protect large transform-
ers. The systems protecting transformers at
all PP&L plants today are direct descendants
of the prototypes developed at Holtwood.


Notwithstanding the embryonic state of
large-project engineering and construction
techniques when Holtwood was built, its
massive concrete dam has withstood all ma-
jor floods on the Susquehanna, including the
devastating flood of 1936, the assault of
Tropical Storm Agnes in 1972 and a massive
ice jam in 1978.


Thanks to PP&L’s ongoing “Extended Life”
program for its generating stations, Holt-
wood is expected to have a useful life well
into the next century, and far longer than
might have been projected for it in 1910.


At the time of the Kingsbury thrust bear-
ing’s dedication as an International Historic
Mechanical Engineering Landmark, a com-
plete rebuild of Holtwood’s hydroelectric
Unit 8 was in progress. Other units will be
rebuilt on a continuing schedule.


With that kind of maintenance and with
original equipment of the quality of the
Kingsbury bearing, it’s possible that Holt-
wood Hydroelectric Station may never “wear
out.”


Seen here from the York County side of
the river, Holtwood Hydroelectric Station
has been a familiar landmark along the
Susquehanna for more than 76 years.







Text of the Kingsbury
Plaque at Holtwood


(Editor’s note: The ASME
plans to erect a plaque for
the Michell bearing at another
location. That plaque will re-
peat the last paragraph from
the Kingsbury plaque, but
with Kingsbury’s name substi-
tuted for Michell’s.)


The ASME’s History and Heritage
Program


The ASME History and Heritage program
began in September 1971. To implement
and achieve its goals, ASME formed a His-
tory and Heritage Committee, composed of
mechanical engineers, historians of technol-
ogy, and the curator of Mechanical and Civil
Engineering at the Smithsonian Institution.
The committee provides a public service by
examining, noting, recording and acknowl-
edging mechanical engineering achievements
of particular significance. For further informa-
tion, please contact the Public Information
Department, American Society of Mechanical
Engineers, 354 East 47th Street, New York,
N.Y. 10017, (212) 705-7740.


About the Landmarks


The Kingsbury Bearing is the 23rd Interna-
tional Historic Mechanical Engineering Land-
mark to be designated. Additionally, since
the ASME National Historic Mechanical Engi-
neering Program began in 1971, 87 National
Historic Mechanical Engineering Landmarks,
one International Mechanical Engineering
Heritage Site, one International Mechanical
Engineering Heritage Collection, and two Na-
tional Mechanical Engineering Heritage Sites
have been recognized. Each reflects its influ-
ence on society in its immediate locale, na-
tionwide or throughout the world.


According to David P. Kitlan, the ASME
Susquehanna Section’s History & Heritage
Committee chairman, this region of Pennsyl-
vania is particularly rich in examples of
engineering innovation and progress, and
the section has sponsored more National
Historic Mechanical Engineering Landmarks
than any other in the country.


The Kingsbury bearing, however, is the
section’s first International ASME Historic
Mechanical Engineering Landmark, so desig-
nated because of the global consequences of
Kingsbury’s invention and its applications.


Other engineering accomplishments al-
ready recognized as “landmarks” in Pennsyl-
vania include: The Pennsylvania Railroad
“GG-1” electric locomotive No. 4800 at
Strasburg; the Worthington cross-compound
steam pumping engine at York; the Kaplan
hydroelectric turbine at York Haven Hydro-
electric Plant, York Haven; the Cornwall Iron
Furnace in Lebanon County; the Fairmount
Water Works in Philadelphia; the steam
engines of the USS Olympia, berthed in Phil-
adelphia; the Monongahela and Duquesne
inclines at Pittsburgh: and the Drake oil well
at Titusville.


An ASME landmark represents a progres-
sive step in the evolution of mechanical
engineering. Site designations note an event
or development of clear historical impor-
tance to mechanical engineers. Collections
mark the contributions of a number of ob-
jects with special significance to the histor-
ical development of mechanical engineering.


The ASME Historical Mechanical Engineer-
ing Program illuminates our technological
heritage and serves to encourage the preser-
vation of the physical remains of historically
important works. It provides an annotated
roster for engineers, students, educators,
historians and travelers. It helps establish
persistent reminders of where we have been
and where we are going along the divergent
paths of discovery.


INTERNATIONAL HISTORIC MECHANICAL ENGINEERING LANDMARK
KINGSBURY THRUST BEARING


HOLTWOOD UNIT #5
HOLTWOOD, PA.


1912


THE LOAD IN A KINGSBURY BEARING IS CARRIED BY A WEDGE-SHAPED OIL FILM FORMED BETWEEN
THE SHAFT THRUST-COLLAR AND A SERIES OF STATIONARY PIVOTED PADS OR SEGMENTS. THIS RE-
SULTS IN AN EXTREMELY LOW COEFFICIENT OF FRICTION AND NEGLIGIBLE BEARING WEAR.


ALBERT KINGSBURY (1863-1944) DEVELOPED THE PRINCIPLE IN THE COURSE OF BEARING AND
LUBRICATION INVESTIGATIONS COMMENCING IN 1888 WHILE A STUDENT. HIS FIRST EXPERIMENTAL
BEARING WAS TESTED IN 1904, AND HE FILED FOR A PATENT IN 1907 — GRANTED IN 1910.


THE FIRST KINGSBURY BEARING IN HYDROELECTRIC SERVICE — ONE OF ITS MAJOR APPLICATIONS —
WAS INSTALLED HERE IN 1912. IT REMAINS IN FULL USE TODAY. KINGSBURY THRUST AND JOURNAL
BEARINGS HAVE BEEN APPLIED TO LARGE MACHINERY OF ALL TYPES THROUGHOUT THE WORLD.


IN ONE OF THOSE COINCIDENCES WITH WHICH THE HISTORY OF TECHNOLOGY IS STREWN, AUSTRA-
LIAN A. G. M. MICHELL SIMULTANEOUSLY AND INDEPENDENTLY INVENTED A BEARING ON THE SAME
PRINCIPLE, THE TYPE BEING KNOWN IN MANY PARTS OF THE WORLD BY HIS NAME.


THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS — 1987







History and description of PP&L


Pennsylvania Power & Light Co., incor-
porated June 4, 1920, now serves
2.5 million people in all or parts of 29
Central Eastern Pennsylvania counties.


Thomas A. Edison himself established
several of the companies that were pre-


cursors of PP&L, and he built the world’s
first three-wire electric supply system in
Sunbury. The first electrically lighted
hotel and church both were located
within what is now PP&L’s service area.


Ideally located near a majority of the
mid-Atlantic states’ population, PP&L
contributes to the economic health and
growth of the area not only by provid-
ing dependable and economical electrici-
ty, but by an aggressive economic de-


velopment program to nurture existing
companies and encourage others to
locate in its territory.


Holtwood Hydroelectric Station, whose
first unit was completed in 1910, before
PP&L was formed, is the oldest of PP&L’s
generating facilities. The Holtwood dam
was, for a short time, the longest in the
nation, and the generating plant was
the largest hydro station as well.


Also on the site is the Holtwood
Steam Electric Station, location of the
nation’s largest anthracite-burning boiler.


Other PP&L hydro facilities are the
wholly owned Wallenpaupack Hydro-


electric Station, completed in 1926, and
the Safe Harbor Hydroelectric Develop-
ment (one-third interest), which dates
back to 1931.


The Sunbury Steam Electric Station,


which went on-line in 1949, is PP&L’s
other anthracite-burning facility. Its four
anthracite-fired boilers make it the
largest anthracite-burning generating
plant in the nation.


The company has four plants where
bituminous coal is burned: Sunbury;
Martins Creek Steam Electric Station —
on line in 1954; Brunner Island Steam
Electric Station — 1961; and Montour
Steam Electric Station — 1972.


The Martins Creek station also is the
location of two heavy-oil-burning units,
dating to 1975.


PP&L’s newest large plant is the
nuclear-powered Susquehanna Steam


Electric Station, with an in-service date
of 1983.


In addition, PP&L owns part interests
in the Keystone and Conemaugh plants
in western Pennsylvania.


More than 25 light-oil-fueled combus-
tion turbines are located throughout the
PP&L system to provide additional peak-
load power when needed.


The ASME


All PP&L’s plants combined have a ca-


pacity of more than 8.8 million kilowatts.


Formed in 1880, the American Society
of Mechanical Engineers is a profes-
sional society dedicated to the mainte-


nance of high engineering standards
and to education of the public in mat-
ters relating to engineering.


Acknowledgments


The American Society of Mechanical Engineers


Richard Rosenberg, President
Richard A. Hirsch, Vice President, Region III
Michael R. C. Grandia, History and Heritage Chairman, Region III
Dr. David L. Belden, Executive Director


The ASME Susquehanna Section


Theodore Taormina, Chairman
William J. Stewart, Secretary-Treasurer
David P. Kitlan, Chairman, History and Heritage Committee


The ASME National History and Heritage Committee


Dr. R. C. Dalzell, Chairman


Robert M. Vogel, Secretary
Dr. Robert B. Gaither
Dr. R. S. Hartenberg
Dr. J. Paul Hartman
Dr. Euan F. C. Somerscales
J. P. Van Overveen


Carron Garvin-Donohue, Staff liaison


Pennsylvania Power & Light Co.


Robert K. Campbell, President and Chief Executive Officer
John T. Kauffman, Executive Vice President-Operations
Thomas M. Crimmins Jr., Vice President-Power Production


Alden F. Wagner Jr., Superintendent of Plant-Holtwood Operations
N. Christian Porse, Supervisor-Hydro Generating Plant
James K. Witman, Power Production Engineer


Kingsbury, Inc.


Margaretta Clulow, Chairman
George Olsen, President
Richard S. Gregory, Vice President and General Manager
Andrew M. Mikula, Director of Marketing


References for Further Reading:


Mechanical Engineering magazine, December 1950, p. 957


PP&L Insights newsletter, June 24, 1983, p. 2
PP&L REPORTER magazine, October 1985, p. 10







The American Society of
Mechanical Engineers


345 East 47th Street, New York, NY 10017


Specifications for the first Kingsbury bearing at Holtwood:
� Designed for a 12,000-kilowatt water-wheel-driven generator
� Capable of supporting a 400,000-lb. load in continuous operation
� To operate between 94 and 116 RPM


� Lubrication to be a high grade oil known as “Renown Engine Oil”
� Intake temperature of oil to be not more than 40 degrees C
� Must be capable of 10 RPM for 15 minutes and also 20 RPM for one hour


without undue heating of any part, providing oil is supplied at 17.5 gallons
per minute


� Must be capable of operating at a runaway speed of 170 RPM for one hour,
providing oil is supplied at 17.5 gallons per minute


� Must be capable of operating during one-half hour of interruption of oil cir-
culation, providing no oil is lost from the casing – or for 20 minutes at an
overspeed not to exceed 40 percent above 116 RPM


� Diameter: 48 inches


� Height: 24 inches


� Approximate weight: 2.5 tons


The ASME was assisted in preparation of this publication by Pennsylvania Power & Light Co. and Kingsbury. Inc


ASME Identification Number HH 0587 (6M 6/87)


H123
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NOTES 3 
KINEMATICS OF JOURNAL BEARINGS 
 
Lecture 3 introduces the analysis of fluid flow in a (simple & ideal) cylindrical journal bearing 
whose film thickness is a function of the radial clearance and the instantaneous journal center 
displacements (eccentricity vector). The thin film is described with either of two coordinate 
systems, one inertial (fixed) and the other one (r, t) moving with the journal center. 
Corresponding expressions for classical Reynolds equation follow. In a coordinate system 
rotating with ½ the journal angular speed, the journal motion (translation and rotation) is seen as 
a pure squeeze type motion, thus enabling a simpler understanding of the physical terms in 
Reynolds equation.  
 
Nomenclature 
C Bearing radial clearance. = RB -RJ  [m] 
e 2 2


X Ye e . Journal center eccentricity [m] 


F 
 


FX, FY 


Fluid film reaction force (acting on journal) 2 2 2 2
X Y r rF F F F F     [N] 


Components of fluid film force along fixed X,Y axes 
Fr , Ft Components of fluid film force along fixed r, t axes [N] 
h  C+e cosθ = C + eX cosΘ + eY sinΘ. Film thickness [m] 
L Bearing axial length [m] 
Mx, Mz 


0 0


,
h h


x zV dy V dy   . Mass flow rates per unit length [kg/(m-s)] 


P Hydrodynamic pressure [N/m2] 
Pcav Liquid cavitation pressure 
RB , RJ Bearing and Journal Radii [m] 
t Time [s] 


,x zV V  ,x z


A A


M M


h h 
. Mean flow velocities [m/s] 


VX, VY ,X Ye e  . Components of journal velocity along X,Y axes [m/s] 


Vr, Vt ,e e . Components of journal velocity along r,t axes [m/s] 
VS (pure) squeeze film velocity [m/s] 
(X,Y) & (r,t) Fixed coordinate system, moving coordinate system 
Θ=x/R, y, z Coordinate system on plane of bearing 
  


tan Y


X


e
e


  
 


. Journal attitude angle 


  Fluid density  [kg/m3] 
  Fluid absolute viscosity  [N.s/m2] 
ω Whirl frequency [rad/s] 
  Journal angular speed [rad/s] 
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The global mass conservation Eqn. in thin film flows is: 
 


0
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
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
z
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t


h zx
     (3.1) 


 
or, in terms of the mean flow velocities: 
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Substitution of the mean velocities 
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leads to Reynolds Equation of Classical Lubrication Theory, 
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Recall that the wall shear stress differences are given as functions of the mean flow components, 
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        (3.5) 


 
Fluid Flow in a Cylindrical Journal Bearing 


Cylindrical fluid film bearings are 
commonly used to support loads, static 
and dynamic, in rotating machinery. 
These lubricated bearings also introduce 
viscous damping that aids in reducing the 
amplitude of vibrations in operating 
machinery.  
 
A depicted in Figure 3.1, a plain 
cylindrical journal bearing comprises of 
an inner rotating cylinder (JOURNAL) of 
radius RJ and an outer cylinder 


(BEARING) of radius RB (>RJ). The two cylinders are closely spaced and the annular gap 
between the two cylinders is filled with a lubricant. The radial clearance C = (RB -RJ) is very 
small, typically C/RJ    0(10-3) in mineral oil lubricated bearings. 


DB=2 RB 
DJ=2 RJ 


Figure 3.1 Schematic of cylindrical bearing 
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The journal spins with angular speed (). The journal center, denoted by OJ, may also perform 
translational motions within the bearing clearance. The bearing or housing is stationary (not 
moving) in most applications. Notable exceptions are those of floating ring journal bearings and 
crankshaft support bearings in reciprocating engines.  
 
The smallness of the film thickness ratio, h/C<<1, allows for a Cartesian coordinate1 (x=R, y, 
z) be located on the bearing surface (see Figure 3.2). Then, the Reynolds equation describing the 
flow in the journal bearing becomes 
 


   
3 3


2


1


12 12 2


h P h P
h h


R z z t


   
 


         
             


   (3.8) 


 
in the flow domain {0    2 , -½ L  z  ½ L}, where h(, z, t) is the film thickness, L is the 
bearing axial length, and U = RJ is the journal surface speed. 
 
The boundary conditions for the hydrodynamic pressure in the plain cylindrical bearing are2: 
a) The pressure is continuous and periodic in the circumferential direction (Θ), i.e. 
 


   P(, z ,t) = P( + 2, z, t)      (3.9) 
 
b) At the bearing sides or axial ends, the pressure equals the discharge or atmospheric value 
 
    P(, ½ L  , t) = P(, - ½ L, t) = Pa    (3.10) 
 
Alternatively, in the absence of journal misalignments the flow domain is symmetric about the 
plane z = 0 and P(z)=P(-z). Hence, the axial flow rate is nil at the bearing mid-plane (z=0), i.e. 
 


    P/ z = 0     at  z = 0   for all (,  t)   (3.11) 
 
As a constraint, everywhere in the flow domain, the hydrodynamic pressure must be above 
(greater than) the liquid cavitation pressure, i.e. 
 
   P  Pcav    in  0      2 ,  - ½ L   z  ½ L    (3.12) 
 
Here Pcav represents the lubricant saturation pressure or the saturation pressure for release of 
dissolved gases, typically ambient pressure. In practice, no distinction is made between these two 
types of pressures since hydrodynamic film pressures can be one to two orders of magnitude 
larger than ambient.  


                         
1 Surface curvature effects in the fluid flow are negligible in most bearing configurations.  
2 The following simple model does not account for feeding holes or axial grooves for supply of the lubricant into 
the bearing.  
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 


x=R 


Figure 3.2.  Schematic view of a cylindrical journal bearing. Coordinate systems: 
fixed (X,Y) and moving (r,t)  
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Clearance, C=RB-RJ 


Film thickness:  
h = C + eX cos() + eY sin()
or 


h =C + e cos() 
 


=+ 


Note: film gap enlarged for description 
purposes
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Film thickness in a cylindrical journal bearing 
Figure 3.2 shows the film thickness (h) expressed in two coordinate systems (, z) and (, z), 
both located on the bearing surface. The angular coordinate  has its origin at the line of -X axis, 
as shown in the Figure, while the coordinate  starts from the position of maximum film 
thickness.  
 
The journal center OJ is displaced a distance (e) from the bearing center OB. This offset distance 
is known as the journal eccentricity, and it may vary with time depending upon the imposed 
external load on the bearing and the journal rotational speed (). The journal eccentricity cannot 
exceed the bearing clearance, i.e. e<C; otherwise, solid-solid contact and potential catastrophic 
failure may occur.  
 
For a journal eccentric displacement e ( C), as shown in Figure 3.2, the following relation 
becomes apparent from triangle (0B - 0J –A),  
 


2 2 2( ) 2( ) cos ( ) ( )J J JR C e R C e R h             (3.13)  


 
where RJ is the journal radius, h is the film thickness and  is the angle measured from the 
location of maximum film thickness. Expansion of the formula above gives, 
 


2 2 2 2 22 2( ) cos 2J J J J JR R C C e R C e R R h h              


 
and dividing by (2 RJ), 


2 2


cos( ) 2 cos( )
2 J


C e h
h C e C e


R C C
 


 
      


 
   (3.14) 


 
and since the ratio (C/RJ)  is very small, then the film thickness is just  
 


)cos(eCh         (3.15) 
 
This formula is accurate for (C/RJ) ratios as large as 0.10. The film thickness formula derived 
assumes: 


a) no journal misalignment, 
 b) a uniform axial and circumferential clearance, 


c) rigid bearing and journal surfaces. 
 
The components of the eccentricity (e) along the (X,Y) axes are 
 


eX = e cos();  eY = e sin()     (3.16) 
 


where  is known as the journal attitude angle, and =+. Then, the film thickness is also 
equal to: 
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cossincos eeeCh YX                     (3.17) 
and 




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




sincos;cossin YXYX ee
t


h
ee


h      (3.18) 


 
where ( . ) denotes differentiation with respect to time, i.e. )./( t  
 
Reynolds equations for plain cylindrical journal bearings 
Substitution of the film thickness (h) and its gradients into Reynolds equation (3.8) renders the 
following  PDE for an incompressible and isoviscous fluid: 
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with  sincos YX eeCh   in the flow domain {0    2 , -½ L  z  ½ L}. 
 
An alternative form of Reynolds equation arises when using the angular coordinate () whose  
origin is at the location of maximum film thickness. A coordinate system with radial and 
tangential (r, t) axes is conveniently defined; the radial coordinate joins the bearing and journal 
centers. 
 
Recall that eX = e cos();  eY = e sin(), and 222


YX eee  . The journal center velocities in the 
(X,Y) and (r,t) coordinate systems are related 
by the linear transformation 
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where ;r t


de d
V e V e e


dt dt


       are the 


radial and tangential components of the 
journal center translational velocity, 
respectively, as shown in Fig 3.3.   
 
 
 


 
From the film thickness expression cose Ch , it follows that 
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Fig. 3.3 Velocity components of journal center
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Thus, Reynolds equation (3.8) for an incompressible and isoviscous fluid is also expressed as 
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with cose Ch  in the flow domain {0    2 , -½ L  z  ½ L}. Note that the (r,t) 
coordinate system may be moving since the journal center can move due to imposed  dynamic 
loads, for example. 
 
Fluid film forces 
Integration of the pressure field on the journal surface produces a fluid film reaction force (F), as 
shown in Figure 3.4. An equal though opposing fluid film force acts on the bearing, i.e. the 
applied load transfers to the bearing casing.  
 
Under static conditions, the reaction force F balances the applied external force W. Under 
dynamic load conditions, when the journal displaces in time, equations of motion that include the 
journal mass times its acceleration need be satisfied. The fluid reaction force can be written in 
terms of its components in either (X, Y) or (r, t) axes, i.e. 
 


2 2 2 2
X Y r rF F F F F         (3.23) 


With reference to the (r, t) coordinate system, the radial and tangential components of the fluid 
film reaction force are  
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With reference to the fixed (X, Y) system, the vertical and horizontal components of the (same) 
fluid film force are 
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The relationship between the components of the fluid film force in both coordinate systems is 
given by the linear transformation 
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In general, the fluid film reaction force is a function of the journal rotational speed (),the 
journal center eccentricity vector ( ,e  ), and the journal center velocity with components 


( ,e  ), i.e. 


 , ,
,


, , , , , ,
2X Y X Y X Y


r t


F F e e e e F e e e  



 






         
     (3.26)  


 


Kinematics of journal motion3 
In vector form the journal center velocity is 
 


trYXJ ueuejeie
dt


ed
V














   (3.27) 


 
where  ji



,  and  tr uu



,  are unit vectors in the (X, Y) 


and (r, t) coordinate systems, respectively, as shown in 
Fig. 3.5. 
 
Define VS as a velocity equaling the time rate of 
change of the vector e



 relative to a coordinate system 


that has angular velocity (½ ). k



 with respect to the 
fixed coordinate system (X, Y). VS equals 
 


 


                         
3 Follows the description given by D. Childs in "Turbomachinery Rotordynamics", Wiley Inter-Science Pub., 
1993. 
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Fig 3.5 Unit vectors in (r,t) and (X,Y) CSs
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And since, ,sincos jeiee
    then also, 
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      (3.28b) 


 
Hence, any journal motion (translation and rotation) always appears as a state of pure squeezing 
in the defined rotating coordinate system, as shown in Figure 3.6. Thus, VS is best known as a 
pure squeeze velocity.  
 
From equation (3.28a), 
 


 trstrS VeeV uuuu




 sincos


2
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

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     (3.29) 


 
where VS  and  are the magnitude and lead angle of the squeeze velocity vector relative to the 
(r, t) coordinate system, i.e. 
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Figure 3.6 Pure squeeze film velocity Vs in 
rotating coordinate system 
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Also, from (3.28b) 
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Thus Reynolds equation in terms of the pure squeeze velocity VS is  
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in the  (r, t) system with h = C + e cos ; or 
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in the (X, Y) coordinate system with h = C + eX  cos  + eY sin . 
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NOTES 4  
STATIC LOAD PERFORMANCE OF PLAIN JOURNAL BEARINGS 
 
Lecture 4 introduces the fundaments of journal bearing analysis. The long and short 
length bearing models are introduced. The pressure field in a short length bearing is 
obtained and examples follow for the pressure profiles generated under various operating 
conditions, namely journal rotation w/o whirling, pure circular centered whirl, and radial 
squeeze film motion. Next, the analysis focuses on determining the equilibrium journal 
eccentricity for an applied static load. The Sommerfeld number is a single parameter that 
permits quick bearing design since, for example, a large load or a low journal angular 
speed or a low viscosity produce the same operating (large) journal eccentricity.  The 
journal eccentricity and attitude angle defining the static performance of the journal 
bearing are shown as functions of operating speed, lubricant viscosity, and applied load.  
 
Nomenclature 
C Bearing radial clearance. = RB -RJ   [m] 
e 2 2


X Ye e+ . Journal center eccentricity [m] 
FX, FY Fluid film reaction forces along X,Y axes, 2 2 2 2


X Y r rF F F F F= + = + [N] 
Fr, Ft Fluid film reaction forces along r,t axes [N] 
h  C +e cosθ = C + eX cosΘ + eY sinΘ. Film thickness [m], H=h/C 


,j k
iJ  Booker’s journal bearing integral 


L Bearing axial length [m] 
P Hydrodynamic pressure [N/m2] 
Pamb Ambient pressure = 0 (for simplicity of analysis) [N/m2] 
Qz Axial flow rate (per unit circumferential length) [m2/s] 
RB , RJ=R Bearing Radius ~ Journal Radius [m] 
S Sommerfeld number (bearing design parameter) [rev] 
t Time [s] 
VX, VY ,X Ye e . Components of journal velocity along X,Y axes[m/s] 
Vr, Vt ,e eφ . Components of journal velocity along r,t axes [m/s] 
VS (pure) squeeze film velocity [m/s] 
W Applied (external) static load (along X axis) [N] 
(X,Y) & (r,t) Coordinate systems 
α Angle of squeeze velocity vector with axis r 
ε e/C. Journal eccentricity ratio 
Θ=x/R, y, z Coordinate system on plane of bearing 
φ  


tang t


r


F
Fϕ ⎛ ⎞=− ⎜ ⎟


⎝ ⎠
. Journal attitude angle 


ρ  Fluid density [kg/m3] 
μ  Fluid absolute viscosity [N.s/m2] 
σ 2


4
L R L


W C
μσ Ω ⎛ ⎞= ⎜ ⎟


⎝ ⎠  
Modified Sommerfeld number (short length bearing) 


Ω  Journal angular speed (rad/s) 
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For incompressible and isoviscous fluids, and in terms of the pure squeeze velocity VS, 
Reynolds equation for generation of the hydrodynamic pressure P is  
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where h=(C+ e cosθ) in the (r,t) system, and  
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    (4.2) 


Recall that (e) is the journal center eccentricity, Ω is the journal rotational speed, e = Vr is 
the journal radial velocity,  and φe =Vt is the journal tangential velocity.  
 


 
The boundary conditions for the pressure field P in a plain cylindrical journal bearing are: 
a) The hydrodynamic pressure and its gradients are continuous and single valued in the 
circumferential direction, i.e. 


 
),,2(),,( tzPtzP πθθ +=     (4.3) 


 
b)  At the bearing axial ends, the pressure is ambient (Pa) 
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Figure 4.1. Pure squeeze film velocity in rotating 
coordinate system 
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, , , ,
2 2 a
L LP t P t Pθ θ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟


⎝ ⎠ ⎝ ⎠
    (4.4)  


 
c) and as a constraint, the pressure is always equal or larger than the liquid cavitation 
pressure, 
 


cavPtzP ≥),,(θ      (4.5) 
 


More physically sound and appropriate boundary conditions at the onset of the lubricant 
cavitation region are given later (see Notes 6). Boundary conditions at the film 
reformation boundary follow later. 
 
An analytical solution to equation (4.1) for arbitrary geometry cylindrical bearings is 
unknown. Most frequently, numerical methods are employed to solve Reynolds equation 
and then to obtain the performance characteristics of bearing configurations of particular 
interest.  
 
The bearing performance characteristics as a function of the applied external load are the 
journal eccentricity and attitude angle, bearing flow rate, drag power loss or friction 
coefficient, (temperature rise), and the dynamic force coefficients (stiffness and damping) 
at the operating rotational speed Ω. 
 
There are analytical solutions to Reynolds equation applicable to two limiting geometries 
of journal bearings. These are known as the infinitely long and infinitely short length 
journal bearing models. 
 


In the LONG BEARING 
MODEL, the length of 
the bearing is regarded 
as very large, L/D → ∞, 
and consequently the 
axial flow is effectively 
very small, (∂P/∂ z) = 0. 
The pressure profile 
does not vary along the 
bearing length (except at 
its edges), as shown in 
Figure 4.2.  
 
For the long bearing, 
Reynolds equation 
reduces to: 
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D 
journal 


Pressure field 


bearing 


Figure 4.2. The long bearing model 
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The long bearing model gives accurate results for journal bearings with slenderness ratios 
(L/D) > 2. Most modern bearings in high performance turbomachinery applications have 
a small L/D ratio, rarely exceeding one. Thus, the infinitely long journal bearing model is 
of limited current interest.  
 
This is not the case for squeeze film dampers (SFDs), however. The long bearing model 
provides a very good approximation for tightly sealed dampers even for small L/D ratios. 
Another application is long bearings supporting ship propellers, for example.  
 
The Short Length Journal Bearing Model  
In this model, the length of the bearing is regarded as very small, L/D→ 0, and 
consequently the circumferential flow is effectively very small, i.e. (∂P/∂θ) ≅ 0. For this 
limiting bearing configuration, the Reynolds equation reduces to  
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The short length bearing model provides (surprisingly) accurate results for plain 
cylindrical bearings of slenderness ratios L/D ≤ 0.50 and for small to moderate values of 
the journal eccentricity, e≤ 0.75 C. The short length bearing model is widely used for 
quick estimations of journal bearing static and dynamic force performance 
characteristics. 


 
 
In the short length bearing 
model, the circumferential 
pressure gradient is taken as 
very small, i.e. (∂P/∂θ) ≅ 0, and 
hence, the mean fluid flow in 
the circumferential direction is  
 


hRhUM x 22
Ω


== ρρ    (4.8) 


 
For film thickness,  
h = C + e cosθ, direct 
integration of Equation (4.7) is 
straightforward.  For an aligned 
journal, the film h is not a 
function of the axial 
coordinate.  


Ω 
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Axial pressure 
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L/D << 1 
 


dP/dθ → 0 


Fig. 4.3. The short length bearing  
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The integration renders the axial flow per unit circumference: 
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−= zV
z
PhQ Sz     (4.9) 


 
Note that at the bearing middle plane, z=0, the flow rate is nil. Further integration of 
Equation (4.9) and applying the ambient pressure boundary condition at the bearing sides 
leads to the following parabolic pressure field, 
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 (4.10) 


 


with    θε cos1+==
C
hH      (4.11) 


 
as a dimensionless film thickness. ε = e/C is a journal eccentricity ratio; 0 ≤ ε ≤  1,  
ε=0.0 means centered operation (typically a condition of no load support), and ε = 1.0 
evidences solid contact of the journal with its bearing.  


 
Note that the pressure field in Eqn. (4.10) is parabolic in the axial direction, with 
symmetry about the bearing middle plane z=0. Hence the maximum hydrodynamic 
pressure occurs at this middle plane and equals: 


 
2


3


cos( )6( , 0, )
4


S
a


V LP z t P
h


μ θ αθ +
= = −    (4.12) 


 
In the short length bearing model, the circumferential coordinate (θ) and the time (t) are 
not variables but parameters.  Consequently, imposing pressure boundary conditions in 
the circumferential direction is not possible. Fortunately, Eqn. (4.10) shows the 
hydrodynamic pressure is continuous and single valued in the circumferential direction θ 
 
No lubricant cavitation will ever occur within the bearing if the magnitude of the side 
(exit or discharge) pressures Pa is well above the liquid cavitation pressure. However, if 
Pa is low, typically ambient at 14.7 psi (1 bar), it is almost certain that the bearing will 
show either liquid or gas cavitation, and under dynamic load conditions, air entrainment 
(ingestion and entrapment). The cavitation model in the short length bearing model sets 
Pa=0 and disregards any predicted negative pressures, it just equates them to zero. This 
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“chop” procedure although not theoretically justified seems to grasp with some degree of 
accuracy the physics of the thin film flow. 
 
Hence, if Pa = 0, and from Eqn. (4.12), the pressure field is positive, P>0, when 
 


cos(θ+α) < 0     (4.13) 
 
Thus, P>0 in the circumferential region delimited by 
 


απθθθαππαθπ
−=≤≤=−→≤+≤


2
3


22
3


2 21  (4.14) 


 
That is, regardless of the type of journal motion, the region of positive pressure has an 
extent of π (180°) and it is centered (or aligned) with the pure squeeze vector (VS). This 
important observation is the basis for the infamous π film cavitation model widely used 
in the engineering literature. 
 
The study of a few simple cases for journal off centered motions (e>0) is of interest. 
Recall from Eqn. (4.2) 
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   (4.2) 


 
 
1)   Pure rotational (spinning) journal motion (Ω > 0), 0,0 == φe  
 Then  α = ½ π, VS = ½ eΩ 
     and P > 0 extends from θ1 = 0 to θ2 = π  
 
2)      Pure radial squeeze motion without journal rotation,( Ω= 0), 0,0 =≠ φe  
 Then α = 0, if e >0 , Vs = e >0 


 and P > 0  from θ1 =
2
π    to θ2 = 


2
3π ; 


 
while α = π,  if e < 0, Vs = | e |  


 and P > 0 extends from θ1 =
2
π


−    to θ2 = 
2
π ; 


 
3) Pure tangential squeeze motion (circular whirl) without journal rotation,  


e =Ω= 0 
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 Then   α= 
2


3π   if  φ  > 0, Vs = eφ ,  


And P > 0 from θ1 = π  to θ2 = 2π . 
 
Figure 4.4 depicts predicted centerline(at z=0) pressure profiles for a short length journal 
bearing with the following dimensions and operating characteristics. Length L=50  mm; 
clearance, C=100 μm, rotational speed at 3,000 rpm (Ω=314 rad/s), and lubricant 
viscosity μ=19 centipoise (19 10-3 N.s/m2). The oil is an ISO VG 22 lubricant with a 
specific gravity of 0.86.   
 
Note that the midplane pressure field P in Eqn (4.12) does NOT show the bearing radius 
or diameter in it.   
 
The results shown correspond to three journal eccentricity ratios ε=e/C, equal to 25%, 
50% and 75% of the radial clearance (C). The operating conditions are 
 


a) Journal spinning motion, (Ω=314.2 rad/s), 0,0 == φe ,  
Maximum VS = ½ CΩ=0.016 m/s 


 
b) Journal circular whirl, φ =314.2 rad/s, Ω= e =0, Maximum VS = eφ  =0.031 m/s 


 
c) Journal radial motion (pure squeeze),                    , 


e =0.031 m/s,  Ω =φ =0, VS = e = 0.016 m/s 
 
The graphs show the regions for positive pressure (P>0) for each particular case of 
journal motion. The hydrodynamic pressure increases rapidly as the journal eccentricity e 
increases and as the whirl orbit radius e increase. Note that circular whirl without journal 
spinning produces pressure magnitudes twice as large as for the case of steady journal 
rotation without journal whirling. Note also that the pressure regions in the two cases are 
shifted by 180°. It is noteworthy to show that pure squeeze film motions ( e >0) generate 
pressures much larger than those due to the other two type of motions, since the squeeze 
film velocity (VS) is larger. 
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Fluid film forces for the short length journal bearing 
Integration of the pressure field acting on the journal surface produces a fluid film force 
with radial and tangential components (Fr, Ft) defined by 
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3;
2 21 . Note that if the lubricant does not cavitate, then 
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=2π. Substitution of the pressure field, Eqn. (4.10) into the expression above, 
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where H=(1+ε cosθ), ⎟
⎠
⎞


⎜
⎝
⎛ Ω


−=−=
2


sin;cos φαα eVeV SS . The bearing force is 


typically a reaction type, i.e. it balances an applied external force or load that acts on the 
journal. This external load is a fraction of the rotor weight. Recall that rotors are  
supported on a pair of bearings, in general.  
 
Booker (1965)1 defines the following bearing integrals 
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and provides recursive analytical formulas for their evaluation. Using the definition 
above, the fluid film reaction forces become 
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or in terms of the journal velocity components 
 


                                                 
1 Booker, J. F., 1965, “A Table of the Journal Bearing Integral,” ASME Journal of Basic Engineering, pp. 533-535. 
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Note that the fluid film forces are proportional to the journal center translation velocities 
( ),r tV e V eφ= = as well as the journal rotational speed Ω. The reaction forces depend 


linearly on the lubricant viscosity (μ), the bearing radius R; growing very rapidly with the 
ratio (L/C)3. 
 
The linear transformation between the (r, t) and (X,Y) coordinate systems gives a 
relationship for the evaluation of the fluid film forces (FX, FY)  in the Cartesian coordinate 
system 
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Equilibrium condition for a short length journal bearing 
Hydrodynamic journal bearings are designed and built to support a static load W, 
hereafter aligned with the X axis (for convenience). At the equilibrium condition, denoted 
by journal center eccentric displacement (e) with attitude angle (φ), the fluid film journal 
bearing generates a reaction force balancing the applied external load W at the rated 
rotational speed (Ω).  The equations of static equilibrium are 
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For static equilibrium, 0,0 == φe , so then α = ½ π, VS = ½ eΩ; and θ1= 0 to θ2=π. From 
Eqn. (4.18b), the radial and tangential film forces reduce to 
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Using the formulas from Booker’s Journal Bearing Integral Tables, and after some 
algebraic manipulations,   
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Hence, the radial and tangential fluid film forces for the short length bearing are  
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Note that the bearing reaction force is proportional to the journal speed Ω, the lubricant 
viscosity μ, and the bearing radius R. The forces are strong nonlinear functions of the 
bearing length L and the radial clearance C, i.e. ~ L3/C2.  
 
The fluid film bearing reaction force balances the applied external load W. Thus, 
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and the journal attitude angle φ (angle between the load and the journal eccentricity 
vector e) is  
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Note that as the journal eccentricity  ε →  0, φ → π /2, while as ε → 1, φ → 0. 
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Figure 4.5. Force equilibrium for static load W 
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In the design of hydrodynamic journal bearings, the bearing static performance 
characteristics relate to a single dimensionless parameter known as the Sommerfeld 
Number (S) 
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where N =(Ω/2π)  is the rotational speed in revolutions/s. In Eqn. (4.26), the ratio 
(W/LD), load divided by the bearing projected area, is known as the bearing specific 
load or specific pressure. Various journal bearing configurations are rated by their peak 
specific pressure, for example, up to 300 psi for tilting pad bearings and ~1,000 psi for a 
cylindrical journal bearing. The specific pressure is a relatively good indicator of the 
maximum (peak) film pressure within the thin film bearing.   


 
In short length journal bearings, a modified Sommerfeld number σ) is more physically 
adequate. The parameter is defined as 
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Substitution of Eqn. (4.24) into Eqn. (4.27) relates σ to the equilibrium journal 
eccentricity ε, i.e. 
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At a rated operating condition, σ is a known magnitude or value since the bearing 
geometry (R, L, C), rotational speed (Ω), fluid viscosity (μ) and applied load (W) are 
specified. Then Eqn. (4.28) provides a relationship to determine (iteratively) the 
equilibrium journal eccentricity ratio ε=(e/C) required to generate the hydrodynamic 
pressure field that produces a fluid film reaction force equal and opposite to the applied 
load W. 
 
The following figures depict the modified Sommerfeld number σand attitude angle φ 
versus the journal eccentricity ε=(e/C).  Large Sommerfeld numbers σ , denoted by either 
a small load W, a high speed Ω rotor, or a lubricant of large lubricant viscosity μ, 
determine small operating journal eccentricities or nearly a centered operation, i.e. ε →0 
and φ→π/2 (90°). That is, the journal eccentricity vector e is nearly orthogonal or 
perpendicular to the applied load vector W. 
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Small Sommerfeld numbers σ (large load W, low speed Ω, or low lubricant viscosity μ) 
determine large journal eccentricities, i.e. ε → 1.0, φ→0 (0°). Note that the journal 
eccentricity vector e is nearly parallel to or aligned with the applied load W.  
 
 


 
 
 
 
 
 
 
 
Figure 4.6. Modified Sommerfeld number σ  versus journal eccentricity ε. Short 
length journal bearing 
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Figure 4.7. Equilibrium attitude angle φ versus journal eccentricity ε. Short length 
journal bearing 
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Figure 4.8 shows the locus of journal center displacement or journal eccentricity within 
the bearing clearance for various operating conditions. The journal eccentricity (e) 
approaches the clearance (C) for operation with either large loads, or low rotor speeds, or 
light lubricant viscosity, and it is aligned with the load vector. For either small loads, or 
high shaft speeds, or large fluid viscosity (large Sommerfeld number), the journal travels 
towards the bearing center and its position is orthogonal to the applied load. This peculiar 
behavior is the source of rotordynamic instability as will be shown shortly.  
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Figure 4.8. Locus of journal center for short length bearing 


 
Use the accompanying MATHCAD program to determine the journal eccentricity for a 
journal bearing configuration and specified load, fluid properties and speed operating 
conditions. The program implements a simple thermal model and also predicts the exit 
film temperature, bearing drag power and flow rate. 
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Simple lumped parameter thermal analysis for 
predicting the exit temperature and effective 
viscosity in a short length journal bearing


Appendix to Notes 4 : Static load performance of journal bearing


Luis San Andres – Fall2009 (NUS)


All journal bearings have a supply port (axial 
groove or hole) to feed cold lubricant into the 
film separating the rotating journal and its 
the bearing. The lubricant gets hotter 
(increase in temperature) as it flows down 
thru the hydrodynamic wedge. Some hot 
lubricant leaves the bearing through its 
sides. The spinning journal draws some hot 
lubricant around towards the inlet port where 
it mixes with the cold stream of lubricant. 
The temperature of the lubricant at the inlet 
of the film land is higher than the oil supply 
temperature.  
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NOTES 5. APPENDIX A 
Physical interpretation of bearing forces during circular whirl motions  
The bearing dynamic reaction forces, radial and tangential, add the stiffness ("elastic") 
and ("viscous") damping forces, i.e.  
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For circular journal motions of amplitude Δe around the bearing center position (e0=0), 
the radial and tangential journal center velocities are ωφ eee Δ=Δ=Δ 0,0 , with ω as the 
frequency of whirl motion and in the same direction as the rotor spin speed (Ω). 
 
 At the centered position, the short cylindrical bearing force coefficients are given by 
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And thus, the bearing radial and tangential force components become 
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Hence, the radial (centering) force is nil. The tangential force could be destabilizing 
or stabilizing, depending on its sign. A destabilizing force, also known as a follower 
force, will drive the journal in the direction of the whirl motion, i.e. Ft >0. For this 
condition to occur, the equivalent damping coefficient (Ceq) for the forward whirl orbit 
must be negative, i.e.    
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(Ceq<0) occur for rotor speeds Ω ≥ 2ωs, i.e. at twice the natural frequency of the rotor 
bearing system1. 


   
 


In the (X,Y) coordinate system, ΔX=Δe cos(ωt) and ΔY=Δe sin(ωt). Thus, the bearing 
forces are 
 


                                                           
1 Note that backward whirl motions (ω<0) would be stable. Backward whirl motions are 
relatively rare since the external forcing mechanisms to excite them are not present in 
most rotor-fluid film bearing systems. This is not the case for conditions of rotor rubbing, 
internal friction and some instances of intermittent contact with rolling bearing elements. 
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Recall that YYXXYXXY CCKK
22
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Note that (FX, FY) oppose the forward whirl motion for journal speeds Ω < 2ωs. For larger 
rotor speeds, the forces become positive and aid to the growth of the forward whirl 
amplitude of motion. 
 


The work performed by the bearing forces during a full period of motion (T=2π/ω) 
equals 
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Note that E<0 is equivalent to negative work, i.e. energy removed or dissipated from the 
rotor-bearing system. However when E>0, i.e. for Ω ≥ 2ωs, the fluid film bearing adds 
"energy" into the rotor-bearing system thus driving the whirl motion forward.  
 
From this discussion it is easy to deduce that rotor-bearings evidencing whirl orbits with 
skewed areas (sharp ellipsoids) are less prone to rotordynamic instability. This type of 
dynamic response is obtained by design of (direct) stiffness asymmetry as given in 
bearing configurations (elliptic, multiple-lobe with preloads, pressure-dam bearings). 
However, these bearings are limited to fixed orientation static loads and rotor spin in only 
one direction. 
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Influence of bearing asymmetry on whirl orbit 


Work from elastic forces = Areaorbit  (KXY - KYX) 
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Field and experimental evidence of rotor-bearing system instability 
The archival literature is abundant in experimental and field descriptions of severe 
instabilities induced by fluid film bearings on rotating machinery.  
 


WFR ~ 0.47 X


Transition from 
oil whirl to oil 
whip (sub sync 
freq. locks at 
system natural 
frequency)


  
 
 
 
As an example of tests conducted at the author’s laboratory on a high speed test rig, the 
figure below depicts recorded amplitudes of motion versus shaft speed on a rigid rotor 
supported on plain journal bearings. The displacement measurements correspond to rotor 
motions along the vertical and horizontal planes (LV, LH). The curves with larger 
amplitudes denote the total amplitudes of motion while the others in light color show the 
filtered synchronous (1X) motions with slow roll compensation. The passage through a 
well-damped critical speed is evident at ~ 8.5 krpm. As the shaft speed increases, the 
amplitudes of motion decrease. However, at a shaft speed ~ twice the critical speed, the 
rotor becomes violently unstable with large amplitude motions nearly equaling the 
bearings’ clearances.  The second figure depicts the waterfall of the vertical shaft motion. 
The graph shows the frequency content of the vibration signal as the rotor accelerates. 
The synchronous motions are denoted by the 1X line. The whirl frequency ratio is 0.50 at 
the onset of the severe subsynchronous motions. As the speed increases, the whirl 
frequency locks at the system natural frequency. This phenomenon is known as oil-whip. 
The rotor was severely damaged upon completion of the experiment. 
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Amplitudes of rotor motion versus shaft speed. Experimental evidence 
of rotordynamic instability 


 
Waterfall of recorded rotor motion demonstrating subsynchronous whirl 
 
 


 
 
 
 
 
 
 
 







NOTES 5. APPENDIX A. PHYSICAL INTERPRETATION OF BEARING FORCES DURING CIRCULAR WHIRL © 2009 .7


Other measurements – HIGH SPEED Turbochargers 
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Physical interpretation of dynamic forces for circular centered whirl 5.A.8


The following pages show shaft motion measurements conducted on a rotor-kit – flexible 
rotor supported on plain journal bearing.  
 
The graphs show Bode plots (amplitude of response versus shaft speed) for TWO static 
loads (small and large) applied to the rotor near the journal bearing location. The Table 
shows the recorded threshold speed of instability and whirl frequency ratio of 
subsynchronous motion. Note that since the rotor is flexible, the whirl frequency 
corresponds with the natural frequency of the flexible rotor. The waterfalls show the 
severity of the subsynchronous motions – oil whip – for the unloaded condition. 
 
More discussion in class! 
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NOTES 5 
DYNAMICS OF A RIGID ROTOR-FLUID FILM BEARING SYSTEM 
 
Lecture 5 restates the analysis for static equilibrium in a journal bearing. Next, it considers the 
dynamics of the simplest rigid rotor bearing system supported on journal bearings. For small 
amplitude journal motions about an equilibrium position, the analysis proceeds to linearize the 
fluid film forces and introduces the concepts of bearing force coefficients, namely, 4 stiffnesses, 
4 damping and 4 inertia coefficients. Formulas for the direct and cross-coupled stiffness and 
damping coefficients of a short length journal bearing are derived. The analysis focuses on the 
stability of the rigid rotor-bearing system to determine the threshold rotor speed at which the 
system loses its equivalent damping and develops ever growing motions at a whirl frequency that 
coincides with the rotor-bearing system natural frequency. The low and high magnitudes of the 
Sommerfeld number show whereas the system operates stably or not. The ½ whirl frequency 
ratio reveals a typical stability limit of lubricated journal bearings. The effect of rotor flexibility 
on further reducing the threshold speed of instability is noted since the rotor-bearing natural 
frequency is also lowered.  An appendix provides a physical explanation of the follower force, 
induced by the cross-coupled stiffnesses, that drives the rotor bearing system into whirl. 
Remedies to avoid or delay the instability are given. Actual examples of instabilities and 
measurements in the author’s laboratory make evident the harmful, potentially catastrophic, 
whirl instability. A list of industrial or commercial bearing configurations with noted advantages 
and disadvantages complements the lecture.   
 
Nomenclature 


C  Radial clearance [m] 
Cij  Bearing damping force coefficients, i,j=X,Y [N.s/m] 
D=2R Bearing diameter 
e Journal eccentricity [m]  


,e eφ  Vr, Vt .  Journal center radial and tangential velocities [m/s] 
F Fluid film force acting on journal surface [N] .  2 2 2 2


X Y r tF F F F F= + = +  
Fo ½ Static load [N] 
h Film thickness. H=h/c 
Kij Bearing stiffness force coefficients, i,j=X,Y [N/m] 
Ke Bearing equivalent stiffness [N/m] 
Krot Elastic rotor stiffness (one side) [N/m] 
L Bearing axial length  
M ½ Mass of rigid rotor [kg] 
Mij Bearing added mass force coefficients, i,j=X,Y [N.s2/m] 
mc=ps


2 Dimensionless critical mass 
P Hydrodynamic pressure [Pa] 
R Bearing radius [m] 
r, t  Moving coordinate system 
S Sommerfeld number 
t Time (s) 
u Mass imbalance [kg] 
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X, Y Inertial coordinates system 
ΔX, ΔY Small amplitude displacements in (X,Y) coordinate system 
Δe,eo Δφ Small amplitude displacements in (r,t) coordinate system 
ε  e/C. Journal eccentricity ratio 
δ  u/C. imbalance parameter 
ρ  Fluid density [kg/m3] 
σ  2


4 o


LR L
F C


μ Ω ⎛ ⎞
⎜ ⎟
⎝ ⎠


. Modified Sommerfeld number 


μ  Absolute viscosity [N.s/m2]
Γ o rotF K .  Static (elastic) sag at rotor midspan [m]
φ  Journal attitude angle 
Θ, θ Circumferential coordinates 
ω Characteristic whirl frequency [rad/s] 
ωn (Keq/M)½ . Rotor-bearing system natural frequency [rad/s] 
Ω  Journal rotational speed [rad/s] 
Ωs Threshold speed of instability [rad/s] 
 
Subscripts 


 


a Ambient value 
o Static or equilibrium condition 
s, fs Threshold of instability for rigid and flexible rotor 
XX,XY,YX,YY Indices of force coefficients in fixed (X,Y) coordinate system  
rr,rt,tr,tt Indices of force coefficients in moving (r,t) coordinate system  
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Equations of motion of a rigid rotor supported on plain journal bearings 
Consider, as shown in Fig. 5.1, a symmetric rigid 
rotor of mass 2M that carries a static load (2Fo=W) 
along the X axis. Two identical plain journal 
bearings support the rotor. The equations of 
motion of the rotating system at constant rotational 
speed Ω  are given by: 
 


2


2


sin( )


cos( )
X o


Y


M X F M u t F


M Y F M u t


= + Ω Ω +


= + Ω Ω
  (5.1) 


 
where u is the magnitude of the imbalance vector, 
X(t) and Y(t) are the coordinates of the rotor mass 
center, and (FX, FY)are the fluid film bearing reaction forces. 
 


Since the rotor is rigid, the center of mass displacements are identical to those of the journal 
bearing centers, i.e. 
 


)()(),()( tetYtetX YX ==              (5.2) 
 
The rotor-bearing static equilibrium is defined by 
 


OOYXYoX eeeFFF
OOOO


φ,or,,0, ⇒=−=     (5.3) 
 
where (eo ,φo) are the static equilibrium journal eccentricity and attitude angle, respectively. The 
static fluid film reaction force components are such that: 
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bearing


Rotor (journal)fluid film


Journal
Rotation (Ω)
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2M 


Journal 
bearing 
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Y 
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disk 


Clearance 
circle 


Ωt 


e 


Static load 


u Rigid  
shaft 


Figure 5.1. Rigid rotor supported on journal bearings. 
(u) imbalance, (e) journal eccentricity 
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Recall that 2 2 2 2
X Y r tF F F F F= + = +  


 
At equilibrium, the region of positive fluid film pressure extends from θ1 = 0 to θ2 = π. In a short 
length journal bearing, the radial and tangential components of the 
static fluid film force Fo are 
 


( ) ( ) 2322
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  (5.5) 
 


where R= D/2, L and C are the journal radius, axial length and radial 
clearance, respectively. ε=eo/C is the journal center eccentricity ratio,  
ε<1.0; μ is the lubricant absolute viscosity, and Ω=(rpm π/30) is the 
rotor speed in rad/s. Figure 2 depicts the force components, radial and 
tangential, growing rapidly (nonlinearly) with the journal eccentricity e/C.   
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Note that the short length bearing forces are proportional to the lubricant viscosity and rotor 
surface speed (ΩR), the bearing length (L3), and inversely proportional to the radial clearance 
(C2). Most importantly, the bearing forces grow rapidly (non-linearly) with the journal 
eccentricity (ε=e/C). 
 
Each bearing reaction force balances a fraction of the applied static load Fo = ½ W for a 
symmetric rotor bearing system. Thus, 
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      (5.6) 
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Figure 5.2. Radial and tangential 
forces in short length journal 
bearing 
 
μ=0.019 Pa.s, L=0.05 m, C=0.1 mm,  
Speed 3, 000 rpm 
L/D=0.25 
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The equilibrium attitude angle (φo) between the static load direction and the eccentricity vector is 
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( )21


tan
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π ε
φ


ε


−
= − =


⋅
    (5.7) 


 
Note that as ε → 0,  φo → ½ π (journal eccentricity is perpendicular to the static load direction), 
whereas ε → 1, φo → 0 (journal eccentricity parallel or aligned to load direction). 
 
The bearing design parameter is the modified Sommerfeld number (σ) 
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    (5.8) 


 
For a rated operating condition, σ is known since the bearing geometry, speed, fluid type 
(viscosity) and load are known.  Then Eqn. (5.8) gives a relationship to determine (iteratively) 
the equilibrium eccentricity ratio, ε =e/c, that generates the film reaction force balancing the 
applied static load Fo. Recall that, 
 
Large Sommerfeld (σ) numbers (small load W, high speed Ω, large lubricant viscosity μ) 
determine small operating journal eccentricities or nearly centered operation, i.e. ε → 0.0 and 
attitude angles approaching 90°; and 
 
Small Sommerfeld (σ) numbers (large load W, low speed Ω, light lubricant viscosity μ) 
determine large operating eccentricities, i.e. ε→1.0 and attitude angle approaching 0° 
 
Figures 4.6-8 in Lecture 4 depict the Sommerfeld number and attitude angle versus the journal eccentricity and the 
locus of the journal center within the clearance circle. The same figures are reproduced here in a smaller format. 
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Fig. Eccentricity ratio (ε) and attitude angle (φ) versus Sommerfeld number (σ) in a short 
journal bearing 







Notes 5. DYNAMICS OF A RIGID ROTOR-FLUID FILM BEARING SYSTEM.   Dr. Luis San Andrés © 2010 6


Consider, as represented in Figure 5.3, small amplitude journal motions about the equilibrium 
position. These motions are defined as 


 
)(),( teeeteee YYYXXX OO


Δ+=Δ+=   (5.9.a) 
or 


)(),( tYYYtXXX OO Δ+=Δ+=     (5.9.b) 
or conversely, 
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with 


YYXX


YYXX


ee
dt


Ydee
dt


Xd


ee
dt
dYee


dt
dX


Δ==Δ==


Δ==Δ==


2


2


2


2


.


.
      (5.10) 


 
The journal dynamic displacements in the (r, t) coordinate system are related to those in the (X,Y) 
fixed system by the linear transformation 
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Similar relationships hold for the journal center velocities and accelerations. 
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Figure 5.3. Small amplitude journal 
motions about a static equilibrium 
position 
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Note that the small amplitude motions assumption means Cee YX <<ΔΔ , , i.e., the journal 
dynamic displacements are much smaller than the bearing clearance. 
 
The fluid film forces are general functions of the journal center displacements and velocities, i.e. 
 


YXteteteteFF YXYX ,)],(),(),(),([ == ααα    (5.12) 
 
The assumption of small amplitude motions about an equilibrium position allows expressing the 
bearing reaction forces as a Taylor Series expansion around the static journal position (eXo, eYo), 
i.e. 
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   (5.13) 


 
 
Definition of dynamic force coefficients in fluid film bearings 
Fluid film bearing stiffness (Kij) ij=X,Y , damping (Cij) ij=X,Y and inertia force coefficients are 
defined as 
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For example, KXY = -∂FX/∂Y corresponds to a stiffness produced by a fluid force in the X 
direction due to a journal static displacement in the Y direction. By definition, this coefficient is 
evaluated at the equilibrium position with other journal center displacements and velocities equal 
to zero. The negative sign in the definition assures that a positive magnitude stiffness coefficient 
corresponds to a restorative force.  
 
The coefficients (KXX, KYY) are known as the direct stiffness terms, while the coefficients (KXY,  
KYX)  are referred as cross-coupled. Figure 5.4 provides an idealized representation of the 
bearing force coefficients as mechanical parameters. 
 


Fluid inertia or added mass coefficients ;
j


i
ij X


F
M


∂
∂


−=  i,j=X,Y where { }YX ,  are journal center 


accelerations.  Fluid inertia coefficients are of particular importance in superlaminar and 
turbulent flow bearings and seals handling liquids (large density). The inertia force coefficients 
or apparent masses have a sound physical interpretation and are always present in a fluid film 
bearing. Inertia coefficients are of large magnitude especially in dense liquids. However, the 
effect of inertia forces on the dynamic response of rotor-bearing systems is only of importance at 
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large excitation frequencies (This fact also holds for most mechanical systems subjected to fast 
transient motions). 


  
Note that the defined force coefficients allow the representation of the dynamic fluid film 
bearing (or seal) forces in terms of fundamental mechanical parameters {K, C, M}. However, this 
does not mean that these coefficients must be accordance with customary knowledge. For 
example, the “viscous” damping coefficients may be negative, i.e. non-dissipative, or the 
stiffness coefficients non restorative or non conservative. 
 
Fluid film force coefficients in the radial and tangential directions (r, t) are also defined. Thus, 
the radial and tangential fluid film forces are expressed as (stiffness and damping for simplicity) 
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Note that { φΔΔ oee, } are the journal center radial and tangential (small) velocities in the (r, t) 
coordinate system, respectively. 
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Figure 5.4. The “physical” representation of dynamic force coefficients in 
fluid film bearings  
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The relationship between the force coefficients in both coordinate systems is easily determined 
from equation (5.11) as: 
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Substitution of the force coefficient definitions (5.14) into equation (5.13) gives the following 
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And, the governing equations of motion for the rigid-rotor-bearing system, Eqn. (5.1) become 
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where FXo = Fo= ½W and FYo = 0. These differential equations are linear and represent the rotor-
bearing system dynamics for small amplitude motions about the equilibrium position. 
 
Fluid inertia effects are altogether neglected in the traditional stability analysis of rotor-
lubricated bearing systems.   
 
Force coefficients for the short length journal bearing 
The general definition of fluid film bearing dynamic force coefficients is above. The analytical 
derivation of these coefficients for the short length journal bearing follows.  
 
The film thickness for an aligned cylindrical journal bearing is 
 


cos ;h C e(t) ( )θ θ ϕ= + = Θ −     (5.19) 
 


For small amplitude motions about the equilibrium position, )()();()( ttteete oo φφφ Δ+=Δ+= , 
where Δe and Δφ are small radial and angular displacement quantities, respectively.  
 
Eqn. (5.19) is rewritten with θ =Θ -φo as 
 


( ){ },sinsincoscos φθφθ Δ+ΔΔ++= eeCh o   
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and, for small amplitude motions note that cos(Δφ)~1, sin(Δφ) ~Δφ. Then neglecting second 
order terms,  


θφθθ sincoscos Δ+Δ++= oo eeeCh = 1oh h+     (5.20) 
where, 


θφθθ sincos;cos 10 Δ+Δ=+= oo eeheCh     (5.21) 
 
are the zeroth-order and first-order or perturbed film thicknesses, respectively. 
 
Recall that the Reynolds equation for the short length journal bearing model is1: 
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and,   
θ


θ
θφθ


θθ


θφθ


sin;cossin


sincos1


o
o


o
o


o


e
h


ee
hh


ee
t


h
t
h


−=
∂
∂


Δ+Δ−
∂
∂


=
∂
∂


Δ+Δ=
∂
∂


=
∂
∂


   (5.23) 


 
 
Substitution of (5.23) into (5.22) gives: 
 


θφθφ
μ


sin
22


cos
212


3


⎭
⎬
⎫


⎩
⎨
⎧ Ω


Δ−⎥⎦
⎤


⎢⎣
⎡ Ω


−Δ+
⎭
⎬
⎫


⎩
⎨
⎧ Δ


Ω
+Δ=⎟⎟


⎠


⎞
⎜⎜
⎝


⎛
∂
∂


∂
∂ eeee


z
Ph


z oo  (5.24) 


 
Integration of Eqn. (5.24) in the axial direction and applying the boundary conditions at the sides 
of the bearing, i.e. P = Pa at z =  ± ½ L, gives:  
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where H = h/C. Integration of the pressure field on the journal surface gives the radial and 
tangential components of the fluid film force, i.e., 
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1 This equation is valid for (L/D)<<0.50 and incompressible, isoviscous lubricants. No thermal effects are accounted 
for in this simple form of the classical Reynolds equation. 
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where the positive (uncavitated) pressure region lies between θ1 = 0 and θ2 = π when Pa is set as 
zero (nil). Note that it is assumed the perturbed pressure field, due to small amplitude journal 
motions about the equilibrium position (eo, φo), does not affect the extent of the steady state 
lubricant cavitation region, i.e. from 0 to π. This assumption is clearly void if the motions are 
large in character. By the way, the concept of linear force coefficients is also inadequate when 
motion amplitudes are large. 
 
Substitution of Eqn. (5.25) into Eqn. (5.26) and integration in the axial direction renders 
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 (5.27) 


 
However, the cubic term in the denominator (H3) also depends on the perturbed journal center 
displacements. A first-order Taylor series expansion of this terms gives for h/C=H 
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where θφθθ sincos;cos 10 Δ+Δ=+= oo eeheCh . Substitution of Eqn. (5.28) into (5.27) 
and neglecting second-order terms, i.e. products of small quantities such as Δe ·Δφ, etc., gives 
after some considerable algebraic manipulation 
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  (5.29) 
 


where θθθ
πθ


θ


d
H


J i
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kj
i


0
0
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=


=   are definite integrals and Ho =( 1 + ε cos θ ).   


 
The bearing stiffness and damping force coefficients are, from Eqn. (5.29), specified as 
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The ( φΔΔ   e  ,e o


) correspond to the journal center radial and tangential velocities in the  (r, t) 
coordinate system, respectively. Note that the stiffness coefficients (Kij) ij=r,t are proportional to 
the rotational speed (Ω) and fluid viscosity (μ). The damping coefficients (Cij) ij=r,t are not a a 
direct function of the angular speed but depend only on the fluid viscosity and the journal 
equilibrium position. Without journal rotation there cannot be a fluid film bearing stiffness. 
 
Dimensionless Force Coefficients 
The literature presents the force coefficients in dimensionless form according to 
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Ω
==  i,j=X,Y    (5.32) 


 
where Fo is the static load applied on each bearing (in the X direction). [Note that the total load 
W=2Fo is shared by the two bearings in a symmetric rotor mount].  
 


Recall that ( )
σ


μ
4
/ 2 RLCLFo


Ω
= , where (σ) is the modified Sommerfeld Number defined as (See 


Notes 4) 
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Using the following definitions: 
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the dimensionless force coefficients in the (r, t) coordinate system become, 
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Force coefficients in the (X,Y) coordinate system are easily obtained using the matrix 
transformation Eqn. (5.16). After a lengthy algebraic procedure, 
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            (5.35) 
recall that the X-direction is along the static load Fo. 
 
Figures 5.5 and 5.6 depict the dimensionless force coefficients, stiffness and damping, as 
functions of both the journal eccentricity and the modified Sommerfeld number (σ), respectively. 
Both representations are necessary since sometimes the journal eccentricity is known a priori 
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while most often, the design parameter, i.e. the Sommerfeld number, is known in advance. In 
general, the physical magnitude of the stiffness and damping coefficients increases rapidly 
(nonlinearly) with the journal eccentricity (load too!).  
 
Note that the dimensionless force coefficients do not represent the actual physical trends. For 
example, at eo=0, KXX=KYY=0, but the dimensionless values kXX=kYY=0 in the figures show a 
definite value. This peculiar result follows from the definition of dimensionless force coefficients 
using the applied load (Fo). Thus, as eo→0 , the bearing load Fo is also nil. 
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Figure 5.5. Short length journal bearing (dimensionless) stiffness and damping force 
coefficients vs. journal eccentricity (ε)
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Figure 5.6. Short length journal bearing (dimensionless) stiffness and damping force 
coefficients vs. modified Sommerfeld number (σ) 
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Dynamic force Coefficients for journal centered operation, i.e. static load=0 
As the journal center approaches the bearing center, eo→0, and from the formulas,   
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At e→0, φo = 90o, so the force coefficients in the (X,Y) system are given as: 
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Thus, at the centered journal position the bearing offers no direct (support) stiffness but only 
cross-coupled support. A small static load applied on the bearing will cause a journal 
displacement in a direction orthogonal (perpendicular) to the load. This phenomenon is found in 
nearly all fluid film bearings of rigid geometry. 
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Stability analysis of rigid rotor supported on plain journal bearings 
For small amplitude journal motions about the equilibrium position (eo, φo), the equations of 
motion of a rigid rotor supported on (linear) fluid bearings are: 
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Introduce the dimensionless variables: 
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where C is the bearing radial clearance and Ω is the journal or rotor speed (regarded as 
invariant). Substitution of Eqn. (5.39) into (5.38) gives: 
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is a dimensionless mass, and  kij = Kij (C/Fo),  cij = Cij  (CΩ /Fo) 


are the dimensionless dynamic force coefficients. 
 
It is of interest to study if the rotor-bearing system is stable for small amplitude journal center 
motions (perturbations) about the equilibrium position. To this end, set the imbalance parameter 
δ  = 0 in the equations above to obtain, 
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If the rotor-bearing system is to become unstable, this will occur at a threshold speed of 
rotation (Ωs) and the rotor will perform (undamped2) orbital motions at a whirl frequency (ωs). 
These motions, satisfying equation (5.42), are of the form: 
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where ss Ωωω = is known as the whirl frequency ratio, i.e. the ratio between the rotor whirl 
or precessional  frequency and the rotor onset speed of instability. 
 
Substitution of Eqn. (5.42) into (5.41) leads to: 
 


⎥
⎦


⎤
⎢
⎣


⎡
=⎥


⎦


⎤
⎢
⎣


⎡
⎥
⎦


⎤
⎢
⎣


⎡


++−+
+++−


0
0


22


22


B
A


cjkpcjk
cjkcjkp


YYsYYssYXsYX


XYsXYXXsXXss


ωωω
ωωω


  (5.43) 


 
The determinant of the system of equations must be zero for a non-trivial solution of the 
homogenous system of equations, i.e. 
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After a rather lengthy algebraic manipulation, the real and imaginary parts of Δ above render, 
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For a given value of journal eccentricity (εo), i.e. a given Sommerfeld number (σ ), one evaluates 
Eqn. (5.45) to obtain the dimensionless equivalent stiffness keq, and then (5.46) to obtain the 
whirl frequency ratio Sω . This substitution then yields 22


Seqs kp ω=  (system critical mass) 
which in turn renders the onset speed of instability Ωs. 


                                                           
2 Recall that in a second order mechanical system an equivalent damping ratio>0 causes the damping or attenuation 
of motions induced by small perturbations. A damping equal to zero produces sustained periodic motions without 
decay or growth and indicates the threshold between stability and instability (amplitude growing motions).   
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Figures 5.7 and 5.8 depict the whirl frequency ratio ss Ωωω = and the dimensionless threshold 
speed of instability (ps) versus both the journal eccentricity and Sommerfeld number, 
respectively. Note that for near centered journal operation, i.e. large Sommerfeld numbers, the 
whirl frequency is 0.50, i.e. half-synchronous whirl.  
 
Other important information is also obtained. If one assumes that the current (operating) 
rotational speed Ω is the onset speed of instability, then from the relations above, the magnitude 
of ½ system mass (M) is obtained, and which would make the rotor-bearing system become 
unstable. This mass is known as the critical mass, Mc, and corresponds to the limit mass which 
the system can carry dynamically. If the total mass is equal or larger than twice Mc, then the 
system will be unstable at the rated speed Ω (3). 
 
The whirl frequency ratio, s sω ω= Ω , is the ratio between the rotor whirl frequency and the onset 
speed of instability. Note that this ratio, as given by Eqn. (5.46), depends only on the fluid film 
bearing characteristics and the equilibrium eccentricity, and it is independent of the rotor 
characteristics (rotor mass and flexibility). 
 
The parameter keq is a journal bearing (dimensionless) equivalent stiffness and depicted in 
Figures 5.5 and 5.6. From the definitions of threshold speed and whirl ratio, ( )oss FCMp 22 Ω=  
and sss Ωωω = , then 


eq
o


eqs K
C
F


kM =⎟
⎠
⎞


⎜
⎝
⎛=2ω  


 
Thus, the whirl or precessional frequency is given by 
 


eq
s n


K
M


ω ω= =      (5.47) 


 
i.e., the whirl frequency equals the natural frequency of the rigid rotor supported on journal 
bearings. 
 
For operation close to the concentric position, εo → 0, i.e. large Sommerfeld numbers (no load 
condition), the force coefficients are, see Eqn. (5.37),  
 


0;;;0 ==−==== YXXYYXXYYYXXYYXX cckkcckk    (5.37) 
 


( ) XXXYXYXXXXeq ckcckk += =0 
and 


0.50 as 0s XY


s XX


k
c


ω ε= = →
Ω


    (5.48) 


 
                                                           
3 Recall that each bearing carries half the static load, and also half the dynamic or inertia load (2.McC Ω2). 
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The 0.5 magnitude for whirl frequency ratio (WFR) (or 50% whirl as is called in industry) is a 
characteristic of hydrodynamic plain journal bearings. It shows us that at the onset of instability 
the rotor whirls at its natural frequency, which equals to 50% of the rotor speed. Furthermore, 
under no externally applied loads, Fo=0, as in vertically turbomachinery, the bearing possesses 
no support stiffness, i.e. Keq=0 and the system natural frequency (ωn) is zero, i.e. the rotor-
bearing system whirls at all speeds.  
 
Note that if kXY = 0, i.e. the fluid film bearing does not show cross-coupled effects, then the WFR 
= 0, i.e. no whirl occurs and the system is ALWAYS stable. (Asymmetrical) cross-coupled 
stiffnesses are thus responsible for the instabilities so commonly observed in rotors mounted on 
journal bearings.  
 
If the whirl frequency ratio is 0.50, then the maximum rotational speed that the rotor-bearing 
system can attain is just, 


max 2 2
0.50


s
s n


ω ω ωΩ = = =     (5.49) 


i.e., twice or two times the natural frequency (or observed rigid rotor critical speed). 
 
Figures 5.7, 5.8, and 5.9 show, respectively, the whirl frequency ratio, the dimensionless critical 
mass parameter (ps), and the dimensionless critical mass (ps)2  versus the Sommerfeld number 
and operating journal eccentricity. The results show that a rigid-rotor supported on plain journal 
bearings is always STABLE for operation with journal eccentricity ratios ε > 0.75 (small 
Sommerfeld numbers) for all L/D ratios. Note that the critical mass and the whirl ratio are 
relatively insensitive for operation with eccentricities εo < 0.50. 
 
Keep in mind that increasing the rotational speed of the rotor-bearing system determines larger 
Sommerfeld numbers, and consequently, operation at smaller journal eccentricities for the same 
applied static load. Thus, operation at ever increasing speeds will eventually lead to a rotor 
dynamically unstable system as the results show. 
 
Effects of Rotor Flexibility 
A similar analysis can be performed considering rotor flexibility. This analysis is more laborious 
though straightforward. The analysis shows that the whirl frequency ratio is not affected by the 
rotor flexibility. However, the onset speed of instability decreases dramatically!  
 
The relationship for the threshold speed of instability of a flexible rotor is: 
 


2
2


1


s
sf


eq


pp
k


C


=
Γ⎛ ⎞+ ⎜ ⎟


⎝ ⎠


    (5.50) 


 
 
 
where the sub index  f  denotes the flexible rotor, Krot  is the rotor stiffness on each side of the 
center disk, and o rotF KΓ = is the rotor static sag or elastic deformation at midspan. 


bearing 
2M KRot 
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The elastic shaft and bearing are mounted in series, i.e. the bearing and shaft flexibilities add 
(reciprocal of stiffnesses), and thus the equivalent system stiffness is lower than that of the 
bearings alone, and therefore the system natural frequency is lower.  
 
Figure 5.10 shows the threshold speed of instability (psf) for a flexible rotor mounted on plain 
short length journal bearings. Note that the more flexible the rotor is, the lower the threshold 
speed of instability. If the fluid film bearings are designed too stiff (small Sommerfeld numbers), 
then the natural frequency of the rotor-bearing system is just (Krot/M)0.5, irrespective of the 
bearing configuration. 
 
Postcript 
See the Appendix to these notes for further understanding on the nature of the cross-coupled 
coefficients driving the whirl motion.  
 
The MATHCAD programs attached include the algebraic formulas for evaluation of the bearing 
force coefficients in actual applications. 
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Figure 5.7. Whirl frequency ratio vs. modified Sommerfeld number (σ) and journal 
eccentricity (ε) 
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Figure 5.8. Dimensionless threshold speed of instability (ps) vs. modified Sommerfeld 
number (σ) and journal eccentricity (ε) 
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Figure 5.9. Dimensionless critical mass (mc=ps
2) vs. modified Sommerfeld number 


(σ) and journal eccentricity (ε). 
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Figure 5.10. Dimensionless threshold speed of instability (ps) for flexible rotor vs. 
modified Sommerfeld number (σ). Static sag (Γ/c) varies 
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μR 2.5 10 6−
⋅ 6894.757⋅


N s⋅


m2
⋅:= fluid viscosity at reference


                    etmperature: 
TR 50:= α 0.030:=


Oil viscosity-temperature 
coefficient (1/deg C)


T 60:= degC operating (feed) temperature


kshaft 108 N
m
⋅:= 1/2 shaft stiffness a 0.2 c⋅:= Amplitude of imbalance on rotor disk


Static shaft deflection due to rotor 
weight  = % of clearance δ


W
kshaft


:= 1N 1 kg m s-2
=


Γ
δ


c
:=


Γ 0.222=


δ 1.334 10 5−
× m= if Γ > 1 then rotor is quite flexible


μ μR e
α− T TR−( )⋅


⋅:= μ 0.013
N s⋅


m2
= Operating viscosity


Static performance


Stability and Imbalance Response of a Jeffcott-Rotor
Supported on Short Length Journal Bearings


(c) Dr. Luis San Andres  UT/2000, TAMU/2006    Extended with eigen analysis: 10/00 TAMU
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(u) imbalance, (e) journal eccentricity 


DATA for rotor WT 600 4.448⋅ N⋅:= Rotor weight Gravitational acceleration g 9.807 m s-2
=


W
WT


2
:= W 1.334 103


× N= Static load per bearing


M
W
g


:= M 136.071 kg= 1/2 rotor mass


BEARING GEOMETRY, OIL viscosity and Operating conditions: Top shaft speed for analysis
D 0.15 m⋅:= journal diameter


RPM_max 12000:=


L 2 0.025⋅ m⋅:= bearing length


c 0.060 mm⋅:= radial clearance







Journal eccentricity ratio and attitude angle for STATIC equilibrium
Short bearing solution for an isoviscous-incompressible lubricant
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Stiffness and damping force coefficients vs shaft speed
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Damping ratio of flex rotor system
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The threshold speed of instability is lower for the flexible rotor than for the rigid rotor model.  
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Synchronous response


y yc cos ω t⋅( )⋅ ys sin ω t⋅( )⋅+=x xc cos ω t⋅( )⋅ xs sin ω t⋅( )⋅+=


Y Yc cos ω t⋅( )⋅ Ys sin ω t⋅( )⋅+=X Xc cos ω t⋅( )⋅ Xs sin ω t⋅( )⋅+=


The rotor disk (X,Y) and journal center displacements (x,y) are synchronous with the imbalance excitation, i.e. 


MASSLESS BEARINGS ROTOR
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The equations of motion for both rotor and journal bearings are given below. The coordinates of rotor and disk  
motion have their origin at the static equilibrium position. No damping at rotor midspan, no mass lumped at 
the  bearings.


Synchronous imbalance response of flexible rotor


RPMωelastic 8.186 103
×=


Natural frequency - flex rotor and simple 
formula (rigid rotor)
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Exercise: Calculate the major and minor axes of the ellipses describing the (X,Y) motions. See Appendix A of 
Childs' Rotordynamics Book:.


Notes: You could update this program to account for 
a) bearing mass MB, a fraction of total rotor mass,
b) introduce damping at the rotor midspan, Cs.







Damping ratio of flex rotor system
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The threshold speed of instability is lower for the flexible rotor than for the rigid rotor model.  
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Synchronous response


y yc cos ω t⋅( )⋅ ys sin ω t⋅( )⋅+=x xc cos ω t⋅( )⋅ xs sin ω t⋅( )⋅+=
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The rotor disk (X,Y) and journal center displacements (x,y) are synchronous with the imbalance excitation, i.e. 
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The equations of motion for both rotor and journal bearings are given below. The coordinates of rotor and disk  
motion have their origin at the static equilibrium position. No damping at rotor midspan, no mass lumped at 
the  bearings.


Synchronous imbalance response of flexible rotor


RPMωelastic 2.589 103
×=


Natural frequency - flex rotor and simple 
formula (rigid rotor)
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Exercise: Calculate the major and minor axes of the ellipses describing the (X,Y) motions. See Appendix A of 
Childs' Rotordynamics Book:.


Notes: You could update this program to account for 
a) bearing mass MB, a fraction of total rotor mass,
b) introduce damping at the rotor midspan, Cs.
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NOTES 5. APPENDIX B 
OTHER TYPES OF LUBRICATED JOURNAL BEARINGS 
Compressors, turbines, pumps, electric motors, electric generators and other rotating machines 


are commonly supported on fluid film bearings. In the past, the vast majority of these bearings 


were plain journal bearings. As machines have achieved higher speeds, rotor dynamic instability 


problems such as oil whirl have brought the need for other types of bearing configurations. 


Cutting axial grooves in the bearing to provide a different oil flow pattern across the lubricated 


surface generates some of these geometries. Other bearing types have various patterns of variable 


clearance (preload and offset) to create a pad film thickness that has strongly converging and 


diverging regions, thus generating a direct stiffness for operation even at the journal centered 


position. Various other geometries have evolved as well, such as the tilting pad bearings which 


allow each pad to pivot, and thus to take its own equilibrium position. This usually results in a 


strongly converging film region for each loaded pad and the near absence of cross-coupled 


stiffness coefficients. 


 


 


 


 


TYPES OF HYDRODYNAMIC BEARINGS: 


The Tables below list in a condensed form some of the advantages and disadvantages of various 


practical bearing configurations.







Other Bearing types


Cutting axial grooves in the bearing to supply oil flow into the lubricated 
surfaces generates some of these geometries. 


Other bearing types have various patterns of variable clearance (preload and 
offset) to create a pad film thickness that has strongly converging wedge, 
thus generating a direct stiffness for operation even at the journal centered 
position. 


In tilting pad bearings, each pad is able to pivot, enabling its own 
equilibrium position. This feature results in a strongly converging film 
region for each loaded pad and the near absence of cross-coupled stiffness 
coefficients.


Commercial rotating machinery implements bearing 
configurations aiming to reduce and even eliminate the 
potential of hydrodynamic instability (sub synchronous 
whirl) 







OTHER BEARING GEOMETRIES


Used primarily on 
high speed 
turbochargers for 
PV and CV 
engines 


1. Subject to oil whirl (two 
whirl frequencies from inner 
and outer films (50% shaft 
speed, 50% [shaft + ring] 
speeds)


1.  Relatively easy to 
make
2.  Low Cost


Floating 
Ring


Round bearings 
are nearly always 
“crushed” to make 
elliptical or multi-
lobe


1.  Subject to oil whirl1.  Easy to make
2.  Low Cost


Axial 
Groove


Bearing used only 
on rather old 
machines


1.  Poor vibration 
resistance
2.  Oil supply not easily 
contained


1.  Easy to make
2.  Low Cost
3.  Low horsepower 
loss


Partial Arc


Round bearings 
are nearly always 
“crushed” to make 
elliptical bearings


1.  Most prone to oil whirl1.  Easy to make
2.  Low Cost


Plain 
Journal


Comments                                           Disadvantages            Advantages      Bearing Type


Table Fixed Pad Non-Pre Loaded Journal Bearings 







OTHER BEARING GEOMETRIES


Currently used by 
some 
manufacturers as 
a standard 
bearing design


1.  Expensive to make 
properly
2.  Subject to whirl at high 
speeds


1.  Good suppression of 
whirl
2.  Overall good 
performance
3.  Moderate cost


Three and 
Four Lobe


High horizontal 
stiffness and low 
vertical stiffness -
may become 
popular - used 
outside U.S.


1.  Fair suppression of whirl 
at moderate speeds
2.  Load direction must be 
known


1.  Excellent 
suppression of whirl at 
high speeds
2.  Low Cost
3.  Easy to make


Offset Half 
(With 
Horizontal 
Split)


Probably most 
widely used 
bearing at low or 
moderate rotor 
speeds


1.  Subject to oil whirl at 
high speeds
2.  Load direction must be 
known


1.  Easy to make
2.  Low Cost
3.  Good damping at 
critical speeds


Elliptical
Comments                                           Disadvantages            Advantages      Bearing Type


Fixed Pad Pre-Loaded Journal Bearings Table 2







OTHER BEARING GEOMETRIES


Fixed Pad Pre-Loaded & Hydrostatic Bearings Table


Generally high 
stiffness properties 
used for high 
precision rotors


1.  Poor damping at 
critical speeds
2.  Requires careful 
design
3.  Requires high 
pressure lubricant supply


1. Good 
suppression of oil 
whirl
2. Wide range of 
design parameters
3.  Moderate cost


Hydrostatic


Used as standard 
design by some 
manufacturers


1.  Complex bearing 
requiring detailed 
analysis
2.  May not suppress 
whirl due to non bearing 
causes


1.  Dams are 
relatively easy to 
place in existing 
bearings
2.  Good 
suppression of 
whirl
3.  Relatively low 
cost 
4.  Good overall 
performance


Multi-Dam 
Axial 
Groove or 
Multiple-
Lobe


Very popular in the 
petrochemical 
industry.  Easy to 
convert elliptical 
over  to pressure 
dam


1. Goes unstable with 
little warning
2.  Dam may be subject 
to wear or     build up 
over time
3.  Load direction must 
be known


1.  Good 
suppression of 
whirl
2.  Low cost
3. Good damping at 
critical speeds
4.  Easy to make


Pressure 
Dam 
(Single 
Dam)


CommentsDisadvantagesAdvantagesBearing 
Type







OTHER BEARING GEOMETRIES


Tilting Pad Bearings & Foil BearingsTable


Used mainly for 
low load support 
on high speed 
machinery (APU 
units).


1. High cost.
2. Dynamic performance 
not well known for heavily 
loaded machinery.
3. Prone to 
subsynchronous whirl


1.Tolerance to 
misalignment.
2.Oil-free


Foil bearing


Widely used 
bearing to 
stabilize 
machines with 
subsynchronous 
non-bearing 
related 
excitations


1. High Cost
2. Requires careful design
3. Poor damping at critical 
speeds
4. Hard to determine 
actual clearances
5. Load direction must be 
known 


1.  Will not cause 
whirl (no cross 
coupling)


Tilting Pad 
journal bearing


Flexure pivot, 
tilting pad 
bearing


CommentsDisadvantagesAdvantagesBearing Type


Bump foils 


Top foil


Spot 
weld


Journal


Bearing 
sleeve
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NOTES 6.  
LIQUID CAVITATION IN FLUID FILM BEARINGS  
 
Lecture 6 describes the phenomenon of liquid cavitation in steadily loaded fluid film bearings and 
notes the most adequate boundary conditions at the inception and reformation boundaries of the 
cavitation zone. The models developed to predict liquid cavitation model are detailed, from the 
simple Reynolds condition to the elaborate Jakobsson-Floberg-Olsson (JFO) model. Details follow 
on the Universal Cavitation Algorithm rendering a single Reynolds-like  equation valid in both the 
full film (liquid) and cavitation zones. Issues of accuracy and stability when solving the single 
Reynolds equation for a variable known as the density ratio are highlighted.  A digression related to 
dynamic liquid film cavitation applicable to squeeze film flows brings to attention the major 
differences with a steadily loaded (stationary) condition 


 


Nomenclature 
 
C Bearing radial clearance. = RB -RJ   [m] 
g Switch function, =1 in full film zone, =0 in cavitation region 
h  Film thickness [m] 
h*  Film thickness at inception (Start) of cavitation zone [m] 
L Bearing axial length [m]. 
Mx, Mz Mass flow rates (per unit length) [kg/s/m] 
M*, Mη 


* 2cav
R


h  . Mass flow rate into cavitation zone, flow at reformation boundary  


P Hydrodynamic pressure [N/m2] 
Pamb Ambient pressure [N/m2] 
Pcav Liquid cavitation pressure [N/m2] 
R ½ D.  Bearing radius [m[ 
t Time [s] 
U R. Journal surface speed [m/s] 
V dh/dt.  Squeeze film velocity [m/s] 
X= θR, y, z Coordinate system on plane of bearing 
α  / cav  . Density ratio  


  P







. Liquid bulk-modulus [N/m2] 


  Liquid density [kg/m3] 


cav  Density at Pcav [kg/m3] 
  Fluid absolute viscosity [N.s/m2] 
  Journal angular speed (rad/s) 
Subscripts  
* Inception of the cavitation zone 
a Ambient value 
cav Cavitation  
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Introduction 
Lubricants and process liquids making fluid film bearings reduce friction and wear, provide load 
capacity, and add damping to dissipate undesirable mechanical vibrations. Journal bearings and 
thrust bearings represent the vast majority of applications where the mechanical surfaces shear the 
fluid causing it to flow and to produce the physical-wedge where a hydrodynamic pressure generates 
to carry, without contact, an applied load (Hamrock, 1994).  
 
Figure 6.1 shows a typical cylindrical journal bearing. Within the converging film region, the 
hydrodynamic pressure rises to a peak,  decreasing to ambient pressure at the end sides and trailing 
edge of the thin film. In zones where the film thickness locally increases, the fluid pressure may drop 
to ambient, thus releasing the dissolved gases within the lubricant1, or below ambient to its vapor 
pressure causing lubricant vaporization. The phenomenon of film rupture, characteristic of steadily 
loaded bearings, is known as lubricant cavitation, vaporous or gaseous, and its effects on the 
performance and stability of steadily loaded bearings are reasonably well understood and 
documented in the literature (Dowson et al., 1974, Brewe et al., 1990).  


 
 
 
 


                                                 
1 It is well known that liquids (under normal operating conditions) cannot sustain pressures below its saturation or vapor 
pressure (Psat) since then the fluid vaporizes. On the other hand for pressures below ambient (~1 bar [14.7 psia]), the 
dissolved gases in a lubricant (air for example) are released. Streamers of flow coexist with vapor or gas generating the 
cavitation region. Most mineral oils contain between 8 and 12 % in volume of dissolved air (Pinkus, 1990). 
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Figure 6.1. Cylindrical journal bearing showing  
lubricant cavitation 
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Liquid cavitation in fluid film bearings is not only important because its onset and extent determine 
the load capacity of a fluid film bearing but also because vapor cavitation collapse (implosion) can 
cause severe surface material damage. Furthermore, in dynamically loaded bearings, the appearance 
of cavitation largely influences the rotordynamic stability of a rotor-bearing system and its 
maximum whirl amplitude of vibration (Brewe, 1986). 


  
Dowson and Taylor (1974) provide a seminal discussion of the physical nature of liquid cavitation 
and the boundary condition models appropriate for thin film rupture. Brewe et al. (1990) also note 
the importance of bubble dynamics in bearing performance that affects the dynamic forced 
performance of an entire rotor-bearing system.  
 


 
Diagram of liquid cavitation in fluid film bearings 


 
Digression 
Often fluid film bearings, and most notably squeeze film dampers (SFDs), carry large dynamic loads, 
transient or periodic, which cause the fluid in the film to go through local flow reversals. The fluid film 
pressure may fall repeatedly to ambient or even less to the lubricant vapor pressure if and only if the bearing 
is fully submerged in a lubricant bath.  
 
However, in open end bearing configurations, the fluid does not only release its gaseous content, but it is 
more likely that the dynamic journal motion draws or ingests air into the lubricant film. Large amplitude 
journal motions at high frequencies then lead to the generation of a bubbly mixture (air in lubricant), which 
affects the bearing dynamic forced performance. The air entrapped as small bubbles clusters to make large 
striations. Bubbles may persist in the fluid film even in the zones of high dynamic pressure. Foamy oil at the 
damper outlet evidences this pervasive operating condition. Zeidan, et al. (1996) review the state of the art in 
SFDs and remark the importance of the air entrainment phenomenon, as it considerably reduces the dynamic 
squeeze film forces and the SFD overall damping capability. Diaz and San Andrés (1998, 1999) provide 
fundamental experimental measurements and an engineering model for prediction of the effects of air 
ingestion on the dynamic performance of squeeze film dampers. No accurate model has yet been forwarded 
for dynamically loaded journal bearings. Read Notes 13 on squeeze film dampers for an extended discussion 
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on this topic. 
 


In addition, the most up to date research review paper on liquid lubrication is the magisterial work of  
Braun, M.J, and Hannon, W.M, 2010, “Cavitation formation and modeling for fluid film bearings: a 
review,” Proc. IMechE Vol. 224 Part J: J. Engineering Tribology, JET772, pp. 839-871.  
 
  
Reynolds equation governs the generation of fluid pressure P within the full film region of thickness 
h. Under laminar and isothermal flow conditions and for an isoviscous liquid, Reynolds Eqn. is 
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with U=R as the surface speed of the rotating journal. Recall that the laminar mass flow rates per 
unit length are 
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Reynolds equation needs to be solved with appropriate 
boundary conditions at the cavitation zone.  
 
The Jakobsson- Floberg-Olsson (JFO) film 
rupture (cavitation) model 
A film rupture model, based on mass flow continuity through 
the cavitation region, renders boundary conditions for the 
inception of the cavitation zone and the full film reformation 
boundary. Figure 6.2 shows a picture of a gas (air) cavity in a 
steadily loaded journal bearing. Note that within the cavitation 
zone the pressure, gas or vapor, is taken as constant.  
 
At the inception of the cavitation zone, flow continuity 
requires a null pressure gradient with the pressure taking 
either ambient pressure or the fluid saturation vapor pressure. 
These conditions known as the Swift-Stieber model or simply 
as Reynolds condition do not warrant satisfaction of flow 
continuity in the cavitation zone except at its onset.  
 
The flow separation model also considers lubricant motion in 
streamers, under or over the cavitation boundary, and derives 
a null velocity gradient to account for the inception of a 
secondary flow reversal. This flow detachment allows for the 
occurrence of subambient pressures as observed in some 
measurements.  


 
The Floberg model postulates the conservation of liquid mass 


Figure 6.2. View of gas 
cavitation region in a 
journal bearing 
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flow through the whole cavitation zone, but without mass transfer between the liquid lubricant and 
the vapor or gas bubble at uniform pressure (Floberg, 1961). In this model, a liquid of film thickness 
smaller than the local gap develops striations or streamers flowing parallel to the shear surface 
velocity until a full liquid film develops again. The Jakobsson-Floberg model also accounts for fluid 
tensile strengths in the case of lightly loaded bearings (Dowson et al., 1974). 
  
The Jakobsson- Floberg-Olsson (JFO) model applies to dynamic load situations in which the 
surfaces may also undergo (time varying) squeeze film motions (Floberg, 1974). The temporal 
change of the ruptured film volume is included in the liquid flow continuity equation and without 
consideration of the bubble dynamics. The boundary (shape) of the cavitation zone changes 
instantaneously as the surfaces squeeze speed changes, i.e. the phase change of liquid into vapor (or 
vice-versa) takes place at infinitesimally small times2.  


 
Figure 6.3 depicts possible configurations of the fluid flow through the cavitation zone as observed 
experimentally. Streamers attached to the runner surface (journal) carry the lubricant flow 
downstream of the cavitation inception point. In other observations, the whole journal surface 
appears wetted by a film of lubricant with the cavitation zone (bubble) attached to the stationary 
surface. The bottom sketch offers a depiction when both surfaces move and minute lubricant films 
adhere to both surfaces. Mistry et al. (1997) extended the JFO model to account for the balance of 
centrifugal force and surface tension in the weakly bonded streamers flowing with the journal 
surface. 


 


                                                 
2 Sun and Brewe (1992) note that the characteristic time for liquid vaporization (or vapor condensation) is very 
small when compared to the typical period of typical rotating machinery (> 1 ms), while on the other hand, the 
characteristic time for gas diffusion is orders of magnitude larger. Hence, the authors conclude that a dynamic 
cavitation bubble must contain fluid vapor since dissolved gases will not have enough time to come out of solution 
in a typical dynamic loading cycle. Braun and Hendricks (1984) measured the pressure and chemical contents within 
the cavitation zone in a steadily loaded, fully flooded journal bearing. These authors, however, noted the appearance 
of sub ambient pressures in the cavity zone formed by gasses coming out of solution from the lubricant. The authors 
argue that a phase change (oil vaporization) requires of a source of energy not readily available in actual operation. 
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Figure 6.4 shows a schematic view of the inception boundary of the cavitation zone that is bounded 
by a film of lubricant moving with the journal surface. Within the cavitation region, the fluid 
pressure is uniform and equals a cavitation value, i.e., 
 
                                         P(x, z, t) = Pcav   (6.3) 
 


Thus, it follows that there is no pressure induced flow within this region, i.e., P/x=P/z=0. 
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Figure  6.3. Fluid flow through cavitation zone 
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The line 1(z*) with film thickness h* defines the leading edge (incipience angle) where the film 
ruptures. At the circumferential position, <1, the pressure must be decreasing toward the 
cavitation value, i.e., P/x < 0. Hence, the local circumferential and axial flow rates are 
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and h > h*. Within the cavitation region the liquid pressure is constant (P/ = 0), and thus the 
liquid mass flow is 
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where  is known as a fluid fraction content at the cavitation zone, i.e. the ratio between the liquid 
volume to the total (liquid plus vapor) volume filling the film gap. 
 
For steady loaded conditions (no temporal variations) the amount of liquid flow that enters into the 
cavitation zone must also leave, i.e. flowin = flowout. Hence, at the leading edge of the cavitation zone 
there can not be a flow discontinuity. Thus, it follows that the appropriate boundary condition 
(Reynolds condition or Swift-Stieber model) at the leading edge of the cavitation zone are: 
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Figure 6.4. Cavitation inception in a thin film 







NOTES 6. CAVITATION IN LIQUID FILM BEARINGS. Dr. Luis San Andrés © 2012 8


                                         0;0
11






























  z


PP  (6.6) 


 
Within the cavitation zone there is an amount of liquid flow transported in the circumferential 
direction,  
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where h* is the film thickness at the inception of the cavitation zone (1).  
 
The model does not discern whether the transported flow is made of liquid streamers attached to the 
journal or whether the liquid fills part or the entire film gap. The distinction is not important unless 
the cavitation zone is a source or sink of thermal energy.  
 
Film reformation occurs at the trailing edge of the cavitation zone (t). At this boundary, a film of 
liquid fills completely the gap between the journal and the bearing; see Figure 6.5. Consider at the 
reformation boundary line  a small line element (s) with unit normal  . From Figure 6.5,  note 
that  
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Thus the flow entering the full film zone at the reformation boundary is 
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. And, to satisfy mass flow continuity, the flow leaving the cavitation 


zone must balance the flow entering the full film zone through the reformation line. That is 
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The solution of Eqn. (6.11) determines the slope (dx/dz) of the reformation line boundary (i.e. 
the coordinate (x) defining the cavitation boundary as a function of the axial position z. Note that to 
preserve flow continuity at the reformation boundary, there is a discontinuity in the pressure 
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gradient. 


 
 
Equations (6.6), (6.7) and (6.11), known as the JFO model, give physically correct boundary 
conditions to solve the Reynolds equation in the full film zone. The JFO model applies to smooth 
surfaces and does not address to the material and thermo-mechanical aspects of liquid cavitation. For 
example, surface conditions play an important role in cavitation nuclei, i.e. crevices and surface 
roughness providing nuclei for vapor bubble inception and growth and leading to localized micro-
spots of lubricant cavitation.  
 
The JFO model predicts accurately3 the onset and shape of the cavitation pattern in bearings 
operating with moderate to heavy loads (moderate to large journal eccentricities).   
 
The JFO model, however, is not easily implemented in the (numerical) solution of Reynolds 
equation since the cavitation zone (inception and extent) is unknown a-priori. This condition is akin 
to the problem of determining a free surface in open flows, just as in liquid channel flows, sea 
waves, etc.  


 


                                                 
3 Etsion and Ludwig (1982) argue, in lieu of extensive experimental evidence in flooded journal bearings that the 
JFO model is not strictly in accordance with the observed physics within the film-rupture zone, namely the 
occurrence of subambient pressures and flow reversals. 
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Elrod and Adams (1974) and Elrod (1981) advance the ingenious universal cavitation algorithm 
where the JFO model is directly incorporated into a single Reynolds equation valid in both the full 
film zone and the cavitation zone. In the model, the lubricant pressure and density are related 
through the fluid bulk modulus (). A switch function (g=1 or 0) allows automatic satisfaction of 
the boundary conditions at the cavitation interface. The function also switches the character of the 
flow continuity (Reynolds) equation from elliptic to parabolic in the full film and cavitation regions, 
respectively. A variable () is introduced for book keeping;   1, in the liquid (full film) region, and 
  < 1 in the rupture (cavitation) zone denotes a void or volume fraction (gas or vapor/liquid). The 
universal cavitation algorithm is detailed next. 


 
Later developments have concentrated mainly on the implementation of fast and efficient numerical 
methods for the solution of the Elrod algorithm with applications to practical bearing configurations, 
and including dynamically loaded conditions. Brewe (1986), Woods and Brewe (1989), and 
Vijayaraghavan and Keith (1989) provide the most significant advances with continued refinements 
to the present day. However, the predicted pressure fields and cavitation extent depend greatly on 
the magnitude of the liquid bulk modulus () used. In practice, artificially low values of the fluid 
bulk-modulus4, orders of magnitude lower than the typical value of 2.41 GPa for a mineral lubricant, 
are needed to “soften” the system of equations, to ensure numerical stability, and to avoid excessive 
round-off errors in the evaluation of the liquid pressure in the full film zone. 


 
In general, the existing thin film rupture models are suitable to predict the onset, extent, and global 
shape of stationary enclosed vapor or gas cavities in steadily loaded, fully flooded bearings. The 
qualification of fully flooded or submerged operation is most important since in this case, ventilation 
to the (gaseous) ambient condition does not take place.  


 
Consider, as depicted schematically in Figure 6.5, the flow evolution due to the sudden separation of 
two surfaces enclosing a thin film of lubricant. As the instantaneous film thickness increases with 
velocity V=dh/dt  > 0, the fluid pressure drops and leads to the appearance of vapor (or gas) 
cavitation patterns (bubbles). Further motion of the top surface brings the formation of complex 
(dendritic) patterns as the bubbles expand and coalesce with others. Air (gas) from the surrounding 
may also be ingested into the film, eventually leading to the collapse of the thin film.  


 
Before the ultimate rupture of the film, a sudden reversal in the top surface motion, dh/dt  < 0, will 
expel some the bubbles out of the film as the instantaneous gap h begins to decrease. Further 
squeezing will generate hydrodynamic pressures and the ability to carry dynamic loads; the principle 
of squeeze film damping at work! For surface motions of periodic nature and at sufficiently high 
frequencies, the process leads to the ingestion and entrapment of gaseous media within the film, and 
the eventual formation of a bubbly non homogeneous mixture (Diaz and San Andrés, 1998, 1999). 
This important phenomenon is obviously not considered in the JFO cavitation model described.  
 


                                                 
4 The assumption may have a physical justification. Note that most liquids have an amount of dissolved gas content 
in them. Hence, the lubricant bulk modulus material property is lower than that of the pure fluid. See footnote (1): 
Most mineral oils contain between 8 and 12 % in volume of dissolved air (Pinkus, 1990). 
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A Universal Cavitation Algorithm: 
The Elrod cavitation model avoids the tedious calculation of the cavitation boundary by 
reformulating the problem in terms of a new variable (different from pressure) and by developing a 
unique differential equation, applicable in both the full film region and the cavitation region. The 
algorithm also preserves mass conservation within the entire flow domain. 
 
In a compressible liquid, the density is related to the pressure by the relationship: 
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where   is the liquid bulk-modulus. Typical bulk modulus values for pure water and oil are ~2.01 
and 2.41 GPa (292 and 350 kpsi), respectively. 
 


Define                                         
cav






                                                                     (6.13) 


 
As a density ratio, with cav is the liquid density at the cavitation pressure Pcav. Rewrite Eqn (6.13) as 
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where g is known as a switch function,  
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Direct integration of equation (6.14) renders 
 
    )( ngPP cav        (6.16) 


 


Note that in the full film region, g=1 and P >Pcav since 
c
  > 1; and in the cavitation region  


P = Pcav since g = 0.  
 
Incidentally, pressure differences (gradients) are of importance in thin film flows. Thus, for P1 and 
P2, both larger than Pcav,    
 


   1 2 1 2 1 2( ) ( )P P n n              (6.17) 


 
Note that since ()  has a large magnitude, small differences in density ratio () will cause large 
differences in pressure. This consideration may bring difficulties in the numerical model, hence the 
need to artificially reduce . 
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Vijayaraghavan and Keith (1989) point out that the variable , although defined as the ratio of 
densities, has different interpretations in the full film and cavitation regions. In the former,  > 1 
since  > c  due to the compression of the lubricant. In the cavitation zone,  < 1 for another 
reason. Within the cavitation zone, the lubricant density is uniformly (c) and the gap is not 
completely filled with lubricant due to the gaseous (or vapor) material within the cavity. Thus,  is 
termed the fractional film content and (1-) represents the void (gas volume) fraction.  


 
Recall that the conservation of mass flow in a thin film is  
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where the components of liquid mass flow rate in the full film region are: 
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while in the cavitation region, 0 zPxP , and the mass flow rate within this zone is just 
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Replacing 

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 gP  into the mass flow rates, Eqn. (6.2), renders 
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Note that these equations are valid in both flow regions since, in the full film zone g = 1 and  = 
/cav, and in the cavitation zone, g =0 with  understood as the fractional liquid film content.  
 
Substitution of the mass flow rates above into the global mass conservation Eqn. (6.18) gives 
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This equation, where the  variable replaces the film pressure P, is valid everywhere within the flow 
domain. Note that in the full film region, g =1 since  > 1.  
 
In the cavitation region,  < 1, g = 0, and Eqn. (6.21) reduces to 
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thus establishing a dynamic flow balance in the cavitation zone. 
 
Vijayaraghavan et al. (1989) discuss the numerical solution of Eqn. (6.21) to obtain the pressure 
field in cylindrical journal bearings. The model renders an elliptical finite (central) difference 
formula within the full film zone, and a hyperbolic formula (backward or upwinding difference) 
within the fluid cavitation zone.  


 
Implementation of the universal cavitation algorithm in a computational program could lead to 
mixed success and little improvement over more crude techniques. The predictions will depend 
greatly on the magnitude of the bulk modulus(  used in the analysis. For example, realistic values 
of the lubricant bulk modulus ( render a system of algebraic equations too stiff for accurate 
solutions since small variations in density will produce very large changes in pressure in the full film 
zone. Thus, the numerical model is plagued with round-off errors.  
 
To avoid the accuracy and slow convergence issues, analysts use an artificial low value of the bulk 
modulus, orders of magnitude smaller than the physical value. A numerically stable algorithm gives 
good results with values ranging from 1/100 to 1/10 of the actual physical magnitude. To 
conclude, computed results are problem dependent and the relevant literature is yet to report the 
details on a robust numerical procedure for the universal lubrication model. 
 
Closure 
The accompanying MATHCAD© program implements Elrod's algorithm for the solution of pressure 
in a one-dimensional slider bearing. The program displays results for calculations obtained using the 
simple Reynolds condition and the mass conservation model. The later model relies on point-wise 
under-relaxation since a line-solver produces numerical instabilities at the nodes where the 
cavitation zone starts and ends. Thus, the mass conservation model is both cumbersome and more 
computer intensive than the simpler model.  
 
Extension of the computational model to two-dimensional bearing geometries is straight forward, 
although care must be taken with slow convergence at the cavitation inception boundary.  


 
Use the program provided to assess the accuracy of the Reynolds condition model in relationship to 
the mass conservation model. 


 
Read the attached Appendix or Notes 13 (SFDs) for a lucid explanation on dynamic cavitation in 
journal bearings operating under large transient or periodic (dynamic) loads. The pervasive problems 
associated with air ingestion and entrapment in squeeze film dampers comes to light in the 
discussion. 
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NOTES 6. APPENDIX 
DYNAMIC CAVITATION IN JOURNAL BEARINGS AND AIR ENTRAINMENT IN 


SQUEEZE FILM DAMPERS 
  


Squeeze film dampers (SFDs), support large dynamic loads, transient or periodic, which 
cause the fluid to go through sudden flow reversals. The fluid film pressure may fall repeatedly 
to ambient or to the lubricant vapor pressure if the bearing is fully submerged in a lubricant bath. 
However in open-ended dampers, the lubricant not only releases its gaseous content but the 
dynamic journal motion draws air into the film. Large amplitude journal motions at high 
frequencies determine the amount of air ingested and entrapped and result in a poor bearing 
dynamic forced performance. The entrapped air surrounded by liquid striations persists in the 
fluid film even in the zones of high dynamic pressures. Foamy oil1 at the damper outlet 
evidences this pervasive operating condition. Zeidan et al. (1996) review the state of the art in 
SFDs and remark the importance of the air entrainment phenomenon, as it considerably reduces 
the dynamic film forces and the overall damping capability of SFDs.  
 
 
EXPERIMENTAL EVIDENCE FOR FLUID CAVITATION IN DYNAMICALLY LOADED BEARINGS  


Experimental research in steadily loaded journal bearings (JBs) has been limited to the 
observation of the cavitation patterns through transparent walls of bearings and seals with 
pressure measurements at a few locations along the cavity. Coles and Hughes (1957), Floberg 
(1961) and Dowson (1957) provided fundamental observations of gas cavity shapes with film 
striations, and note that the pressure within the bubble is uniform, although for lightly loaded 
conditions a sub ambient pressure occurs at the inception of the film-rupture zone. Etsion and 
Ludwig (1982) investigated the cavity reformation zone and map the pressure inside the 
cavitation region of a submerged JB. The pressure within the gas cavitation zone was not 
uniform and strong flow reversals were apparent at the full film reformation boundary. Braun 
and Hendricks (1984) performed similar measurements in a fully flooded JB and noted the 
appearance of subambient pressures in the cavity zone formed by gases coming out of solution 
from the lubricant. Braun and Hendricks also demonstrated that a phase change (oil vaporization) 
requires of a source of energy not readily available in actual operation; and concluded that the 
Floberg model adequately represents the observed gas cavitation onset and shape.  


 
Experiments for the observation of film cavitation in dynamically loaded bearings and 


dampers are inherently more difficult due to the non-stationary (time varying) character of the 
flow field. Measurements of film pressures have been conducted in journals undergoing a cyclic 
motion due to periodic loads induced by rotor imbalance or for journals constrained 
mechanically to describe circular orbits within the film bearing clearance. Sun and Brewe (1991, 
1992, 1993) state that liquid cavitation in dynamically loaded bearings has many unresolved 
issues with yet unclear phenomena to elucidate. The most important aspects are related to the 
contents of the cavitation bubble, i.e. gas, vapor or both; the lack of evidence for the 
establishment of the onset of dynamic cavitation; and the operating conditions leading to the 
formation of a two-component (gas in lubricant) fluid mixture.    


                                                           
1 Antifoaming agents in mineral oils offer no help to reduce air entrainment in a dynamic load fluid film bearing application. The amount of air 
entrained appears to be related to the through flow rate and journal squeeze velocity.  
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Sun and Brewe presented photographs of lubricant cavitation in dynamically loaded bearings 


operating at low speeds (< 1,500 rpm). The test apparatus containing a fully submerged journal 
bearing had the capability for both journal rotation and journal circular whirl at off-centered 
positions. Experiments revealed the effects of rotational speed and journal whirl frequency and 
amplitude on the onset, extent, and shape of the dynamic liquid cavitation. Jacobson and 
Hamrock (1983) in earlier experiments also observed both gas and vapor cavitation patterns and 
noted that gas bubbles were transported straight through the high pressure zone without 
collapsing. On the other hand, the vapor bubbles appeared to collapse without any resistance, i.e. 
instantaneously. Most importantly, gas and vapor cavitation patterns appeared to be similar on 
the large scale; however their finer structures are seemingly different and possibly dependent on 
the surface material energy. As it occurs, gaseous cavitation needs much time (hundreds of 
journal revolutions) for its growth until it achieves a steady state shape and extent.     


 
Sun and Brewe (1991) observed a single cavity pattern for both centered and off-centered 


whirls without journal rotation. High whirl frequencies and large amplitudes of dynamic journal 
motion favor the appearance of lubricant cavitation.  Note however, that the test chamber was 
not airtight since air could enter through the support ball bearings. Incidentally, experiments with 
a long journal extending nearly the entire test chamber length showed a remarkable effect of air 
entrainment that suppressed the cavitation pattern seen earlier. Sun and Brewe observed no 
difference in the film rupture patterns for the tests conducted with degassed and aerated 
lubricants. The air dissolved content in the oil was unknown and possibly insignificant due to the 
inefficient mechanical process for mixing air into the lubricant and the long time elapsed to fill 
the test chamber. Long-term tests spanning thousands of revolutions showed that cavitation 
patterns remained unchanged and did not lead to the formation of a two-component fluid or 
mixture. This observation is not surprising considering the bearing operated in a fully 
submerged condition.  


 
Further experiments by Sun et al. (1993) include pressure measurements in the same test 


apparatus used in their prior investigation. The tests confirmed the appearance of a single-
cavitation pattern containing fluid vapor for certain dynamically loaded conditions. However, in 
other tests where cavitation is expected, pressure measurements revealed a fluid film capable of 
withstanding a tensile stress (maximum 1.40 bar). Note also that the appearance or absence of 
fluid cavitation might be crucially dependent on the availability of cavitation nuclei in the oil and 
bearing surfaces. The authors indicated that remnant air bubbles not vented from the test 
chamber might have provided the nuclei for the dynamic cavitation. Sun and Brewe (1993) also 
suggest that thin films experiencing large tensile forces for short periods of time are not a rare 
phenomenon, and thus unveil a severe pitfall in the current cavitation models for dynamically 
loaded conditions. 


 
Sun and Brewe (1992) elucidate the physical differences between dynamic gaseous and 


vapor cavitations and the likelihood of their existence in actual applications. The analysis shows 
that the characteristic time for liquid vaporization (or vapor condensation) is rather small when 
compared to the typical time period of motion in rotating machinery (> 1 msec), while on the 
other hand, the characteristic time for gas diffusion is orders of magnitude larger. Hence, the 
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authors concluded that a dynamic cavitation bubble must contain fluid vapor since dissolved 
gases will not have enough time to come out of solution in a typical dynamic loading cycle.  


 
It would appear that the onset of dynamic cavitation is still an unresolved issue in lieu of the 


measurements showing tensile stresses in the film2. Note that comparisons between the JFO 
model and the dynamic pressure measurements are yet to appear in spite of the apparent 
successes of this model and numerical models used for prediction of cavitation in steadily loaded 
bearings.   


 
Sun and Brewe's relevant experiments provide no information on the generation of a two 


component fluid mixture due to air entrainment since the tests were conducted in a journal 
bearing fully immersed in lubricant. The formation of an air in oil mixture in dynamically loaded 
bearings is the sole results of air entrainment through adequate leakage paths. Thus, the 
phenomenon is certainly device dependent. Note that the vast majority of fluid film bearing 
applications, including those in the automotive industry, operates with their ends vented to 
ambient and offer a myriad of options for lubricant feed. A fully flooded condition is an 
exceptional circumstance in actual practice.  


 
EXPERIMENTAL EVIDENCE FOR LIQUID CAVITATION IN SQUEEZE FILM DAMPERS  


In practice, SFDs operate with low values of external pressurization3, which generally does 
not prevent vaporization of the lubricant, release of dissolved gases, or entrainment of external 
gaseous media. White (1970) first reported measurements in dampers with large orbital motions 
due to periodic loading and found that the load carrying capacity was in the range of 5% to 25 % 
of predicted values based on incompressible lubrication theory. Marsh (1974) later observed that 
the bubbles formed in White’s test damper did not collapse or coalesce in the high pressure 
region, thus indicating the compressibility of the lubricant leading to the reduced load capacity. 


 
Vance and Kirton (1975) measured squeeze film pressure profiles in a circular orbit damper 


with tight end seals and demonstrated the favorable effect of fluid pressurization on delaying the 
onset of oil vaporization. The authors noted poor correlation between test dynamic pressures and 
predictions based on the infinitely long bearing model. Hibner and Bansal (1979) also measured 
the pressures and forces in a similar damper configuration, noted a severe reduction in the 
dynamic load capacity and attributed it to the lubricant compressibility and persistence of gas 
bubbles in the high pressure region. On the other hand, Ku and Tichy  (1990) performed pressure 
measurements in a lightly loaded and tightly sealed and flooded SFD, and obtained good 
agreement for the onset and extent of the vapor cavity with predictions based on a simplified 
formulation of the JFO model. 


 
Walton et al. (1987) and Zeidan and Vance (1989a,b; 1990a,b) performed unique flow 


observations in open ends and end sealed SFDs with high speed motion cameras to track the 
motion of the dynamic cavitation region. For open ended SFD configurations or operations with 
large journal orbit radii, both investigations noted the formation of a bubbly mixture within the 
dampers, where bubbles persisted even in the high pressure zone generated by the squeeze 


                                                           
2 Berthelot in 1850 subjected purified water to tensions up to 50 atmospheres before it yielded. Theoretical models predict much higher yielding 
tensions (Brennen 1995).  
3 Typical values do not exceed 3 bar (45 psig). 
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journal motion. The test results also evidenced large cyclic flow reversals and film rupture in the 
deep feed/drain grooves. Agreement between a “short length bearing” model based on the JFO 
model (Pan, 1980) and the observed cavitation zone shape and extent are of the “right order of 
magnitude”. However Walton, et al. (1987) also noted the limitation of the model to adequately 
account for the observed variations in the dynamic cavitation zone.  


 
Researchers at Texas A&M University have performed extensive measurements of dynamic 


film pressure fields and fluid film forces in a damper apparatus with constrained circular 
centered journal motions. The research, analytical and experimental, has addressed the effects of 
fluid inertia, feeding grooves, and end seals on the dynamic force performance of SFDs.  Arauz 
and San Andrés (1993, 1996) and San Andrés (1996) show, in sealed and open end dampers 
submerged in an oil bath, the onset and increase in extent of the lubricant vapor cavitation for 
operations from low to high whirl frequencies (~ 100 Hz). The tests revealed that the "collapse4" 
of the vapor cavity is synchronous with the journal whirl frequency and slightly out of phase 
with the film thickness speed (dh/dt) (see Figure 1 later).  


 
Note that in most experiments referred, the SFDs were submerged in a bath of lubricant, 


isolated from the ambient conditions and with no paths for natural air entrainment. However, 
these experimental conditions do not reproduce the actual operating conditions of the dampers 
since they are most often open to the ambient.   


 
REGIMES OF DYNAMIC FLUID CAVITATION IN SQUEEZE FILM DAMPERS 


Zeidan and Vance (1989a,b, 1990a,b) and Diaz and San Andrés (1998-99) identify in SFD 
operation two types of dynamic fluid cavitation (vapor and gas) and a regime due to air ingestion 
and entrapment. The appearance of a particular condition depends on the damper type (sealed or 
open to ambient), level of supply pressure and flow rate, whirl frequency and magnitude of 
dynamic load producing (small or large) journal excursions within the film clearance.  
 
Gas cavitation following the journal motion appears in ventilated (open ends) SFDs operating 
at low frequencies and with small to moderate journal amplitude motions. A well defined 
cavitation bubble containing the release of dissolved gas in the lubricant or air entrained from the 
vented sides follows the whirling motion of the journal; i.e. the cavitation zone appears steady in 
a rotating frame. The traveling gas bubble appears not to affect the generation of the squeeze 
film pressure in the full film zone. Coles and Hughes (1957) first observed this behavior in 
dynamically loaded bearings at low speeds. Zeidan and Vance (1990a,b) strongly caution that the 
persistence of this cavitation regime upon reaching steady operating conditions (high 
frequencies) in an aircraft application is remote. 
 
Lubricant vapor cavitation appears in dampers with tight end seals that prevent entrainment of 
the external gaseous media and for operation with large supply pressures. In this last case, the 
through oil flow also prevents the ingestion of air. Furthermore, the lubricant must be relatively 
free of dissolved gases such as air, a condition not readily found in practice. Figure 15 depicts a 


                                                           
4 This concept may be in error since it is not clear whether the vapor bubble actually collapses or it rotates around the damper circumference in 


synchronicity with the rotor speed. 
5 The experimental results shown in the figures correspond to the damper test apparatus described by Diaz and San Andrés (1998).  The tests 
were performed at 1.45 bar of pressure supply, flow of 0.12 liters/min and temperature of 27°C. 
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measured dynamic film pressure versus time in a damper operating with lubricant vapor 
cavitation. The local dynamic film gap is depicted with a dashed line.  


 


 
The experiment illustrates the variation of pressure and gap for five periods of journal motion. 
The whirl frequency and centered journal orbital amplitude equal 75 Hz and 0.180 mm, 
respectively. The damper is fully flooded in a lubricant bath. The flat zone in the dynamic 
pressure corresponds to nearly zero absolute pressure6. Lubricant vapor cavities appear only 
during that portion of the journal motion cycle where the film gap increases. The cavity collapses 
immediately as the local pressure rises above the oil vapor pressure (See footnote 4).  


 
Note that nearly identical squeeze film pressures are reproduced for each period of journal 


motion, except at the instants of bubble collapse with pressure overshoots. In general, correlation 
of measured pressures and vapor cavitation extent with predictions based on the JFO model for 
dynamic loading ranges from satisfactory (Ku and Tichy, 1990) to poor (Walton et al., 1987; 
Jung and Vance, 1987). 
 
Air ingestion and entrapment appear in vented dampers operating at high frequencies and with 
low levels of external pressurization, i.e. small through flow rates. A suction pressure draws air 
into the thin film at the locations where the local film gap increases. The cyclic fluid motion 
leads to air entrapment, with bubbles remaining in the zones of dynamic pressure generation 
above ambient. Air ingestion leads to the formation of intermittent air fingering surrounded by 
liquid striations. These islands of air may shrink, break up into smaller zones, or diffuse within 
the lubricant. Figure 2 depicts the typical dynamic film pressures versus time in a SFD with air 
entrainment. The operating conditions are identical to those representing the measurements 
depicted in Figure 1, except that the damper is open to ambient conditions, i.e. not submerged in 
an oil bath.  The size and concentration of the ingested air fingers depend on the journal whirl 
frequency and amplitude and the flow rate. However, operation at higher and higher frequencies 
leads to finer more concentrated bubble distributions, and leading to the formation of a foam-like 
bubbly mixture. The fluid at the damper discharge is cloudy and foamy. 


 


                                                           
6 The pressure sensors cannot resolve the actual lubricant vapor pressure which must be very close to zero absolute pressure. 
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The dynamic pressures with air entrainment, Figure 2, show important differences when 
compared to those pressures induced by lubricant vapor cavitation, Figure 1. In the case of air 
ingestion, the squeeze film pressures differ markedly in each period of journal motion with peak 
pressures showing large variations. Furthermore, the pressure flat zone is nearly at ambient 
pressure. Note that subambient film pressures are also generated.  


 
 Childs (1993) notes that, because of lubricant cavitation phenomena (i.e. unquantifiable air 


ingestion), correlation between theory and an experiment is less compelling for dampers than 
bearings. The vast majority of SFDs inevitably operate with foam-like fluids considering the low 
values of pressure supply (small flow rate), large damper clearances and high operating 
frequencies. Of course, mixed operation regimes can also occur in practice. For instance, tightly 
sealed dampers may show both vapor and air entrainment type cavitation where gas bubbles may 
coexist around a large lubricant vapor bubble. Note that the entrapment of air delays the increase 
of film pressures since there is less liquid lubricant filling the damper clearance. Ultimately, 
operation at high frequencies leads to an increase in air ingestion, preventing any further vapor 
cavitation, and reducing considerably the forces available from the SFD.  
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POSTCRIPT 
VISIT http://phn.tamu.edu/TRIBGROUP to download video clips of flow visualizations 
performed on a squeeze film damper. The video clips demonstrate that the flow field in a SFD 
operating with air entrainment is far more complicated than described above.  
 
San Andrés, L., and S. Diaz, 2003, “Flow Visualization and Forces from a Squeeze Film Damper with 
Natural Air Entrainment,” ASME Journal of Tribology, 125, pp. 325-333 (ASME Paper 2002-TRIB-81). 
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NOTES 7 
THERMAL ANALYSIS OF FINITE LENGTH JOURNAL BEARINGS 


INCLUDING FLUID INERTIA EFFECTS 
Notes 4 and 5 presented the derivation of the pressure field, load capacity and dynamic force 


coefficients in a short length cylindrical journal bearing. Notes 7 present an analysis for the 


prediction, using numerical methods, of the static load capacity and dynamic force coefficients in 


finite-length journal bearings. Practical bearing geometries include lubricant feeding 


arrangements (grooves and holes), multiple pads with mechanical preloads to enhance their load 


capacity and stability.  The analysis includes the evaluation of the film mean temperature field 


from an energy transport equation. The film temperature affects the viscosity of the lubricant 


within the fluid flow region. In addition, the analysis includes temporal fluid inertia effects 


modifying the classical Reynolds equation; and hence, the model predicts not only stiffness and 


damping force coefficients but also added mass coefficients. As recent test data shows, fluid 


inertia effects cannot longer be ignored in journal bearing forced performance, static or dynamic.  


 


Introduction 


Analysis of the dynamic performance of rotors supported on fluid film bearings relies not just 


on the rotor structural (mass and elastic) properties but also on the acurate evaluation of the static 


and dynamic forced performance characteristics of the bearing supports. A rotordynamic analysis 


delivers synchronous response to imbalance and stability results in accordance with API 


requirements, to demonstrate certain performance characteristics ; and on occasion, to reproduce 


peculiar field phenomena and to troubleshoot malfunctions or limitations of the operating 


system. 


Mineral-oil lubricated bearings support most commercial machinery that operate at low to 


moderately high rotational shaft speeds. The bearings carry heavy static loads, mainly a fraction 


of the rotor weight. The lubricant, supplied from an external reservoir, fills the small clearance 


separating the shaft (journal) from the bearing. Shaft rotation drags the lubricant through the 


bearing film lands to form the hydrodynamic wedge that generates the hydrodynamic fluid film 


pressure that, acting on the journal, is able to support or carry the applied static load. The mineral 


oil lubricant, generally of large viscosity, increases its temperature as it carries away the 







Notes 7. THERMAL ANALYSIS OF FINITE LENGTH JOURNAL BEARINGS. Dr. Luis San Andrés © 2009 2


mechanical energy dissipated into heat. Hence, the material visosity of the lubricant, a strong 


function of temperature, does not remain constant within the film flow region in the bearing.  


Importantly enough, the conditions of low speed (Ω), small clarance (c), and large viscosity 


(μ/ρ) determine a laminar flow condition in the bearing, i.e. operation with small Reynolds 


numbers Re < 1,000 (Re=ρΩRc/μ). Hence, Reynolds equation of Classical Lubrication is valid 


for prediction of the equilibrium hydrodynamic film pressure in the bearing. The prediction of 


the thermal energy transport in a thin film bearing is more difficult since there is a significant 


temperature along and accross the film, i.e. a three-dimensional phenomenon. Most importantly, 


the thermal energy exchange does not just involve the mechanical energy generated by shear and 


its advection by the lubricant flow but also must account for the heat conduction into or from the 


shaft and bearing cartridge.  


A comprehensive 3-D thermohydrodynamic analysis for prediction of performance in finite 


length journal bearings is out of the scope of these lecture notes. The interested reader should 


refer to relevant work in the archival literature [1,2] for  further details. However, note that most 


fluid film bearing designers and bearing manufacturers rarely rely on cumbersome and 


computationally expensive analysis tools; in particular when these require of boundary 


conditions that are operating system dependent (not general). More than often, engineers  prefer 


to obtain model results that are in agreement with published test data and go along with their vast 


practical experience. 
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Analysis 


Figures 1 and 2 depict the geometry of typical cylindrical journal bearings comprised of a 


journal rotating with angular speed (Ω) and a bearing with one or more arcuate pads. A film of 


lubricant fills the gap between the bearing and its journal. Journal center dislacements (eX, eY) 


refer to the (X,Y) inertial coordinate system. The angle Θ, whose origin is at the –X axis, aids to 


describe the film geometry. The graphs show the relevant nomenclature for analysis.   
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Figure 1. Geometry of a cylindrical bearing pad with feed hole (not to scale) 
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Figure 3 shows a typical bearing pad with radial clearance (c) and preload (rp) at angle ΘP. Θl 


and Θt denote the leading edge and trailing edges of the pad, respectively. Within the flow region 


 , 0l t z L     , the film thickness (h) is 


   cos( ) cos sinp p X Yt th c r e e         (1)  


where   ,X Y t
e e are the journal center eccentricity components along the (X, Y) directions.  
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Figure 3. Geometry of a bearing pad with preload and description of film thickness (not to 
scale) 


 


Governing equations for pressure generation and temperature transport 
The modified [3,4,5]  laminar flow Reynolds equation describing the generation of 


hydrodynamic pressure (P) in the thin film region  , 0l t z L     of a bearing pad is  
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where (ρ, μ) denote the lubricant density and viscosity, both temperature (T) dependent material 


properties. For example,  v ST T
S e      , with subindex S denoting supply conditions.  The 


modified Reynolds equation includes temporal fluid inertia effects ; hence, the flow model is 


strictly applicable to lubricant thin film flows induced by small amplitude journal motions about 


an equilibrium position. 


For the laminar flow of an incompressible fluid and regarding the temperature as uniform 


along the axial direction, the energy transport equation under steady-state conditions is [6]  


    
22 2


212


12 2v s


R R
C hU T hW T Q S W U


R z h


 
                       


     (3) 


where T is the lubricant bulk-temperature1 and     s B B J JQ h T T h T T     is the heat flow 


into the bearing and journal surfaces. Above, Cv is the lubricant specific heat, and (W, U) 


represent the axial and circumferential mean flow velocities given by    


    
2 2


;
12 12 2


h P h P R
W U


z R 
  


  
 


   (4) 


Eq. (3) is representative of a bulk-flow model that balances the mechanical shear dissipation 


energy (S) to the thermal energy transport due to advection by the fluid flow and convection (Qs) 


into the bearing surfaces.  The heat convection coefficients   ,B Jh h  depend on the Prandtl 


number (
r vP C 


 ) and the  flow condition defined by the local Reynolds number 
e


U h
R






 
 


 
 


relative to the bearing and journal surfaces[7]. For laminar flow, 1e


c
R


R
 , Colburn’s analogy 


renders the convection coefficients 
1


33 rh P
h



 . See  Ref. [8] for details2. 


 


                                                 


1 The bulk temperature represents an average across the film thickness, i.e.  , ,
0


1 h


z yT T dy
h     


2 The THD model implements a number of heat transfer models, including those for fixed or developing wall 
temperatures and heat flows.    
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Boundary conditions for film pressure and temperature3 


The pressure at a pad leading edge equals a supply condition, i.e.  


   0 : ,  l Sz L P z P          (5a) 


The pressure is ambient at the bearing axial ends,   


    ;,   ; 0,: aatl PLPPP      (5b)  


and also at the pad trailing edge, 


 0 : ,  t az L P z P         (5c) 


Furthermore, within the whole flow domain, P > Pcav, i.e., the film pressure must be higher 


than the lubricant cavitation pressure. For a thorough discussion on lubricant cavitation and 


physical sound boundary conditions refer to Notes 6 [9]. 


Lubricant is supplied into the bearing at a known supply temperature (TS). The fluid 


temperature (T) gradually increases as it flows through the film thickness in a bearing pad since 


the lubricant removes shear induced mechanical energy. At the leading edge of a pad (Θl), there 


is mixing of the supplied cold lubricant flow rate (FS) and a fraction of the hot lubricant flow 


(Fup) leaving the upstream with temperature Tup. The flow and thermal energy mixing conditions, 


as shown in schematic form in Figure 4, are specified as 


 
in S up


v in in S S up up


F F F


C F T F T F T








 


 
    (6) 


where  
0 l


L


inF W h dz



   is the volumetric flow rate entering the pad at temperature Tin, and 


 
0 t


L


upF W h dz



  . The mixing parameter   0,1   is an empirical variable. Current or 


modern oil feed flow configurations incorporate direct impingement of the lubricant into a 


bearing pad, thus λ is low, to render cool lubricant temperature operation, i.e. Tin ~ TS . In general, 


λ ~ 0.6-0.9 [10] for conventional feed arrangements with deep grooves and wide holes. In 


addition, note that the mixing thermal coefficient tends to increase  1  with journal speed. 


                                                 
3 In a symmetric and aligned bearing, the pressure field is symmetric about the bearing mid axial plane. Thus, only 
the pressure field for one-half bearing length needs be calculated, say from z= ½ L to z=L. In this case, 


  0/  zP at z= ½ L.   
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That is, as the operating speed increases it becomes increasingly difficult to suminister fresh or 


cold lubricant into the fluid film bearing. 


 


Upstream pad Downstream pad


R


Fup
Tup


Fin
Tin


FS
TS


Supply flow and 
temperature  


Figure 4. Schematic view of thermal mixing at the leading edge of a bearing pad (F: 
flow,T: temperature)  


 


Since the thermal energy transport Eq. (3) is parabolic, there is no need to specify any other 


temperature along the other pad boundaries. Solution of Eq. (3) determines the lubricant 


temperature exiting a bearing pad through its axial sides (z=0, L) and at the pad trailing edge (Θt). 


Importantly enough, in the region where the lubricant cavitates (P=Pcav), the (current) analysis 


assumes there is no further generation of mechanical energy; and consequently, the fluid 


temperature in this region is constant. This is not an oversimplification, as verified by predictive 


analysis [11] and various published measurements,see  [12,13].  


 


Perturbation analysis4  


Consider journal center motions of small amplitude (X, Y << c) about a static equilibrium 


position  
0 0
,X Ye e , as shown in Figure 5. 


   0 0
,X X Y Yt te e X e e Y         (7)   


  


                                                 
4 Follows the classical analysis of J.W. Lund in Refs. [14,15] 
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Journal 
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


 


Figure 5. Depiction of small amplitude journal motions about an equilibrium position (Not 
to scale). 
 


The film thickness is expressed as the superposition of an equilibrium (zeroth-order) 


thickness (h0) and a first-order thickness (h1), i.e.  


 0 1 th h h   ,  


0 00 cos( ) cos sinp p X Yh c r e e      ,   (8) 


     sincos1 tt YXh ,   


with      


0 0


0 1
( ) ( )sin( ) sin cos ; sin cosp p X Y t t


h h
r e e X Y


 
          


 
 


2


2
cos sin , cos sin


h h
X Y X Y


t t


 
         


 
      (9) 


The perturbation in film thickness leads naturally to a perturbation in film pressure, i.e.  
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0 1


1


( , , ) ( , ) ( , , ),


X Y X Y X Y


P z t P z P z t


P P X P Y P X P Y P X P Y


     


                     (10)  


where P0 is the zeroth-order or equilibrium pressure field defined by  
0 0
,X Ye e  at steady 


operating conditions, and ΔP1 is the perturbed dynamic pressure field5.   


Define the linear operator 


     3 3
0 0


() ()1
()


12 12


h h


R R z z 
     


          
L    (11) 


Substitution of the pressure (P) and film thickness (h) into the modified Reynolds Eq. (2) 


gives the following equations for determination of the equilibrium and first order pressure fields  


3 3
0 0 0 0 0


0 2


1
( )


12 12 2


h P h P hR
P


R z z R 
       


            
L    (12a) 


 


 


2 2
0 0 0 0


2 2
0 0 0 0


3 3
cos cos


2 12 12


3 3
sin sin


2 12 12


X


Y


h P h PR
P


R R z z


h P h PR
P


R R z z


 


 


                             
                             


L


L


  (12b)  


   cos ; sinX YP P    L L      (12c) 


   
2 2
0 0cos ; sin


12 12X Y


h h
P P


 
 


   
         
   


 L L     (12d) 


where 
0 00 cos( ) cos sinp p X Yh c r e e      . 


The boundary conditions for the solution of the zeroth- and first-order pressure fields 


follow. Note that in those boundaries where the pressure is fixed, say at ambient condition, the 


perturbed pressures must vanish, i.e. a homogeneous boundary condition. Hence, 


P0(l ,0<z<L) = PS ; P0 (t , 0<z<L) = Pa  


   0 0: ,0  ;   , ;l t a aP P P L P           (13a)  


       , , , , ,0 , , ,
0


l t
X Y X Y X Y z z L


P P P P P P
   


              (13b) 


                                                 
5 The physical units of each perturbed pressure differ. For example, 


      2, , , , ,X Y X Y X Y
Pa Pa PaP P P P P Pm m s m s


             
     
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At the inception of the film rupture or cavitation zone (c), P0=Pcav, and  0 0P   . At 


this location, the first-order pressure fields also vanish, i.e. 0.X Y X Y X YP P P P P P          


Other physical conditions may also apply6. 


The current analysis does not consider a perturbation in the temperature field or the lubricant 


material properties (density and viscosity). Recall the journal motions are small in amplitude 


affecting little the steady-state temperature field. However, in bearings and seals operating in the 


turbulent flow regime, the journal motion does affect the flow condition and hence, there is the 


need to account for temporal variations in the fluid material  viscosity and density, see Notes 10 


[6] 


 


Bearing reaction forces and force coefficients 


The hydrodynamic pressure field generated in each pad acts on the journal to generate a fluid 


film reaction force with components  ,X YF F . Integration of the pressure fields gives 


( , , )
1 1 0


cos


sin


tpads pad
k


k


k l


N N L
XX


z t k
Y Yk k k


FF
P R d dz


F F






  


                        
       (14) 


Substitution of Eq. (10) gives for the kth pad 


 
1


0


0


cos


sin


tL


X
X Y X Y X Y k


Y k


F
P P X P Y P X P Y P X P Y R d dz


F








   
                            (15) 


The components of a pad reaction force are expressed in terms of stiffness, damping and 


inertia force coefficients (K, C, M)αβ=X,Y 


0


0


( )


( )


XX t XX XY XX XY XX XY


YX YY YX YY YX YYY t Y k k kk k


FF K K C C M MX X X


K K C C M MF F Y Y Y


              
                                 


 
   (16) 


 


The bearing pad force coefficients follow from 


                                                 
6 See for example, Zhang, Y., 1990, “Starting Pressure Boundary Conditions for Perturbed Reynolds Equation,” 
ASME Journal of Lubrication Technology, Vol. 112, pp. 551-556. 
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 
1


1


1


0


0


0


cos
;


sin


cos
;


sin


cos
;


sin


t


t


t


L


XX XY
X Y k


YX YY k


L


XX XY
X Y k


YX YY k


L


XX XY
X Y k


YX YY k


K K
P P R d dz


K K


C C
P P R d dz


C C


M M
P P R d dz


M M




















   
       


   
          


   
          











 


 


  (17) 


The individual pad forces and force coefficients add to render the components of reaction 


force and the force coefficients for the whole bearing, i.e., 


        , ,
1 1 1 1


; ; ;
pads pads pads padsN N N N


X Yk k k k
k k k k


F F K K C C M M         
   


        (18)  


 


Calculation of the bearing static equilibrium position 


A fluid film bearing supports an applied load W. This load has components   ,X YW W  along 


the (X,Y) fixed axes. At the rated operating condition W produces a static displacement of the 


journal center, better known as the equilibrium journal eccentricity e, with components  
0 0
,X Ye e . 


The static balance of forces is 


0, 0X X Y YW F W F        (19) 


Most fluid film bearing analyses predict the bearing reaction forces due to specified journal 


center static displacements. Thus, in practice, an iterative procedure is implemented to predict 


the journal equilibrium position given the applied load.  


Let the journal operate with eccentricity  ,X Y j
e e at the jth iteration and giving the bearing 


reaction force components  ,X Y j
F F  . Then, corrections  ,X Y j


e e  to the journal eccentricity 


that will render reaction forces converging towards the applied external load are given by the 


Newton-Raphson procedure   
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




































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j


jj


YY


XX


jYYYX


XYXX


jY


X


FW


FW


KK


KK


e


e 1






   (20a) 


  


and      







































jY


X


jY


X


jY


X


e


e


e


e


e


e
jjj






1


1
   (20b)  


Aboce, the bearing pseudo or temporal stiffness coefficients (Kαβ=X,Y)  are evaluated at  ,X Y j
e e . 


Upon convergence, the differences in forces in Eq. (19) become negligible, i.e. (W+F)X,Y  0; 


and the stiffness coefficients are those of the bearing at its equilibrium position.  


Note that the bearing reaction forces are highly nonlinear functions of the journal position or 


eccentricity function; thus, convergence of the Newton-Raphson algorithm relies heavily on the 


closeness of the initial journal eccentricity components to the actual equilibrium eccentricity. Of 


course, the fact noted is common in the solution of any nonlienar system of equations. 


 


Generalization of the perturbation method 


Consider small amplitude harmonic journal motions  ,X Ye e  with whirl frequency  


about the equilibrium position  
0 0
,X Ye e . The film thickness (h) is the real part of the following 


expression 


  0 0 ,cos sin  ; ;   1t t
X Y X Yh h e e e h e h e 


            i i i   (21) 


with h0 as the equilibrium film thickness at  
0 0
,X Ye e , and cos ,  sinX Yh h    . Note that, 


  
  2


0 2
2


,


t
t t


h e h eh h
e h e e h e


t t t



   


    
  


    
  


i
i ii   (22) 


The pressure field is written as the superposition of zeroth and first order fields, 


0 , ; t
X YP P e P e 


     i
.    (23)  


The zeroth-order (P0) is the equilibrium pressure field satisfying 


3 3
0 0 0 0 0


0 2


1
( )


12 12 2


h P h P hR
P


R z z R 
       


            
L      (24=12a) 
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and the first-order complex pressure fields ,X YP  due to the journal center motions satisfy 


 
2 2 2
0 0 0 0 03 3


2 12 12 12


h h h h P h h P
P h


R R z z
  


 
 



  


                                     
L i ; =X,Y      


or            (25) 


 
2 2 2
0 0 0 0 0


( ) ( ) ( )


3 3


12 2 12 12T T T


h h P h h PR
P h h h


R R z z



   
  
  


                                   
L i  


Above 
2
0


12


h 



 
  
 


 = Res represents a local squeeze film Reynolds number.  


The FX and FY components of the fluid film bearing reaction force are  


 
00 , ,


0 0


    ; 
L L


t t
X YF P h R d dz P e P e h R d dz F Z e e 


         
 


            i i    (26)  


where the components of the static (equilibrium) bearing reaction force at journal position 


 
0 0
,X Ye e are 


0 0 ,
0


   = -   ;      
L


X YF P h R d dz W    



       (27)  


and the bearing impedances (Z) rendering the stiffness, damping and inertia force coefficients, 


(K, C, M)αβ=X,Y , are evaluated from the real and imaginary parts of 


 2
, ,


0


  ;      
L


X YZ K M C P h R d dz         



      i  (28) 


 


Numerical solution of film pressure equations: equilibrium and first-order 
The finite element method (FEM) is well suited for the numerical solution of elliptic type 


differential equations such as Reynolds Equation. Complicated geometrical domains are well 


represented by finite elements, hence its major advantage over other methods such as finite 


differences. Another advantage becomes apparent later as the systems of equations for solution 


of the zeroth and first order pressure fields have the same (global) fluidity matrix. This feature 


allows the most rapid evaluation of the bearing dynamic force coefficients. 
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Figure 6 depicts a flow region divided into a collection of Nem four-noded isoparametric finite 


elements. The pressure over an element (e) is given by a linear combination of nodal values 


 Pi


npe


1
and bilinear shape functions  


1


pene
i 


 , i.e. 


0 0 ,
1 1


 ,    ;  
pe pe


i i


n n
e e e e e e


i i X Y
i i


P P P P   
 


         (29) 


e


x=R


z Nodal 
pressures


q Flow rate


Flow
domain


 


Figure 6. Depiction of general domain of flow field and finite element representation 
 


The Galerkin formulation [15] reduces the PDE (12a) for the equilibrium pressure field P0 


within a finite element (Ωe) into the algebraic system of linear equations  


       0 0
e e e


0 G
k P = - q + f :        0 0 0


1


pe


j


n
e ee e


ij i i
j


k P q f



     ;  i,j=1,Npe  (30) 


where the coefficients of the element fluidity matrix  ek  are  


3
0


( )12e


e e
j je e i i


ij ji
T


h
k k dx dz


x x z z


  
    


                 
   i,j=1,..Npe (31) 


and the right hand side vectors denote the shear flow effect and nodal flow rates, 


0 0  
2i


e


e


e iR
f h dx dz


x






 
   


 
 ;     q q d


i
e


e
i
e e


0 0
   



     i=1,..Npe (32) 


with     
0


3
0 0 0


( )12 2 x
T


h P h R
q


 
 



       (33) 
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as the flow through the element boundary (e).  Note above that the fluid viscosity is a function 


of the temperature,  v ST T
S e     ; thys, varying over the flow domain.  


The integrals in Eqns. (31, 32) are evaluated numerically over a master isoparametric 


element ( ̂ ) with normalized coordinates. Reddy and Gartling [16] explain the coordinate 


transformation and numerical integration procedure using Gauss-Legendre quadrature formulas. 


Eqns. (30) are assembled over the whole flow domain and then condensed by enforcing the 


corresponding boundary conditions.  The resultant global set of equations is  


       0G G GG
k P = Q + F     (34) 


where           
1 1 1


, ,
Nem Nem Nem


e


e e e  


  e e


G G G
k k Q q F f   . The global fluidity matrix  Gk is 


symmetric, easily decomposed into its upper and lower triangular form (Cholesky algorithm), i.e.  


         TG G G G G
k = L U = L L     (35)  


A process of back- and forward-substitutions then renders the discrete zeroth order pressure 


field  0 G
P :  


          T
0G G G GG


L L P = Q + F     (36) 


Note that   
G


Q 0  denotes the addition of flow rates at a node. Hence the components of 


this vector are nil at each internal node of the finite element domain.  


A similar procedure follows for solution of the perturbed (dynamic) pressure fields, PX and 


PY, due to journal harmonic displacements  ,X Ye e  with whirl frequency ω.  PDEs (25) 


become 


     0 , 
1 1


  ;  
pe pe


j j


n n
e e ee e e


ij X Yi ij i
j j


k P f S P q     
 


     i,j=1,..Npe  (37) 


with cos ,  sinX Yh h    , 1 i . Defining , ,andi i
i x i zx z


      . Above, for 


perturbations along the X-direction,  


           X X X X e e e e
0G G


k P = f S P q     (37a) 


for example.  







Notes 7. THERMAL ANALYSIS OF FINITE LENGTH JOURNAL BEARINGS. Dr. Luis San Andrés © 2009 16


In Equations (37) 


   
e e e


2 2
0


,
( )


       
2 12


e


e e e e
i x i ii


T


hR
f h dx dz h dx dz h dx dz   


 



  


             
  i   


   
2
0


, , , ,
( )


3


12e


e
ee


i x j x i z j zij
T


h h
S dx dz
 


 
      


 
 ,  i,j=1,..Npe   (38)  


   
e


e e e
ii


q q d  



    ;    
3 2
0 0 0


( ) ( )


3


12 12 2 x
T T


h P h h P R
q h 
 


  
     



       


 


The assembly process of the first order FE equations renders a fluidity matrix identical to 


that for the equilibrium pressure field. Thus, the perturbed pressure fields can be calculated 


rapidly since the global fluidity matrix  Gk is originally obtained and decomposed in the 


procedure to find the equilibrium pressure field  0 G
P , see Eq. (36). 


In practice, the process does not require specification of a whirl frequency (ω) nor 


conducting several calculations to discern the stiffnesses from the mass coefficients.   


For  ,X YP P  from Eqs. (12b): 


     0 , 
1 1


  ;  
pe pe


j j


n n
e e ee e e


ij X Yi ij i
j j


k P f S P q     
 


      i=1,..Npe  (39a) 


   
e


,   
2


e e
i xi


R
f h dx dz 






  ;    


2
0


, , , ,
( )


3
 


12e


e
ee


i x j x i z j zij
T


h h
S dx dz
 


 
      


 
 (39b) 


To make the global system of equations 


               T
σ σ σ 0G G GG G GG


L L P = Q + F S P    (39c) 


For  ,X YP P   from Eqs. (12c): 


    , 
1


  ;  
pe


j


n
e ee e


ij X Yi i
j


k P f q    



        i=1,..Npe    (40a) 


 
e


 
e e


ii
f h dx dz 





     i=1,..Npe     (40b) 


Giving the global system of equations 
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          T
σ σ GG G GG


L L P = Q + F      (40c) 


For  ,X YP P   from Eqs. (12c): 


    , 
1


  ;  
pe


j


n
e ee e


ij X Yi i
j


k P f q    



         i=1,..Npe   (41a) 


 
e


2
0


( )


 
12


e


e e
ii


T


h
f h dx dz 









 
   


  
   i=1,..Npe   (41b) 


Giving the system of equations 


          T
σ σ GG G GG


L L P = Q + F      (41c) 


Solution of the system of equations for the first order fields is performed quickly with the 


procedure  


 


        


       


       


find


find





 


T


G G G G


G G G G


T


G G G G


L L X = Y


L Z = Y Z


L X Z X


   (42) 


which does not require inversion of matrices but only 2-N forward and backward substitutions.  


 


Numerical solution of the traport equation for fluid film mean temperature  


The transport of energy equation (3) is of parabolic type. Hence, a control volume method 


with upwinding [17 ] is chosen to solve for the temperature field. Figure 7 depicts the control 


volume for integration of the thermal energy transport Eq. (3). Note that, in accordance with 


practice and measurements, the fluid bulk-temperature (T) does not vary along the bearing axial 


length. In the figure, {Te, Tw and Tn} are temperatures at the east, west and north faces of the P-


control volume; while {TE, TW, TP} are nodal temperatures at the center of the control-volumes.  
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Figure 7. Control volumes for integration of energy transport equation (F: flow, T: 
temperature)  


 


Integration of the energy transport Eq. (3) over ½ axial length of the bearing (T-control 


volume) leads to: 


        /2
2 2


L e L
e L


v sw z L
L w L


C hU T dz hW T dx S Q dz dx 



 
   


  
    (43) 


with the source (energy dissipation) term 
22 2


( ) 212


12 2
T R R


S W U
h


            
   (44) 


and heat flow into the bearing and journal surfaces     s B B J JQ h T T h T T      (45) 


Since the film temperature is regarded as constant along the axial direction, Eq. (43) reduces 


to 


       
2 2 2


L L e L
e we w n


v sz L
L L w L


C T hU dz T hU dx T hW dx S Q dz dx  



 
    


  
       (46) 
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Recall that the axial flow velocity is null7 at the midplane of a bearing pad, i.e., W=0 at z=0. 


Define mass flow rates (F) through the control volume faces as     


    


   


   


   


2


2


/2 0


,


,


; 0


z


z


L Ne
e ee


J
JL


L Ne
w ww


J
JL


e e
n s


z L z
w w


F hU dz hU z


F hU dz hU z


F hW dx F hW dx


 


 


 
 


 


 


  








 





    (47) 


where Nez is the number of P-finite elements along the axial direction. The source term from 


shear drag power is  


 
22 2


( ) 2


2


12
,


12 2


z


P
L Ne


TP


JL J


R R
S S dz dx W U z x


h


                 
       (48a) 


From mass flow continuity 0e w nF F F     =0. Assume for simplicity that the bearing 


(TB) and journal (TJ) temperatures are constant along the axial direction. An identical statement is 


made for the heat convection coefficients  ,B Jh h .  Then, 


      
2 2 2


L
P


s P B J B B J J


L


L L
Q Q dz dx T h h x h T h T x         (48b) 


With the definitions above, the discretized algebraic  form of the energy transport equation 


is:  


    
e e w w n n P P


vC F T F T F T S Q         (49) 


Implementation of the upwind scheme [17] for the thermal flux transport terms gives: 


   ,0 ,0e e e e
P EF T F T F T             


   ,0 ,0w w w w
W PF T F T F T                 (50) 


    ,0 ,0n n n
P n NF T F T F T       


with         1 1
,0 ; ,0 ; ,0 ,0


2 2
a a a a a a a a a               ; 


                                                 
7 This is because the pressure field is symmetric along the axial direction. That is, the peak pressure occurs at the 
axial mid-plane of the bearing 
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where TN  is a fluid sump temperature (outside) of the bearing discharge plane8.  


Substitution of Eq. (50) into Eq. (49) renders the control-volume integral form of the energy 


transport equation  


   
P P


p P w W e E n N JBa T a T a T a T S Q       (51) 


where   ,0 ; ,0 ; ,0e w n
e v w v n va C F a C F a C F                      (52a) 


      
2p e w n B J


L
a a a a h h x          (52c) 


     
2


P
JB B B J J


L
Q h T h T x       (52c) 


The system of equations (51) is easily solved with a simple recursive algorithm.  If the 


lubricant flow is from left to right (w to e), then 0; 0 0w e
eF F a    ; and the energy 


transport equation reduces to 


P P
p P w W n N JBa T a T a T S Q        (53) 


If lubricant flows outward at the exit plane z= ½ L, 0 0n
nF a   , and the energy transport 


equation further reduces to 


P P
p P w W JBa T a T S Q       (54) 


where  
2p w B J


L
a a h h x    . This last equation, revealing the parabolic nature of the thermal 


energy transport, shows the film temperature increases due to shear power dissipation effects. 


Note that 0P
JBQ   for adiabatic boundaries, i.e.   0B Jh h  , i.e. no heat flow into or from the 


bearing and journal. 


The algebratic equations for solutions of the presure and temperature fields are programmed 


in FORTRAN with a Graphical User Interface in MS Excel® for input of bearing data and 


operating conditions and output of predictions that include the bearing torque and flow rate, 


static journal eccentricity,  dynamid force coefficients, and the pressure and temperature fields. 


For completeness in the description, Figure 8 depicts the relationship between a finite element 


for evaluation of the film pressure and the control-volume for temperature.   


                                                 
8 Fn < 0 means that flow is entering (instead of leaving) the bearing at the exit plane z = ½ L. This condition is not 
unusual in the zone of lubricant cavitation. However, in practice the value of sump temperature is not well known a-
priori. 
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Figure 8. Flow fluxes through faces of temperature-CV and relation to pressure finite 
elements  
 


Examples 


Model predictions for test bearings reported in the literature were obtained. The benchmark 


cases included one and two grooved journal bearings 9 , see refs. [12,13]. In general, the 


predictions for static load performance conditions, including lubricant temperature rise, load 


capacity and journal eccentricity are in good agreement with the test data. Note that in the 


references listed, one or more parameters of importance are ommitted or not published. Hence, 


the model implemented best practices to obtain accurate results.  


Presently, model predictions for the static and dynamic load performance of a pressure dam 


journal bearing are compared against exhaustive test data acquired in the laboratory, Jughaiman 


and Childs [18]. Figure 9 shows a schematic view of the bearing configuration and coordinate 


                                                 
9 A set of slides follows this lecture notes – The slides show details and comparisons of (current) model predictions 
and test data in Refs. [12,13,18] 
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system. Table 1 details the geometry of the pressure dam bearing, as detailed in Ref. [18]. Please 


note that Al-Jughaiman’s publication (including his M.s. thesis) misses details on the bearing 


geometry, lubricant inlet and feed conditions. Note that the pressure dam depth to clearance ratio 


and dam arc length relative to pad arc length follow standard best practices recommended by 


Nicholas and Allaire[19]. 


 


X


Y
W


e


Pad with relief 
groove Pad with pressure dam


Feed hole


170 deg                       130 deg


X


Y
W


e


Pad with relief 
groove Pad with pressure dam


Feed hole


170 deg                       130 deg





 


Figure 9. Schematic view of pressure dam bearing with relief groove. 
 


In the experiments, ISO VG 32 lubricant fills the thin film lands of the pressure dam bearing. 


An air turbine drives the test rigid shaft supported on ball bearings. The test bearing floats on the 


rotating shaft. The tester includes a hydraulic cylinder for static loading, and stinger connections 


to hydraulic shakers that excite the floating test bearing. The instrumentation includes load cells 


attached to the shaker stingers, eddy current sensors mounted on the bearing and facing the shaft, 


and accelerometers attached to the bearing housing.  The parameter identification method is 
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based on frequency domain measurements and extracts the force coefficients from curve fits of 


the real and imaginary parts of the test system impedances.  


The maximum load (W) applied equals 12 kN (2,700 lb) which gives a specific pressure 


(W/LD) = 13.45 bar (~ 200 psi).     


 
Table 1. Dimensions and operating conditions of pressure dam bearing with relief groove 
tested by Jughaiman and Childs [18] 


Journal diameter D 117.1 mm
Bearing Length L 76.2 mm
Radial clearance c 0.142 mm


pad arc  170 deg
Dam arc length  D 130 deg
width (0.75 L) L D 57.1 mm


depth 0.4 mm
Reilef groove width L R 19.05 mm


depth 0.1 mm
Lubricant ISO VG 32


Density  860 kg/m3
Specific Heat Cp 2000 J/kg-C


Thermal conductivity  0.13 W/m-C
Viscosity at 45 C  0.028 Pa.s


Visc-temp coefficient  0.034 1/C
Inlet oil temperature 40-55 ? C


Inlet oil pressure N/A bar
Load range 0.1-12 kN
Speed range 4,6,8,10,12 krpm  


 


Closure 


Sept 2009: Lecture notes not yet complete. See slide presentation attached. 


 


Nomenclature 


c  Nominal film (pad) clearance [m] 
cm   bearing assembled clearance [m]  
Cv  Lubricant specific heat [J/kg-K] 
C  Bearing damping force coefficients; ,  = X, Y  N s


m
  


D  Journal diameter [m] 
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eX, eY  Journal center eccentric displacements [m] 
FX, FY  Fluid film bearing reaction forces [N];  
FS, Fin, Fup,  Mass flow rates: supply, inlet to pad and upstream pad [kg/s] 


h  Pad film thickness, c – rP  cos(-P) + eX cos() +  eY sin() [m] 
hX, hY  cos(), sin() 


,B Jh h   Heat transfer convection coefficients [W/m-K] 


K  Bearing stiffness force coefficients; ,  = X, Y  N
m   


L  Journal bearing axial length [m] 
M  Added mass (fluid inertia) coefficients; ,  = X, Y  N


m   
npe  Number of nodes per finite element 
Nem  Number of elements in flow domain 
Qs  heat flow conducted into bearing and journal surfaces [W/m] 
P  Film pressure [Pa] 
Pa  Ambient pressure [Pa] 
Pcav  Lubricant cavitation pressure [Pa] 
PS  Supply pressure [Pa] 
P0  Zeroth-order (aquilibrium) pressure [Pa] 
P  First-order complex pressure fields; ,  = X, Y [Pa/m] 
q  Volumetric flow rate per unit length [m2/s] 
R  ½ D. Journal radius, [m] 


Res  
2h



 
 
 


. Local squeeze film Reynolds number. 


rp  (c-cm). Pad preload [m] 
S  Mechanical energy dissipation per unit area [W/m2] 
t  Time [s] 
T  Lubricant mean flow temperature [degK] 
TS  Supply temperature [degK] 
U, W  Lubricant bulk-flow velocities, circumferential and axial [m/s] 


WX, WY  Componentsof applied static load, 2 2
X YW W W   


(x= R, y, z)  Coordinate system on plane of bearing (starts at -X) 
(X, Y)  Inertial coordinate system 


Z  Impedance force coefficients;  2K M C     i , ,  = X, Y   N
m  


αv   Viscosity-temperature coefficient [1/K] 
ΔeX, ΔeY Dynamic displacements of journal center [m] 
   x


R . Circumferential coordinate [rad],  


l , t , p Arc pad leading and trailing edges, angle of min. film thickness (offset angle) 
[rad] 


   v ST T
S e     . Fluid viscosity [Pa-s] 


e  Element boundary 
ρ  Fluid density [kg/m3] 
  Journal attitude angle with respect to static load vector [] 


 i


npe


1
 Finite element shape functions 
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  Rotor rotating speed,  
  whirl frequency  rad


s  


e  Finite element sub-domain 
 
Subscripts  
S  Supply condition 
in  Inlet to pad 
n,e,w,s  north, east, west and south of control volume 
N,W,E,S North, east, west and south nodes 
 
Superscripts  
e  element 
 


APPENDIX A. MODELS FOR HEAT CONVECTION COEFFICIENTS 
         Reproduced from Ref.[7]  


The Reynolds-Colburn analogy between fluid friction and heat transfer for fully-developed 


flow determines the heat convection coefficients to accounting for heat flux from the fluid film 


into the shaft outer surface and from the film into the bearing cartridge. Over the entire 


laminar/turbulent boundary the Fanning friction factor f is: 
 


2/3


2t r


f
S                (A.1) 


where 
t


v


h
S


C U
  is the Stanton number, ρ and  Cv are the fluid density and specific heat, and U 


is a mean flow velocity p
r


c 



    is the Prandtl number, and  and   are fluid heat conduction 


coefficient and viscosity, respectively.  


From Eq. (A.1), heat convection coefficients h for laminar flow are derived from the Nusselt 


number; 


1/33 r


c h
Nu



         (A.2) 


while for turbulent flow conditions  


0.8 0.40.023hyd
r


D h
Nu Re



            (A.3) 


where 4  area


wetted perimeterhydD



 is a hydraulic diameter.  
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Fortran code : complete – including prediction of inertia force 
coefficients


GUI (Excel interface) – complete


Examples for calibration:
(pressure and temperature fields)
oil 360 deg journal bearing


Dowson et al. (1966) 
Ferron, Frene, Boncompain (1983)
Costa, Fillon (2000 2003)


oil two groove journal bearing
Costa, Fillon (2000 2003)
Brito, Fillon (2006, 2007)


Pressure dam bearing
Childs et al (2007, 2008)
Load capacity & force 


coefficients


Computational code 
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Example 1 : Ferron bearing (1983)


Journal diameter D 100 mm
Bearing Length L 80 mm
Radial clearance c 0.152 mm


Groove width mm
groove arc length 18 deg


Lubricant
Density  860 kg/m3


Specific Heat Cp 2000 J/kg-C
Thermal conductivity  0.13 W/m-C


Viscosity at 40 C  0.0277 Pa.s
Visc-temp coefficient  0.034 1/C
Inlet oil temperature 40 C


Inlet oil pressure 0.7 bar
Load range 1kN-10 kN
Speed range 1-4 kRPM
Prandtl No 426
Load No 23.98


Diffusivity 7.55814E-08 m2/s


Sommerfeld #
2












C
R


W
DLNS 


Ferron,J., Frene, J., and R. 
Boncompain, 1983, “A Study 
of the Thermohydrodynamic 
Performance of a Plain 
Journal Bearing Comparison 
Between Theory and 
Experiments”, ASME 
Journal of Tribology, Vol. 
105, pp. 422-428,


X


Yflow


 W
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Ferron et al. bearing (1983)


Pressure and temperature fields – 4 kRPM, 6 kN


Load


Test data
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Ferron et al. bearing (1983)


Eccentricity ratio (e/c) vs Sommerfeld #


Load


Test data
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    
 







23


Ferron et al. bearing (1983)
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Ferron et al. bearing (1983)


Peak film pressure vs. eccentricity ratio (e/c)


Load
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Ferron et al. bearing (1983)


Peak film temperature vs. eccentricity ratio (e/c)
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Example 2: two axial groove bearing 
Brito,F.P., Miranda, A.S., Bouter, J., 
and Fillon, M., Frene, J., and R. 
Boncompain, 2007, “Experimental 
investigation on the influence of 
Supply temperature and Supply 
Pressure on the Performance of a 
Two-Axial Groove Hydrodynamic 
Journal Bearing”, ASME Journal of 
Tribology, Vol. 129, pp. 98-105,


Journal diameter D 100 mm
Bearing Length L 80 mm
Radial clearance c 0.085 mm


preload r p 0 mm
Feed groove width 70 mm


Pad arc length 162 deg
Lubricant


Density  870 kg/m3
Specific Heat Cp 2000 J/kg-C


Thermal conductivity  0.13 W/m-C
Viscosity at 40 C  0.0293 Pa.s


Visc-temp coefficient  0.032 1/C
Inlet oil temperature 35,40,50 C


Inlet oil pressure 0.7,1.4, 2.1 bar
Load range 1kN-10 kN
Speed range 1-4 kRPM
Prandtl No 451


X


Y


W


Top pad


flow


bottom pad
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Brito et al. bearing (2007)


Pressure and temperature fields – 4 kRPM, 10 kN


Test data
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Example 3 – Pressure dam bearing
Al-Jughaiman, and Childs, D., 2007,
“Static and Dynamic Characteristics 
for a Pressure-Dam Bearing”, ASME 
Paper GT2007-25577


X


Y
W


e


Journal diameter D 117.1 mm
Bearing Length L 76.2 mm
Radial clearance c 0.142 mm


pad arc  170 deg
Dam arc length  D 130 deg
width (0.75 L) L D 57.1 mm


depth 0.4 mm
Reilef groove width L R 19.05 mm


depth 0.1 mm
Lubricant ISO VG 32


Density  860 kg/m3
Specific Heat Cp 2000 J/kg-C


Thermal conductivity  0.13 W/m-C
Viscosity at 45 C  0.028 Pa.s


Visc-temp coefficient  0.034 1/C
Inlet oil temperature 40-55 ? C


Inlet oil pressure N/A bar
Load range 0.1-12 kN
Speed range 4,6,8,10,12 krpm


Missing details on bearing geometry, lubricant and feed conditions. Even with test 
data at hand, not able to reproduce test results in paper. VERY PECULIAR 
THERMAL EFFECTS
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Example 3 – Pressure dam bearing


GT2007-25577  Power loss 
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Example 3 – Pressure dam bearing


Journal eccentricity vs specific pressure


145 psi
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Example 3 – Pressure dam bearing


Attitude angle vs specific pressure


145 psi







32


0


200


400


600


800


1000


1200


0 200 400 600 800 1000 1200 1400


Unit Load (W/LD) [kPa]


St
iff


ne
ss


 [M
N


/m
]


4 krpm (pred)
10 krpm (pred)
test 4 krpm
test 10 krpm


TAMU Pressure Dam Bearing


KYY


X


Y
W


e


Example 3 – Pressure dam bearing


Direct stiffness KYY vs specific pressure


145 psi
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Example 3 – Pressure dam bearing


Direct stiffness KXX vs specific pressure


145 psi
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Example 3 – Pressure dam bearing


Cross stiffness KXY vs specific pressure


145 psi







35


0


100


200


300


400


500


600


0 200 400 600 800 1000 1200 1400


Unit Load (W/LD) [kPa]


St
iff


ne
ss


 [M
N


/m
]


4 krpm (pred)
10 krpm (pred)
test 4 krpm
test 10 krpm


TAMU Pressure Dam Bearing


KYX


X


Y
W


e


Note: prediction changed sign


Example 3 – Pressure dam bearing


Cross stiffness KYX vs specific pressure


145 psi
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Example 3 – Pressure dam bearing


Direct DAMPING CYY vs specific pressure


145 psi
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Example 3 – Pressure dam bearing


Direct DAMPING CXX vs specific pressure


145 psi
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Example 3 – Pressure dam bearing


Cross DAMPING CXY vs specific pressure


145 psi
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Example 3 – Pressure dam bearing


Cross DAMPING CYX vs specific pressure


145 psi
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Example 3 – Pressure dam bearing


Whirl frequency ratio WFR vs specific pressure
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Example 3 – Pressure dam bearing


Added Mass Coefficients WFR vs specific pressure
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Notes 8. 
Turbulence in Thin Film Flows 
 
Notes 8 detail the characteristics of turbulent flows and provide insight into the flow instabilities 
that precede transition from a laminar to a turbulent flow condition. Turbulence is eminently a 
fluid inertia driven effect, i.e. when inertia forces are much larger than viscous forces A flow 
instability can be of centrifugal type that induces Taylor vortices when an inner cylinder rotates, 
or due to wave propagation in parallel flows. In fluid film bearings, the transition from laminar to 
turbulent flow at a Reynolds number of ~2,000 is referential only.  
The Notes also provide insight into the closure problem of turbulence (how to evaluate the six 
components of the apparent Reynolds stresses) and explain the concept of eddy viscosity. 
Equations for the transport of turbulent flow kinetic energy and dissipation (κ-ε  model) to 
determine the eddy viscosity are given. However, in thin film lubrication to this date, much 
simpler models are in use. Hirs’ turbulent bulk-flow model, as derived from an insightful 
observation that measurements in pressure and shear driven flows show similar wall shear 
stresses, is detailed. Hirs’ model focuses on relating the wall shear stress differences to the bulk-
flow velocity components. Hence, details of turbulence transport across the film are entirely 
avoided. A generalized Reynolds equation, valid for either laminar or turbulent flows, is the end 
result of the analysis. The Notes also derive turbulent flow equations that are identical to those 
under laminar flow conditions, expect for the introduction of shear factors due to flow 
turbulence.  
 
Nomenclature 
 
C  Radial clearance [m] 


f 
m


MU hf n ρ
μ


⎛ ⎞
= ⎜ ⎟


⎝ ⎠
= n Rem. Friction factor in turbulent flow 


h Film thickness 
m, ,n Parameters in friction factor formula 
p Pressure [N/m2] = ( )p p′+  


,p p′  Time averaged and fluctuations of pressure [N/m2] 
r Surface roughness [m]
R ½ D. Journal radius [m] 


Re  
R cρ


μ
Ω . (Shear flow) Reynolds number 


S i,j=1,2,3 1,2,3
1 ;
2


ji
i


j i


uu
x x =


⎧ ⎫∂∂⎪ ⎪+⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
. Fluid strain rate tensor [N/m2] 


t Time [s] 


T1 , T2 
Small (fast) and large (slow) time scales for averaging of turbulent flow 
velocities [s] 
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Ta 2ReC
R


⎛ ⎞
⎜ ⎟
⎝ ⎠


. Taylor number 


( ) 1, 2, 3i iu =  Components of velocity field [m/s] = ( )i iu u′+  


( ) 1, 2, 3,i i iu u =
′  Time averaged and fluctuations of velocity field [m/s] 


u, v, w Components of velocity in x, y, z directions [m/s] 
U ΩR. Journal surface velocity [m/s] 
UM  Mean velocity of bulk-flow [m/s] 


Vx, Vz 


0 0


1 1;


h h


udy wdy
h h∫ ∫ . Bulk flow velocities [m/s] 


ε  Dissipation function in turbulent flow [m2/s2] 


κ  
' ' ' ' ' '
1 1 2 2 3 3


1
2


u u u u u u⎡ ⎤+ +⎣ ⎦ . Kinetic energy of turbulent fluctuations (per unit 


mass) [m2/s2] 
, ,


,
x y


J B


κ κ


κ κ
 ( )1


2x z J Bκ κ κ κ= = + ; ;J J J B B Bf R f Rκ κ= = . Bulk flow turbulence 


shear parameters. =12 for laminar flows 
ρ  Fluid density [kg/m3] 
μ  Absolute viscosity [N.s/m2]


tν  
2ˆ ulV l


s
∂


=
∂


Turbulence eddy viscosity [m2/s]. l characteristic length, 


V̂ characteristic mean flow velocity.  


( )
, 1,2,3ij i j


τ
=  


Wall shear stress tensor [N/m2] 


( ) , 1,2,3tij i jτ =  ( )i ju uρ ′ ′− . Reynolds  (apparent) stress tensor [N/m2] 


xyτΔ  0 2
h


xy x x J
UV


h
μτ κ κ⎛ ⎞= − −⎜ ⎟
⎝ ⎠


. Wall shear stress difference x-direction 


(N/m2) 


zyτΔ  ( )
0


h
zy z zV


h
μτ κ= − . Wall shear stress difference z-direction (N/m2) 


σ i,j=1,2,3 Stress tensor [N/m2] 
Ω  Journal rotational speed (rad/s) 
Subscript  
B Bearing 
J Journal 
c Critical value 
Superscript  
- Time average  
‘  Fluctuating value 
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The characteristics of flow turbulence 
Turbulent fluid flow motion is an irregular flow condition in which the various flow quantities 
(velocity, pressure, temperature, etc.) show a random variation in time and space, but in such a 
way that statistically distinct averages can be discerned (Hinze, 1959). The forms of the largest 
eddies (low-frequency fluctuations) are usually determined by the flow boundaries, while the 
form of the smallest eddies (highest frequency fluctuations) are determined by the viscous forces 
(Roddi, 1980). 


 
The characteristics of fluid turbulence observed in nature 
are, according to Abbott and Basco (1989) and Tennekes 
and Lumley (1981): 
 
Irregularity:  Flow too complicated to be fully 
described with detail and economically. Deterministic 
approaches are impossible (to date). 
 
Three Dimensionality:  Turbulence is always rotational 
and flow fluctuations have three-dimensional 
components even if the mean flow is one or 
two-dimensional. Turbulence flows always exhibit high 
levels of fluctuating vorticity. 
 
Diffusivity: Rapid mixing and increased rates of 
momentum, heat, mass transfer, etc. 
 
Dissipation:  The kinetic energy of turbulence is 
dissipated to heat under the influence of viscosity since 
viscous shear stresses perform mechanical deformation 
work that increases the internal energy of the fluid. The 
energy source to produce turbulence must come from the 
mean flow by interaction of shear stresses and velocity 
gradients. 
 


Once turbulence initiates, it cannot sustain itself, but depends on its flow environment to provide 
its energy. 
 
Large Reynolds Numbers:  Turbulence is a fluid flow feature that occurs at high Reynolds 
numbers; it is not a property of the particular fluid itself. Turbulence often originates as a form 
of instability of the laminar flow if the Reynolds number becomes too large. These instabilities 
are related to the interaction of viscous and inertia forces. 
 
Turbulence is generally anisotropic, i.e. its intensity varies in each spatial direction. Some 
simple flows have a limited range of eddy scales and may be idealized as isotropic, or 
independent of direction. Usually only the very smallest turbulence scales can be properly 
idealized as homogeneous, i.e. independent of the spatial location. 


 


Figure 1. Volcanic eruption in 
Ecuador (10/1999). The largest 
turbulent jet/plume flow ever seen 
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Turbulence is a continuum phenomenon, governed by the equations of fluid mechanics. Even the 
smallest scales occurring in a turbulent flow are order of magnitudes larger than any molecular 
length scale. 
 
Instabilities in fluid flows: 
Flow transition from a laminar condition to a turbulent condition is usually preceded by flow 
instability. In isothermal flows, instability arises in two basic forms: 
 
1. Centrifugal Instability:  occurs in flows with curved streamlines when the destabilizing 


(centrifugal) force exceeds in magnitude the stabilizing (viscous) force. This instability is 
characterized by a steady secondary laminar flow often referred as Taylor-Gortler vortices. 


 
2. Parallel Flow Instability:  characterized by propagating waves. Here the fluid inertia force 


is destabilizing and the viscous force is stabilizing, thus the Reynolds number is a parameter 
of importance. Examples are found in shear flows such as in jets and boundary-wall flows 
such as in pipes. 


 
In the literature of thin film bearings (Szeri, 1980), the accepted critical value of the Reynolds 
number (Rec) for a parallel flow instability leading directly to flow turbulence is  
 


       Re 2,000c
RCρ
μ
Ω


= ≥          (1) 


 
where (ρ,μ) are the lubricant material density and viscosity, (R, c) are the bearing radius and 
clearance, and (Ω) is the journal rotational speed in rad/s. The Couette flow Reynolds number 
(Re) denotes the ratio between fluid inertia forces ρ (ΩR)2 and viscous forces μ (ΩR)/C in a 
shear flow induced by motion of a bounding surface.  
 
This criterion does not account for either side (axial) flow effects due to an imposed pressure 
gradient or the surface condition and macroscopic structure of the journal and bearing surfaces. 
The critical Reynolds number magnitude noted is referential only, strictly valid for 
hydrodynamic bearings operating at a near centered journal condition   
 
Even to this date, a handful of researchers claim that transition to turbulent flow in thin film 
journal bearings is delayed to Reynolds numbers (Rec) two orders of magnitude larger than 
2,000. This uncommon assertion dismisses the large body of experimental evidence that 
confirms the critical value given above.  
 
Centrifugal flow instability has been studied with great detail in the flow between rotating 
cylinders. Experiments and analysis show that the flow is stable to centrifugal disturbances if the 
outer cylinder rotates and the inner cylinder is stationary. On the other hand, if the inner cylinder 
rotates and the outer cylinder is at rest, centrifugal instabilities can lead to flow instability 
depending on the value of a characteristic parameter known as the Taylor Number (Ta).  
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As the rotational speed (Ω) of the inner cylinder increases, the flow becomes unstable, and 
characterized by the appearance of toroidal vortical cells equally spaced along the spinning axis 
of the cylinder. These Taylor vortices greatly affect the torque required to spin the inner 
cylinder. The critical Taylor number (Tac) is  


  


       2Re 1,707.8a cc
CT
R


⎛ ⎞= =⎜ ⎟
⎝ ⎠


     (2) 


 
for concentric cylinders (no eccentricity) with (C/R) <<1. In a typical thin film journal bearing, 
(C/R)=1/1,000, and thus the critical Reynolds number needed for the appearance of Taylor 
vortices is 
 


      
1/2


1/2Re 41.3 1,000 1,304c c
RTa
C


⎛ ⎞= = × =⎜ ⎟
⎝ ⎠


   (3) 


 
As the Taylor number increases above its critical value, the Taylor vortices become unstable to 
non-axisymmetric disturbances, i.e. the vortex cells become distorted. Szeri (1980) provides a 
lucid discussion on the process leading from Taylor vortex flow to the ultimate appearance of 
flow turbulence as the speed of the inner cylinder increases further. Note that as the ratio(R/c) 
increases, the transition towards turbulent flow could occur due to parallel flow instability 
without the appearance of Taylor vortices! 


 
Some relevant operating conditions provide a stabilizing influence to the flow between rotating 
cylinders and delay the appearance of Taylor vortex flow. These conditions, predicted by 
complex analysis (DiPrima and Stuart, 1972) and confirmed by experiments, are: 


 
- Axial flow due to an external pressure gradient. 
 


Figure 2. Taylor vortices in flow between concentric rotating cylinders 
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- Operating journal eccentricity. For example at ε = e/C = 0.8 and C/R=0.010, the critical 
Taylor number (Tac) is about 3 times the value of 1,708 valid for concentric cylinders 
(ε=0). 


 
- Circumferential pressure flow in the direction of the Couette flow, i.e., for ∂P/∂θ  < 0. 


 
Incidentally, the aspect ratio in the axial direction (L/C) appears not to have any effect on the 
appearance of Taylor vortices. 
 
In the design of thin film journal bearings operating at small eccentricities (ε ~ 0) it is accepted 
that 
 


A parallel flow transition occurs when Re ~ 2,000. If the value of Ta½ = 41.3 is 
reached before the Reynolds number attains this value, then the transition is to 
vortex flow. However, if the flow Reynolds number, Re, exceeds 2,000 while Ta½ is 
still less than 41.3 then the transition is directly to turbulent flow (Seri, 1980). 


 
Note that this criterion is valid for concentric cylinders (e=0). Appropriate criteria for journal 
eccentric operation is too cumbersome and given only for ideal cases. 
 
Equations of Turbulent Fluid Flow Motion 
Flow turbulence is a random process very difficult to model and to predict. It only “makes sense” 
to describe turbulence global or average behavior. This averaging may be in the time domain or 
space domain, both, or some other kind of meaningful ensemble procedure. For time procedures, 
the characteristic time for averaging must be much smaller than that typical time describing the 
temporal fluctuations of the mean flow. For space averaging, the physical size of the averaging 
volume must be much smaller than the size of the largest eddies confined within the boundaries 
of the mean flow.  Thus, it is clear that the equations derived (and solution methods) cannot 
resolve below the smallest time (and space) characteristic scales.      
 
The classical theory of turbulence modeling represents the flow variables, i.e. fluid velocities 
(ui)i=1,2,3 and pressure (p), as the superposition of an averaged quantity (mean variable) and a 
fluctuating component, i.e. 
 
      3,2,1;; =′+=′+= iiii uuuppp    (4) 
where for time averaging, 
 


      21
0


;)(1)( TTTdu
T


Tu
T


ii ≤≤= ∫ ττ    (5) 


 
T1 is the time scale of the “largest” eddies in the flow, and T2 is the time scale of the “slow” 
temporal variations of the flow that are not directly induced by turbulence. 
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Abbott and Basco (1989) provide an interesting description establishing the fallacy of Eqn. (5) in 
the context of the concept of a continuum. Determining a-priori the appropriate time scales T1 
and T2, which depend on the flow itself can be rather cumbersome. 
 
The use of the (time) averaging process leads to a set of properties for the mean flow and 
fluctuation variables. These are expressed as: 
 


   


; , constant


. . ; ; 0; 0


; . . 0


f g f g a f a f a


f g f g f f f f f


f f f g f g
x x


+ = + = =


′= = = − =


∂ ∂ ′ ′= = =
∂ ∂


    (6) 


 
The equations of flow continuity and momentum transport for an incompressible fluid are 


 


     
1,2,3


, 1,2,3


0;


;


i
i


i


iji i
j i j


j i


u
x


u uu
t x x


σ
ρ ρ


=


=


∂
=


∂
∂∂ ∂


+ =
∂ ∂ ∂


                                          (7)             


  
where {ui}i=1,2,3 are the fluid velocity components in the {xi}i=1,2,3 (x1=x, x2=y, x3=z) directions, σ 
is the stress tensor, and ρ is the fluid density.  
 
In a Newtonian fluid, the stress tensor σ  is related to the fluid material viscosity (μ), the 
hydrodynamic pressure (p), and the rate of strain (S) by, 
 


     3,2,1,;2 =+−= jiijijij Sp μδσ      (8) 
  


      1,2,3
1 ;
2


ji
ij i


j i


uuS
x x =


⎧ ⎫∂∂⎪ ⎪= +⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
    (9) 


 
where δij is the Kronecker-Delta function, i.e., δij=1 if i=j; 0 otherwise. 
   
Substitution of the mean and fluctuating flow field variables into Eqns. (7), and using the 
function properties in Eqn. (6), renders the equations of motion for the (time averaged) mean 
flow quantities and fluctuation fields, 
 


      
'


1,2,30; 0i i
i


i i


u u
x x =


∂ ∂
= =


∂ ∂
     (10) 


 
       







NOTES 8. TURBULENCE IN THIN FILM FLOWS.  Dr. Luis San Andrés © 2009 
 


8


    { } , 1, 2, 32i i
j ij ij i j i j


j j


u uu p S u u
t x x


ρ ρ δ μ ρ =


∂ ∂ ∂ ′ ′+ = − + −
∂ ∂ ∂


  (11) 


 
Osborne Reynolds derived these equations as early as in 1895. The term in parenthesis on the 
right hand side of Eqn. (11) represents the total mean stress tensor for the turbulent flow. The 
contribution of the turbulent flow motion to the mean stress tensor is usually known as the 
Reynolds stress tensor, 
 
      3,2,1,; =′′−= jijit uu


ij
ρτ      (12) 


 
This tensor has six independent components that determine the influence of the flow fluctuations 
into the mean flow. That is, Eqn. (12) introduces the effect of the flow fluctuations into the mean 
flow field.  
 
Note that the analysis thus far renders four mean flow equations, but at each spatial point in the 
flow field we have ten unknown variables, i.e. 
1 pressure, 3 fluid velocities, and 6 components of the Reynolds stress tensor.  
 
The difference between the number of unknowns and the number of available equations makes a 
direct solution of any turbulent flow problem impossible. The resulting phenomenological 
problem of finding additional equations or conditions to make up the difference is known as the 
CLOSURE PROBLEM of flow turbulence. 


 
The fundamental problem of turbulence flow modeling is to relate the six Reynolds stress 
components (τt) to the mean flow quantities in some physically plausible manner. This topic is, 
however, out of the scope of the lectures in Modern Lubrication. The interested reader may 
consult the fundamental references of Hinze (1959), Tennekes and Lumley (1981), Rodi(1980), 
Frisch (1995), and Holmes et al. (1996).  Incidentally, Abbott and Basco (1989) review the initial 
developments in space-averaged methods leading to the formulation of the large eddy simulation 
(LES) models and the treatment of the Lorenz (turbulent flow) stresses.  
 
At the beginning of the 21th century, powerful computers number crunch flow turbulence without 
resorting to time or space or both types of averages. In addition, novel tool of mathematical 
analysis such as power spectral decomposition and proper orthogonal decompositions enable to 
predict turbulent flows in various scales (time and space wise).   


 
Most homogenous turbulence models in the archival literature relate the Reynolds stresses to the 
gradient of the mean velocity vector (Rodi, 1980), i.e.  
 


    , 1,2,3
2 ;
3ij


ji
t i j t ij i j


j i


uuu u
x x


τ ρ ρν ρ κ δ =


⎧ ⎫∂∂⎪ ⎪′ ′= − ≈ + −⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
   (13) 


 


     ' ' ' ' ' ' ' '
1 1 2 2 3 3


1 1
2 2i iu u u u u u u uκ ⎡ ⎤ ⎡ ⎤= = + +⎣ ⎦ ⎣ ⎦      (14) 
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where νt is the eddy viscosity, and κ is the kinetic energy (per unit mass) of the turbulence 
fluctuations.  
 
Equation (13), generally known as the Boussinesq approximation (1877), provides a 
mathematical model to the closure problem in flow turbulence; and shows that, just as with the 
viscous stresses in laminar flow, the turbulent flow stresses are proportional to the gradients of 
the mean (time averaged) velocities.  
 
Now, instead of six unknown turbulent shear stresses there is only one unknown, the turbulent 
viscosity νt, which must be determined from the flow itself. Tat is, the eddy viscosity νt is not a 
material property and depends strongly on the turbulence intensity, varying significantly from 
one spatial point to another point in the flow region, and also from one flow to another flow. 
 
Thus, substitute Eqn. (13) into the total stress (σ), Eqn. (11) , for the turbulent flow to get 
 


   , 1,2,3
2


3
1 ;jt i


ij ij i j
j i


uup
x x


νσ ρκ δ μ
ν =


⎧ ⎫∂∂⎪ ⎪⎛ ⎞⎧ ⎫≈− + + + + +⎨ ⎬ ⎨ ⎬⎜ ⎟ ∂ ∂⎩ ⎭ ⎝ ⎠⎪ ⎪⎩ ⎭
   (15) 


 
Note that the term ρκ, the kinetic energy of the velocity fluctuations ( )'


1,2,3i i
u


=
, acts as a sort of 


dynamic pressure. Hence we could define a dynamic pressure as 2
3


p ρκ⎡ ⎤+⎣ ⎦ . Thus, the 


appearance of κ in Eqn. (15) does not need its direct determination. Note also that the flow 
fluctuations ( )'


1,2,3i i
u


=
= 0 at a wall or flow boundary. Hence, any pressure measurement at a wall 


does not evidence any velocity induced pressure. Most importantly, it is the distribution of the 
eddy viscosity vt which must be ascertained.  
 
A formulation for the eddy-viscosity (νt) in simple shear flows was conceiving an analogy 
between the turbulent flow motion and the molecular motions that leads to Stokes viscosity law 
in laminar flows. Turbulent eddies are thought as lumps of fluid which, very much like material 
molecules, collide and exchange momentum (Rodi, 1980). The molecular (material) viscosity (ν) 
is proportional to the average velocity and mean free path length of the molecules. Accordingly,  
by analogy, the eddy viscosity (νt) is also proportional to a velocity (V~ ) characterizing the (large 
scale) fluctuating motion and a typical length of this motion (l).  


 
     Vlt


ˆ≈ν       (16) 
 
For shear layers with only one significant turbulent stress ( )vu ′′⋅ρ , Prandtl (1945) shows that the 
velocity scale is properly given by 
 


      
s
ulV
∂
∂


=ˆ       (17) 
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where s is the normal direction to the mean flow u . Hence, the eddy viscosity can be expressed 
as: 


      
s
ulVlt ∂


∂
== 2ˆν      (18) 


 
Thus, Prandtl’s mixing-length hypothesis relates the eddy viscosity (νt) to the gradient of the 
mean velocity and a single unknown parameter, the mixing length (l). Kolmogorov (1942) and 
Prandtl (1945) defined the mixing length.  
 
The original hypothesis extended to complex flows becomes (Rodi, 1980) 


     
2/1


2


⎥
⎥
⎦


⎤


⎢
⎢
⎣


⎡


∂
∂


⎪⎭


⎪
⎬
⎫


⎪⎩


⎪
⎨
⎧


∂


∂
+


∂
∂


=
j


i


i


j


j


i
t x


u
x
u


x
u


lν      (19) 


 
Szeri (1980) describes the turbulence flow models commonly used in fluid film bearing analyses. 
Most of the original research, including some fundamental experimental verification, was 
performed in the early 1960’s, driven by the needs of the nuclear power industry. In those days, 
liquid sodium bearings for nuclear reactors as well as water lubricated bearings for boiler feed 
pumps constituted state of the art applications with operating Reynolds numbers (Re) around 
10,000.  Constantinescu (1962), Ng (1964), and Elrod and Ng (1967) pioneered the analyses 
using the mixing-length hypothesis and implementing the law of wall to derive the fundamental 
length scale (l). Final results for these models are given later. 
 
The mixing length model has worked surprisingly well for many simple turbulent flows like 
shear layers, boundary wall flows, wakes, and also in fluid film lubrication. However, as 
Tennekes and Lumley (1981) point out, mixing length models are incapable of describing 
turbulent flows containing more than one velocity and one length scale since turbulent eddies are 
not rigid bodies and certainly their sizes are not small (relative to the flow domain) as required 
by the kinetic theory of gases. 
 
Classification of turbulence flow models 
Several models have evolved to determine the transport of turbulent flow quantities, thus 
determining the components of the Reynolds stresses. Most models employ transport equations 
for scalar function to characterize the eddy viscosity. 
 


Name of Model Number of turbulent flow 
transport equations 


Turbulence Quantities 
Transported 


Zero equation 0 None 
One equation,κ  1 κ → νt   (kinetic energy) 
Two equation, κ-ε 2 κ and ε → νt   


(kinetic energy and dissipation) 
Stress/Flux 6 


ji uu ′′ ′′   
Algebraic stress 2 κ and ε → τt 
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In thin film turbulent flows, Ho and Vohr (1974) presented the first analysis using a one equation 
model for transport of κ, the kinetic energy of fluctuations. Launder and Leschziner (1978) first 
introduced the κ-ε model for turbulent flow in slider bearings. The simple zero equation models 
of Constantinescu (1962) and Elrod and Ng (1967) are still in use to this day.  
 
 
The κ-ε turbulent flow model 
Since the early 180’s, and with the advent of high-speed computers, novel and more complex 
turbulent flow models have evolved. Perhaps the most common one, even to this day, is the κ-ε 
model. This model determines the eddy viscosity (νt) from the relationship 
 


      
ε
κν


2


ut C=       (20) 


 
where κ is the kinetic energy produced by the flow fluctuations, Eqn. (14),  and ε is the rate of 
turbulence dissipation at nearly (almost) molecular scales. Eqn. (20) establishes the principle that 
the production of turbulence at large scales (small wave lengths) equals to viscous dissipation at 
the smallest scales (largest wave numbers).  


  
κ and ε are determined from transport equations. The standard form of the transport equations for 
κ and ε are [Rodi(1980), Tennekes and Lumley (1981)] 
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  (21) 


 
The κ-ε equations reflect the basic transport mechanisms, i.e. fluid convection equaling to 
diffusion and generation or dissipation of mechanical power. Unique solution of these equations 
requires of adequate boundary conditions for the turbulent kinetic energy (κ) and dissipation (ε) 
fields. These conditions are difficult to obtain, except for the simplest flow configurations. 
Furthermore, often the efficient numerical solution of the equations above requires of the law of 
the wall to avoid too fine meshes. 


 
The coefficients Cμ, C1ε, Cκ, C2ε , σε , σκ  in Eqns. (21) are empirical, derived from measurements 
in simple turbulent flows and at large Reynolds numbers. Universal coefficients, i.e. intended for 
applications into all sorts of flows, are unknown. Thus, much effort continues in the 
experimental aspects of flow turbulence. Coefficients for low-Reynolds number flows are also 
known.  
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Equations for turbulent flow in thin film regions 
The major characteristic of a thin film flow is the smallness of the ratio of film thickness to 


the other physical dimensions in a bearing, i.e. (c/R or c/L <<< 1). Based on this fundamental 
characteristic and assuming that all components of the Reynolds stress tensor ( )


ijtτ  are of the 
same order of magnitude, a dimensionless procedure and an order of magnitude analysis show 
that the (turbulence) equations, Eqns. (10,11), for the mean flow of an incompressible liquid in a 
thin film region reduce to (Szeri, 1980): 
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{ }0 p v v
y


ρ∂ ′ ′= − +
∂


       (25) 


 
where the (y) coordinate is across the fluid film. Note that in the equations above, { x=x1 , y=x2 , 
z=x3}, and consequently, { }321 ,, uwuvuu === . Szeri (1980) also shows that identical equations 
are obtained by assuming that turbulence is homogeneous (independent of direction) along cross-
film planes (y = fixed). This assumption is not essential in thin film bearings, yet it is important 
for large clearance seals and bearings. 
 
Equation (25) shows that the mean hydrodynamic pressure does vary across the film thickness. 
However, integration of this equation yields 
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by an order of magnitude analysis or assuming turbulence homogeneity in constant planes across 
the film thickness.  
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The bulk-flow model for turbulent thin film flows 
Hirs (1974) proposed a bulk-flow theory for modeling turbulence in thin film flows. This model 
does not intend to analyze turbulence flow in all its details, better relying entirely on empirical 
information obtained from experiments. In essence, the analysis seeks to relate the wall shear 
stress differences to the mean flow velocity components as described next. In the following the 
mean velocity conveys the meaning of an average (mean flow) velocity across the film thickness. 
 
Before studying in detail this model, it is important to detail the governing equations in terms of 
bulk-flow components. These equations in the absence of fluid inertia effects1 are 
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where τxy, τzy are the total shear stress due to viscous and turbulence flow effects. The boundary 
conditions for the velocities at the boundaries of the film thickness are2: 
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Bulk-flow velocity components are defined as the mean velocities across the film thickness, i.e.  
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Note that this procedure involves a time and spatial averaging since, from Eqn. (5), 
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1 The nonlinear fluid inertia terms in the general equations of motion (22-24) are typically small in most mineral oil lubricated 
bearings. It will be shown later that the turbulent flow stresses are more important than their transport by advection. On the other 
hand, fluid inertia effects are most important in the analysis of turbulent flow in seals and process lubricated bearings. 
2 These conditions apply to both the actual and (time) averaged velocity components. Thus, turbulent velocity fluctuations must 
vanish at the boundaries.  
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Integration of Eqns. (22) and (28, 29) across the film thickness leads to the following bulk-flow 
equations 
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where Δτxy and Δτxz  are the wall shear stress differences. In laminar and inertialess film flows, 
the wall shear stress differences are functions of the bulk-flow velocity components (See Notes 
2): 
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In turbulent flows, and using the same analogy as with Prandtl’s eddy viscosity, one assumes that 
the wall shear stress differences are also related to the mean flow components in the following 
manner 
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where κx, κy, κJ  are turbulence shear parameters that depend on the structure of the turbulent 
flow, i.e. the bulk-flow velocities (Vx, Vz) and surface boundary velocity U; and possibly on the 
condition of the bearing and journal surfaces (smooth or rough or textured).  
 
Note that setting κx = κy = κJ = 12 in Eqns. (36) reduces them to their familiar laminar flow  
form. 
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From Eqns. (36) it follows that 
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Thus, the turbulent thin film flow still shows the two basic flow types; i.e. pressure induced 
(Poiseuille) and shear induced (Couette) flow types. 
 
Substitution of the bulk-flow velocities, Eqns. (37), into the mean flow continuity equation (32) 
renders a Reynolds equation for an inertialess fluid undergoing turbulent conditions in a thin film 
region: 
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Note that Eqn. (38) preserves the form of the classical Reynolds equation for laminar flows. In 
practice, for smooth surface bearings operating at low eccentricities, 1~−JG .  
 
All thin film turbulent flow theories arrive at Eqn. (38); albeit the functional form of the G 
coefficients varies (Constantinescu, 1962, Elrod and Ng, 1967, Hirs, 1973). 
 
As stated by Hirs (1973), “the bulk-flow theory is based on the empirical finding that the 
relationship between wall-shear stress and mean flow velocity relative to the wall at 
which the shear stress is exerted can be expressed by a common simple formula for 
pressure flow, shear flow, or a combination of these two basic types of flow.” 
 
Extensive experiments carried to investigate drag (pressure losses) in pipe flows, shear drag in 
between rotating cylinders, and pressure (extrusion) flow within  stationary plates show that, for 
sufficiently large Reynolds numbers, the wall shear stress (τ ) can be expressed as3 
 


( )21
2


sgn Re sgn(Re )
m


mM
M M M


M


U hf n U n
U


ρτ
μρ


⎛ ⎞
= = =⎜ ⎟


⎝ ⎠
    (39) 


 
 where UM is the mean velocity of flow relative to the surface at which the shear stress is exerted, 
ReM =(ρUM h/μ) is the Reynolds number for the mean flow, and f is known as a friction factor. 
The coefficients (n, m) are empirical values derived from curve fits of the experimental data. 
 
The magnitude of the coefficients n and m  typically depends on  


- Roughness of the lubricated surfaces. 
                                                           
3 Note that none of these flows present the same physical scales as those found in thin film (lubrication) flows. 
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- Magnitude of the flow Reynolds number.  
- Influence of inertia effects other than those inherent in the flow turbulence. 
- The type of flow, shear or pressure driven.  


 
Hirs provides the following values, strictly valid for smooth surfaces,  
 
For pure pressure flow (τ0),   m0  = -0.25, n0 = 0.066 
             (40) 
For pure shear flow,  (τ1),   m1 = -0.25,  n1 = 0.055 
 
The ratio of wall shear stresses for the two types of flow at identical Reynolds (ReM) numbers, 
i.e. equal bulk-flow velocities, is  
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1 1 1
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τ
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   (41) 


 
Hirs noted the relative insensitivity of the wall shear stress to the type of flow and assumed the 
wall shear stresses to be additive. That is, if τ0 is the wall shear stress due to a pressure 
gradient dp/dx, and τ1 is the wall shear stress due to shear induced by a surface with 
relative velocity V; then, the wall shear stress derived by the combined action of V and 
dp/dx; is τ =(τ0+ a τ1)  on the stationary surface, while τ =(τ0 - a τ1) on the moving 
surface. 
 
Hence, a wall stress due to shear flow (τ1) is equivalent to that obtained by a "fictitious" pressure 
gradient (dp1/dx) as derived from a simple force balance, 
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Using the idea set forth above, Hirs generalizes the concept to turbulent flows in thin films. 
Further details of the analysis can be found in the fundamental paper of Hirs (1973) or the 
textbook of Szeri (1980). 
 
The resulting equations of motion for turbulent-inertialess flows in thin film, as derived by Hirs, 
are: 
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where,  [ ] ( )[ ] 2
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are the bulk-flow Reynolds numbers relative to the bearing (B) and journal (J) surfaces, 
respectively. Note that in the equations above U = ΩR.  
 
The general form of the friction factor is, f=nRem. Thus, friction factors for the bearing 
(stationary) and journal (moving) surfaces follow as 
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with n0 = 0.066, m0 = -0.25 for a smooth surface. Eqns. (43-44) are rewritten, by introducing the 
friction factors, in a more compact form as 
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Eqns. (47) are formally identical to Eqns. (36), except that now the κ coefficients are fully 
specified as functions of the flow Reynolds numbers.  
 
Hirs bulk-flow model can be also extended to consider rough bearing surfaces by appropriate 
choice of the coefficients n and m. However, this procedure is quite cumbersome and rarely 
provides any physical insight. The recent literature in turbulent flow seals and bearings with 
macroscopic surface roughness, better known nowadays as textured surfaces, revises Hirs’ 
approach and employs (also) empirically based friction factors that account for surface roughness 
effects (Childs, 1993). 


 
One simple form is to extract directly the friction factors from a curve fit of Moody's diagram for 
pressure driven flow in pipes. This friction factor, fitting to Moody's extensive empirical data, is 
(Massey, 1983) 
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    (49) 


 
where α = 0.001375,  e = 3.0, i= J(journal), or B(bearing) surfaces, and r corresponds to the 
surface roughness. The equation above is strictly valid for (sand like) surface roughness (r) to 
10% of the local film thickness or clearance. 
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Computational analyses for turbulent annular pressure seals present comparisons of numerical 
predictions based on Moody's and Hirs' friction factors to experimental results. In general, the 
experimental - analytical correlation favors the model using Moody's friction factor (Nelson and 
Nguyen, 1987). 


 
The accompanying MATHCAD sheet shows a comparison of the shear factors (k) and friction 
factors derived from Constantinescu turbulent flow theory and Hirs turbulent bulk-flow models. 
Note that Hirs coefficients (n0, m0) are determined from experiments and are strictly valid for 
turbulent flows.  
 
Zirkelback and San Andrés (1996) extended Hirs formulation to include the transition regime 
from laminar to turbulent flows in pressure driven flows. For Reynolds numbers in the range 
from 1,000 to 3,000, the friction factor (fT) is defined as 
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Closure 
The trends towards high speed bearing and seal applications and using process fluids and gases, 
as opposed to mineral oils, determines operating conditions well within the turbulent flow 
regime. Constantinescu’s model is preferred to model turbulent flow in journal and thrust 
bearings.  
 
Hirs’ turbulent bulk-flow including fluid inertia effects has been used extensively to predict the 
flow characteristics and rotordynamic coefficients of annular pressure seals and externally 
pressurized (hydrostatic) bearings. In general, predictions compare well with measurements for 
smooth surface seals and bearings. 


 
Computational analyses based on the bulk-flow model for complex seal geometries such as 
labyrinth seals and honeycomb damper seals predict well the static characteristics (leakage and 
power dissipation) but perform poorly in the estimation of rotordynamic force coefficients, for 
example. It appears that the friction factors in these seal configurations are more complicated 
functions of the Reynolds number and surface conditions (macroscopic or “machined” 
roughness) than the simple formulas advanced by Hirs.  
 
Incidentally, the bulk-flow model does very well in flows without strong recirculations or very 
curved streamlines. Note that honeycomb and labyrinth seals present zones of local recirculation 
that are not accounted for in the bulk-flow model.  
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Learn more 
See below some pictures of Taylor vortices. Visit the URL addresses noted if interested. 
 
 


 
Richard M. Lueptow Home Page 


URL: http://www.mech.nwu.edu/fac/lueptow/HTML/taylor-coutteflow.html 
 
 


 
http://www.engr.wisc.edu/groups/fsd/research/tftc/index.html 


 
 







NOTES 8. TURBULENCE IN THIN FILM FLOWS.  Dr. Luis San Andrés © 2009 
 


22


 
http://www.princeton.edu/~gasdyn/Research/T-C_Research_Folder/Intro_to_T-C_Flows.html 
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A comparison follows for the shear coefficients (k)x,z derived from the turbulence models of 
Constantinescu and Hirs. These factors are valid for Couette flows, i.e. shear flows with near absence of 
pressure gradients.


The appropriate formulae in the directions (x) along surface moving with velocity U and (z) perpendicular 
to (x) are defined in terms of the Couette flow Reynolds number (Re)
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Shear factors for turbulent flows in thin film regions
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Let's compare the friction factors to some formulae derived from experimental 
measurements by Yamada for smooth surface seals and Childs for a honeycomb surface 
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Note that for smooth surfaces, Hirs and Moody friction factor formulae correlate well with the 
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Notes 9.  
Turbulence and Fluid Inertia Effects in Fluid Film 
Bearings 
 
Fluid inertia and flow turbulence affect the performance of (modern or state of the art) fluid film 
bearing and seals. Prevailing trend towards light and compact turbomachinery operating at 
higher speeds and the use of process liquids (of low viscosity) and gases determine turbulent 
flow operating conditions with dominance of fluid inertia effects. Current applications of 
importance include operation with water and lubricant mixtures, liquid metals in the nuclear 
industry, and cryogenic fluids in space turbopumps. Large clearance elements such as squeeze 
film dampers and annular seals, for example, show large fluid inertia effects in the form of large 
magnitude added mass coefficients. Notes 9 continues the analysis of turbulent flow bearings to 
derive the equations for bulk-flow transport in regions without strong recirculation zones; to 
specify equations for the modeling of turbulent flow in short length journal bearings with details 
on the conditions for which fluid inertia effects are lesser than those from turbulent flow (flow 
turbulence, modeled as a diffusive component, dominates over (advection) fluid inertia); to 
provide a simple model  for evaluation of short length journal bearing performance with flow 
turbulence. The Notes also give MATHCAD codes for prediction of pressure profiles and 
journal bearing forced performance, static and dynamic. 
 
Analysis  
The continuity and momentum equations for the motion of an incompressible fluid in a thin film 
flow geometry are, in dimensionless form (see Notes 1): 
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with U* as a characteristic surface speed and ω as a typical frequency for squeeze film motions. 
(U* = ΩR in journal bearings). The importance of fluid inertia effects relates to the magnitude of 
the modified Reynolds number (Re*) for shear flow and the squeeze film Reynolds number 
(Res) for unsteady or periodic whirl motions. These Reynolds numbers are:  
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Most thin film flows in lubrication configurations handling mineral oils show (modified) 
Reynolds numbers of small magnitude (Re* <<1). However, high speed (or high frequency) 
bearing and seal applications with large clearances and low viscosity fluids bring a dominance of 
fluid inertia effects in the thin film lands and at the inlet and discharge sections of annular 
regions and bearing pads. 
 
Consider now the turbulent flow of an incompressible and isoviscous fluid in a thin film region. 
The equations of motion including fluid inertia effects for the (time-averaged) mean velocities 
( ), ,u v w  and pressure p  are (Szeri, 1981): 
 


0=
∂
∂


+
∂
∂


+
∂
∂


z
w


y
v


x
u


     (4) 


 
xyp p u u u u uu v u v w


x y x y y t x y z
τ


μ ρ ρ
∂ ⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′− + = − + − = + + +⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭


  (5) 


 


      
zyp p w w w w ww v u v w


z y z y y t x y z
τ


μ ρ ρ
∂ ⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′− + = − + − = + + +⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭


         (6) 


 
where (τxy, τzy)  are the shear stress components combining the viscous and turbulent flow 
effects. The boundary conditions for the velocities at the bottom and top surfaces of the flow 
region with film thickness h are: 
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Bulk-flow velocities are the mean or average fluid velocities across the film thickness1, i.e.  


dyw
h


Vdyu
h


V


h


z


h


x ∫∫ ==


00


1;1
                (8) 


Integration of the governing equations (4-6) across the film thickness (y direction) leads to  
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1 As shown in Notes 8, for turbulent flows these bulk-flow velocities represent both time and space (across the film) 
averages. 
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Above P p=  for simplicity in notation. 
 


Eqs. (10) and (11) establish a balance among the pressure forces, the wall shear stress 
differences and the fluid inertia (temporal and advective) forces exerted on the fluid. 
 
The wall shear stress differences (Δτxy ,Δτzy ) are regarded as similar to  those for the inertialess 
fluid flow condition2: 
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κx , κv , κJ  are turbulence shear parameters which depend on the structure of the turbulent flow, 
i.e., the bulk-flow velocities (Vx , Vz ) and the surface velocity U, and the condition (rough or 
smooth) of the bearing and journal surfaces. Note that κx=κy=κJ=12 denotes the laminar flow 
condition. 
 
The momentum-flux integrals (Iij) in Eqns. (10) and (11) are 
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which are functions of the bulk-flow velocities. However, the exact velocity profiles across the 
film thickness are needed to evaluate these flux-integrals. This implies a-priori knowledge of the 
velocity fields via solution of the whole system of fluid flow equations of motion. This is clearly 
a major undertaking. In practice, fluid inertia is thought not to affect greatly the shape of the 
fluid velocities, and hence the inertialess (laminar flow) fluid velocity profiles are used for 
evaluation of the integrals above3.   
 
The laminar flow inertialess fluid velocity components are the superposition of pressure 
(Poiseuille) and shear (Couette) flow driven components, 
 


                                                           
2 The rationale for this is based more on experience and simplicity rather than solid theoretical foundation As a note 
aside, it can be shown from a first-order regular perturbation scheme on the Reynolds number that the wall shear 
stress differences also have inertial components 
3 The assumption does not work well for velocity fields which have strongly curved streamlines; for example, a 
labyrinth seal shows a strong recirculation zone in its cavities. 
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The pressure gradients are, in terms of the mean (bulk)-flow components, 
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Hence, the laminar flow velocity components are expressed in the form 
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where  η = y/h. Note that at  η = ½, i.e. at half the film thickness, 
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i.e, the velocities at the middle of the film thickness are greater than (or at least equal to) the 
bulk-flow velocities. Substitution of Eq. (16) into the momentum-flux integrals, Eqs. (13), gives 
the following: 
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In fully developed turbulent flows, the velocity profiles do not have the typical parabolic 
profiles, being almost uniform across the film thickness and with steep gradients close to the 
wall boundaries, thus forming thin boundary layers.  
 
Under turbulent flow conditions (without strong recirculation regions), the coefficients for the 
momentum flux integrals are    


α  = 1.0;   β  = γ  = 0  as Re → ∞     (ideal or inviscid fluid).  
 
Then     hVVIhVIhVI zxxzzzzxxx ⋅=⋅=⋅= ;; 22        (19) 
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Simon and Frene (1992), from extensive numerical solutions, obtain values of the α, β, γ 
coefficients for turbulent flows dominated by shear (Couette) flow effects as: 
 


065.0458.0 0932.0;624.1;2.1
hh ee RR ⋅=⋅=+= − γβγα    (20) 


 
in the range Reh =(ρUh/µ)  ∈ [3 103 – 105 ]. Note again that the form of the flux-integrals stated 
by Eq. (19) is not adequate for flows with strong local recirculations across the film thickness. 
 
 
Bulk-flow equations for fully-developed turbulent thin film flows 
The generally accepted bulk-flow equations for fully developed turbulent flows at high Reynolds 
numbers (Re >>> 1) are, with coefficients α  = 1, β  = γ  = 0: 
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These equations are strictly valid for flows without local recirculation zones. That is, these 
equations are of limited applicability in labyrinth seals or deep grooved bearings, for example. 
 
For compressible fluids undergoing isothermal processes, the momentum equations above are 
still applicable. The equation of mass conservation for the bulk-flow velocities takes the form 
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where the density of the fluid is a function of the pressure,  ρ = ρ(P), i.e. a barotropic liquid or 
and ideal gas. 
 
The general equations of motion for turbulent flow fluid film bearings with fluid inertia effects 
are highly non-linear and not amenable of direct integration except in limiting geometry cases 
(i.e., the long and short length journal bearing models). Recall that the equations derived assume 
the velocity profiles not to deviate much from their inertialess values. 
 
 
Turbulent and inertial fluid flow in short length journal bearings 
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In journal bearings with small L/D ratios and for small to moderate journal eccentricity operation 
(e/C < 0.7), the circumferential pressure gradient is small compared to the axial pressure 
gradient, i.e. 
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and the bulk-flow velocity in 
the circumferential direction is 
just  


22
~ RUVx
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That is, the short length 
bearing condition regards the 
circumferential flow as fully 
developed.  
 
Thus, the following analysis 
cannot be applied to predict 
performance of annular 
pressure seals or journal 
bearings with an inlet-swirl 
development. 
 
 


The equation of momentum transport in the circumferential direction is neglected for the analysis 
of turbulent flow in short-length journal bearings (L/D<0.50). The remaining equations, flow 
continuity and axial momentum transport, are 
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Above, the momentum-flux integrals, Eqs. (17), are approximately equal to 


( ) 2;
2xz z zz z
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The turbulent shear stress factor (κz) is a function of the bulk-flow components (Vz, ½U). Recall 
that κz = 12 for laminar flows. The first term on the right hand side of equation (28) denotes the 
viscous shear stresses, the second term shows the temporal inertia effect, and the last two (non-
linear) terms denote fluid inertia advection effects. 
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The short length bearing model
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The film thickness h=h(θ ,t) in an aligned journal bearing. For this condition, the continuity Eq. 
(27) is easily integrated along the axial direction to render the axial flow rate (Qz) per unit 
circumferential length, i.e., 
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Note that Qz is not affected directly by fluid inertia. Substitute Vz, Eq. (30), into the axial 
momentum transport Eq. (28) to obtain 
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Eq. (32) can be integrated along the axial direction if the turbulent shear stress factor κz is 
regarded as constant; i.e., ≠f(Vz). This condition happens for operation at small to moderate 


journal eccentricities where shear Couette flow effects dominate. Thus, let ⎟⎟
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assume a (yet unknown) average turbulent shear stress parameter in the axial direction and 
denoted by (~).  


 
These considerations lead to an expression for the hydrodynamic pressure as 
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with ambient pressure, P=0 (gauge), at the bearing sides z={-½ L, +½ L}. Note that there are 
two distinct pressure fields, one due solely to turbulent-viscous effects (first term on the right 
hand side), and the other solely due to fluid inertia effects. Note that both pressure fields have 
the characteristic parabolic shape in the axial direction.  
 
Define the average pressure (Pave) in the axial direction,  
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Before proceeding further, define also dimensionless pressure and film thickness as: 
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where , ,x t


R
θ τ ω= = and Ω*  is a characteristic rotational speed. (εX, εY) are the components of 


the journal center eccentricity ratio (ε).  
 
In journal bearings, Ω* = Ω is the rotational speed of the journal; while in squeeze film dampers, 
Ω* = ω is a characteristic whirl frequency. Then, equation (34) is rewritten as 
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=Ω are known as the squeeze film Reynolds 


number; the modified shear flow Reynolds number, and the characteristic speed Reynolds 
number, respectively.  
 
The influence of inertia effects on the pressure field can be determined from the relative 
magnitude of the Reynolds numbers defined above. Fluid inertia effects are important when  
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Note that this condition establishes a more accurate ratio than that given in Eq. (3).  
 
Turbulent-inertial fluid flow model for hydrodynamic journal bearings 
In journal bearings, the characteristic speed of motion corresponds to the journal rotational speed 
(Ω* = Ω), i.e. 


* * *
ΩΩ =Ω , and hence Re Re ReS


Rc c cR
R R
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and Eq. (36) for the axially average pressure field is rewritten as 
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In laminar flows this condition occurs for Re* > 12 since 12~ =zκ . For example, consider two 
journal bearings with c/R ratios equal to 0.005 and 0.001, respectively. Fluid inertia effects are 
important for Reynolds numbers (Re) larger than  
 
Re > 12 (R/c) = 12/0.005 = 2,400 and Re > 12/0.001 = 12,000, respectively. 
 
However, the large magnitude of the Reynolds numbers implies that the flows in each of these 
bearings is likely to be fully turbulent! 
 
In turbulent flows (Re > 2,000) with dominance of Couette (shear driven) flow effects, i.e. , 
operating with small to moderate journal eccentricities ( ch −~ ), the turbulent shear stress 
parameter (κz) based on Hirs' bulk-flow model is 
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Combining Eqs. (40) and (41) shows that fluid inertia effects are important in turbulent flow 
journal bearings if 
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The following table shows the shear flow Reynolds numbers (Re) required to bring fluid inertia 
effects to be on par (same order of magnitude) with the turbulent flow-viscous dissipation effect. 
 


R/c Re Re* 
150 1,210 8.06 
200 3,824 19.12 
500 149,394 298.80 


1000 2,390,308 2390.30 


 
 
The results show that fluid inertia effects are important in fluid film bearings with small (R/c) 
ratios (large clearances , for example). That is, in most practical applications of 
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hydrodynamic journal bearings, fluid inertia effects are negligible compared to those 
derived from viscous and turbulent flow effects since c/R~1/1000. 
 
Hashimoto et al. (1988) present a complete analysis on the effects of fluid inertia and flow 
turbulence on short length journal bearings. The authors also discuss the effects of fluid inertia 
and turbulence on the onset speed of instability for a rigid rotor supported on short length journal 
bearings. In general, the results show that turbulence tends to deteriorate the stability 
characteristics of the rotor-bearing system. However, fluid inertia tends to ameliorate this 
condition. 
 
The accompanying Attachment (MATHCAD file) depicts dimensionless pressure profiles and 
fluid film reaction forces for a laminar flow short journal bearing including fluid inertia effects. 
The graphical results demonstrate the paramount influence of fluid inertia on the performance of 
superlaminar journal bearings, squeeze film dampers undergoing circular centered orbits and 
pure radial squeeze motions.  
 
Use the program to observe the effects of fluid inertia in the pressure field (shifting and 
increase/decrease) and the resulting forces. In addition, derive conclusions from the effects of the 
Gumbel cavitation condition on the fluid film forces.  
 
Question to ponder: Does the physical modeling of liquid cavitation in superlaminar thin 
film flows must be revised? 


  
 
(Inertialess) Turbulent flow model for short length journal bearings 
Fluid inertia effects are not that important in a hydrodynamic journal bearing application (based 
on the rationale given above). Hence, the axially averaged film pressure reduces to: 
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where κz=12 for laminar flow and ( )Reh Rhz zz ρ
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respectively. Note that the variation of the shear stress parameter in the axial direction is not 
accounted for. Furthermore, zκ  is a function that varies on the circumferential direction, i.e., 
f(θ). 
 
 
Integration of the hydrodynamic pressure on the journal surface gives the radial and tangential 
components (Fr, Ft) of the bearing reaction force,  
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The integral is taken over the range of circumferential coordinates (θ) where the pressure is 
above the cavitation pressure (Pcav = 0 for simplicity). With 
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  ∫ ⎟⎟
⎠


⎞
⎜⎜
⎝


⎛
⎥
⎦


⎤
⎢
⎣


⎡ ′+⎟
⎠
⎞


⎜
⎝
⎛ −′


Ω
−=⎟⎟


⎠


⎞
⎜⎜
⎝


⎛
θ


θ
θ


θεθφε
κμ d
H
z


c
RL


F
F


t


r


sin
cos


cossin
2
1


312
2


3


  (46a) 


 
or 


⎥
⎥


⎦


⎤


⎢
⎢


⎣


⎡


⎟
⎠
⎞


⎜
⎝
⎛ −′


′
⎥
⎦


⎤
⎢
⎣


⎡Ω
−=⎟⎟


⎠


⎞
⎜⎜
⎝


⎛


2
1


20
3


11
3


11
3


02
3


2


3


φε


εμ


tt


tt


t


r


JJ
JJ


c
RL


F
F


    (46b) 


 
and Booker’s integrals are redefined for turbulent flows as 
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In laminar flow 12~ =zκ , and the integrals above reduce to the ones in Notes 4. The integrals in 
Eq. (47) could be evaluated numerically. However, for the sake of simplicity use a shear 
parameter zκ  based on the nominal circumferential flow Reynolds number, 


⎟⎟
⎠


⎞
⎜⎜
⎝


⎛
==


μ
Ωρκ Rcffz (Re)~     (48) 


Then, the fluid film force components are, in approximate form: 
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The simplification introduced intends to show the major effect of flow turbulence to the fluid 
film reaction forces of a short length journal bearing. That is, turbulence increases the fluid film 
forces by a ratio equal to ( 12~


zκ ) as compared to the forces determined in a laminar flow 
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bearing. 
 
At the steady-state or equilibrium condition, the journal bearing supports a static load (W). At 
this condition dε/dτ = dφ/dτ = 0, and the fluid film bearing static forces are  
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For π-film cavitation extent, the components of the journal bearing reaction force are 
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These forces balance (or support) the external load W. Thus,  
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and the journal center attitude angle φ is  
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which is identical to the result derived for the short length bearing operating in the laminar flow 
regime. Recall the modified Sommerfeld number (σ ),  
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Substitution of Eq. (52) into (54) relates the Sommerfeld number (σ) to the operating journal 
eccentricity (ε) in a turbulent flow short journal bearing, 
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where ⎟⎟
⎠


⎞
⎜⎜
⎝


⎛
==


μ
Ωρκ Rcfz Re~ . For a rated operating condition, the Sommerfeld number (σ) is 


known since the bearing geometry, rotational speed, material fluid properties and applied load 
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are known. Thus, Eq. (55) provides a relationship to determine (iteratively) the equilibrium 
eccentricity ratio ε =(e/C) required to balance the applied load W. 
 
Conversely, a turbulent flow Sommerfeld number (σt) is defined as: 
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For laminar flows, κz = 12, and Eq. (56) reduces to the conventional form given in Notes 4. On 
the other hand, for turbulent flows 112~ >zκ , and thus the turbulent flow Sommerfeld number 
(σt) is larger than the conventional (σ). Hence, a turbulent flow bearing will determine a smaller 
or lower operating journal eccentricity than if the bearing would have if operating in the laminar 
flow regime. This simple observation explains why inertialess-turbulent flow journal bearings 
are less stable than laminar flow journal bearings. 
 
An analysis to determine the rotordynamic force coefficients in a turbulent flow journal bearing 
could follow. However, this is not necessary since the analysis for the laminar flow journal 
bearing is given in detail earlier (see Notes 5). The turbulent flow analysis just shows that 
turbulent force coefficients are equal to the laminar flow coefficients multiplied by the 
ratio 12


zκ⎛ ⎞⎜ ⎟
⎝ ⎠


.  


 
Incidentally, note that the figures given in Notes 4 and 5 can also be used in the design of 
turbulent flow journal bearings provided that the turbulent flow Sommerfeld number is used in 
the analysis. 


 
Closure 
Fluid inertia effects are of importance in thin film flows which show large Reynolds numbers. 
However, in conventional journal bearing applications with small clearance to radius ratios, flow 
turbulence and viscous effects are most likely to dominate the performance of the fluid film 
bearing.  


 
Turbulent flow journal bearings determine a smaller journal eccentricity than laminar flow 
bearings for the same applied load. This condition then renders turbulent flow bearings to be 
more prone to show hydrodynamic instability. This assertion needs to be taken with caution 
since the analysis considered an isoviscous (e.g. isothermal) lubricant.  


 
That is, turbulence implies more dissipation of mechanical energy, which results in an increase 
of the thermal energy convected, i.e. lubricant heating and viscosity reduction if the through flow 
rate remains invariant. The drop in viscosity causes larger Reynolds numbers and reduced 
viscous effects which determine larger operating journal eccentricities, etc.    
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Nomenclature 
c Radial clearance 
D Bearing diameter 
e Journal eccentricity  
Fr, Ft Radial and tangential components of bearing reaction force , F=W 
h c + e cos(θ). Film thickness 
Ixx, Izz, Ixz Momentum flux integrals 
L Bearing axial length  
P Hydrodynamic pressure 
R ½D, Radius 
Re Ucρ


μ
; Shear flow Reynolds number .


2
*


* ; 1s
U c c cRe Re


R
ρ ρω
μ μ


= = >>>  


t Time (s) 
U ΩR. Journal surface rotational speed 
u, v, w Velocity components in x, y, z directions 
Vx, Vz Bulk-flow velocities along x and z directions 
x=Rθ,y, z Circumferential, cross-film and axial coordinates 


, ,x y Jκ κ κ  Turbulence flow shear parameters, in laminar flow=12 
η  y/h 
ρ, μ Fluid density and absolute viscosity 
τ  Ωt. Dimensionless time parameter 
τxy, τxz Wall shear stresses  
σt Sommerfeld number for turbulent flow – short length journal bearing 
Λ, σ  Shear flow and squeeze film flow parameters  
Ω, ω Journal rotational speed, whirl frequency (rad/s) 
  
Superscripts  
* Characteristic value 
- Time averaged value 
~ Space averaged value 
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dτ
2


=


Laminar flow κz 12:= α 1.2:= γ 0.2:=


Reynolds numbers
Set Pcav=0 for cavitation at 0 pressure


Res
ρ ω⋅ c2


⋅


μ
= squeeze film Reynolds number


Pcav 1− 1010
⋅:=


Rec
ρ Ω⋅ c2


⋅


μ
= modified shear flow Reynolds number


Forces shown dimensionless 


advection flow Reynolds number f
F


μ R⋅ L3⋅ ΩT⋅


C2


=ReT
ρ ΩT⋅ c2


⋅


μ
=


Code for average pressure field


Below: define operating parameters set journal eccentricity ε 0.5:=


Calculations performed for 3 - Reynolds #


Appendix to Notes 9.


Laminar flow short journal bearing with fluid inertia effects
Luis San Andres - TAMU 08/2006 See Notes 9 for all definitions


The axially averaged (dimensionless) pressure in a short length journal bearing is given by:
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Definitions: ΩT is a characteristic speed in rad/s


Journal position: ε τ( )


Journal radial and precessional velocities εdot
dε
dτ


= φdot
dφ
dτ


=


Journal radial and precession accelerations
εddot


d2ε


dτ
2


=







1. Static equilibrium journal bearing: No journal center velocities or accelerations
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Observations
Fluid inertia increases the (negative) peak pressure and displaces the positive peak pressure upstream of the 
minimum film thcikness.


Fluid inertia effects decrease in magnitude as journal eccentricity increases, i.e. at region where viscous effects 
dominate.


Fluid inertia introduces a radial (outward) force if no cavitation is present. Tangential force does not change as Rec 
increases.


If Pcav=0, then radial force increases and becomes positive, while tangential force raises steadily. Thus, the 
attitude angle can be larger than 90 deg indicating negative direct stiffness. Less stability? 







Res 24:=


a 2:= 2 for full film, 1 for PI-film
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fr ε 0,( ) 0= ft ε 0,( ) 2.418−=Res=0 Why do these forces 
differ with the integrated 
ones as Re increases?fr ε Res,( ) 2.846= ft ε Res,( ) 2.418−=Res 24=


2. Squeeze film damper: circular centered orbit:
Journal whirls about bearing center with constant orbit radius (ε) at fixed whirl frequency (ω). There is no journal 
spinning (Ω=0)


Set orbit radius ε 0.5=
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Observations:
Fluid inertia increases the (negative) peak pressure and displaces the positive peak pressure downstream of the 
minimum film thcikness.


Fluid inertia effects decrease in magnitude as journal orbit increases, i.e. at region where viscous effects dominate.


Fluid inertia introduces a radial (outward) force if no cavitation is present. Tangential force does not change as Res 
increases.


If Pcav=0, then radial force increases and becomes positive, while tangential (damping) force raises steadily showing 
more damping.  


Check forces with predictions based on force coefficients







3. Squeeze film damper: radial velocity
No journal spinning or whirling. Assume journal is at eccentricity (ε) with instantaneous radial velocity (dε/dt).


Set: εdot 1:= ε 0.5=
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Observations:
Fluid inertia increases dramatically the peak pressure and radial force opposing the radial velocity.
Cavitation has little effect on pressure generation and reaction force. 







4. Journal bearing with fractional synchronous whirl


Λ 1:= φdot Λ:= σ 1:= ReT Rec= Res=
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Laminar flow κz 12:= α 1.2:= γ 0.2:=


Reynolds numbers Set Pcav=0 for cavitation at 0 pressure


Res
ρ ω⋅ c2


⋅


μ
= squeeze film Reynolds number


Pcav 0 1010
⋅:=


Rec
ρ Ω⋅ c2


⋅


μ
= modified shear flow Reynolds number


Forces shown dimensionless 


advection flow Reynolds number f
F


μ R⋅ L3⋅ ΩT⋅


C2


=ReT
ρ ΩT⋅ c2


⋅


μ
=


Code for average pressure field


Below: define operating parameters set journal eccentricity ε 0.5:=


Calculations performed for 3 - Reynolds #
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The axially averaged (dimensionless) pressure in a short length journal bearing is given by:
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where: g
Λ


2
dH
dθ
⋅ σ


dH
dτ
⋅+= and H 1 ε τ( ) cosθ⋅+= Λ


Ω


ΩT
= σ


ω


ΩT
=


Definitions: ΩT is a characteristic speed in rad/s


Journal position: ε τ( )


Journal radial and precessional velocities εdot
dε
dτ


= φdot
dφ
dτ


=


Journal radial and precession accelerations
εddot


d2ε


dτ
2


=







1. Static equilibrium journal bearing: No journal center velocities or accelerations
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Observations
Fluid inertia increases the (negative) peak pressure and displaces the positive peak pressure upstream of the 
minimum film thcikness.


Fluid inertia effects decrease in magnitude as journal eccentricity increases, i.e. at region where viscous effects 
dominate.


Fluid inertia introduces a radial (outward) force if no cavitation is present. Tangential force does not change as Rec 
increases.


If Pcav=0, then radial force increases and becomes positive, while tangential force raises steadily. Thus, the 
attitude angle can be larger than 90 deg indicating negative direct stiffness. Less stability? 
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differ with the integrated 
ones as Re increases?fr ε Res,( ) 2.846= ft ε Res,( ) 2.418−=Res 24=


2. Squeeze film damper: circular centered orbit:
Journal whirls about bearing center with constant orbit radius (ε) at fixed whirl frequency (ω). There is no journal 
spinning (Ω=0)


Set orbit radius ε 0.5=
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ε 0.5= orbit radius


φdot 1= whirl frequency
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Observations:
Fluid inertia increases the (negative) peak pressure and displaces the positive peak pressure downstream of the 
minimum film thcikness.


Fluid inertia effects decrease in magnitude as journal orbit increases, i.e. at region where viscous effects dominate.


Fluid inertia introduces a radial (outward) force if no cavitation is present. Tangential force does not change as Res 
increases.


If Pcav=0, then radial force increases and becomes positive, while tangential (damping) force raises steadily showing 
more damping.  


Check forces with predictions based on force coefficients







3. Squeeze film damper: radial velocity
No journal spinning or whirling. Assume journal is at eccentricity (ε) with instantaneous radial velocity (dε/dt).


Set: εdot 1:= ε 0.5=


0 51.43 102.86 154.29 205.71 257.14 308.57 360
0


100


200


300


400


Res=0
Res=12
Res=24


SF Damper: Radial velocity


Circumferential coordinate
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re εdot 1:=


Dimensionless (radial & tang) forces


Res


0


12


24


⎛
⎜
⎜
⎝


⎞
⎟
⎟
⎠


= fr


9.116−


18.678−


27.658−


⎛
⎜
⎜
⎝


⎞
⎟
⎟
⎠


= ft


0


0


0


⎛
⎜
⎜
⎝


⎞
⎟
⎟
⎠


=


Observations:
Fluid inertia increases dramatically the peak pressure and radial force opposing the radial velocity.
Cavitation has little effect on pressure generation and reaction force. 







4. Journal bearing with fractional synchronous whirl


Λ 1:= φdot Λ:= σ 1:= ReT Rec= Res=


0 51.43 102.86 154.29 205.71 257.14 308.57 360
0
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εdot 0=


εddot 0=


synchonous whirl
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Notes 10.  
Thermohydrodynamic Bulk-Flow Model in Thin Film 
Lubrication 
  
General flow characteristics in oil lubricated fluid film bearings 


a) Incompressible liquids of large viscosity (mineral oils) 
b) Dominance of shear driven (Couette) flow over pressure (Poiseuille) driven flow  
c) Fluid inertia and flow turbulence are usually NOT important (low circumferential 


flow Reynolds numbers) 
d) Heat transfer to bearing cartridge and to/from shaft are important along with 


mechanical deformations induced by temperature gradients  
e) Fluid temperature gradient along axial plane is negligible 
f) Thermal effects change the lubricant viscosity and operating clearance, thus 


affecting significantly to the bearing static load performance 
 
Thermohydrodynamic analyses are important in heavily loaded hydrodynamic bearings 
such as pressure dam bearings, tilting pad bearings, etc. See Notes 7 
 
General flow characteristics in process fluid film bearings 
applicable to damper annular seals and hybrid (hydrostatic + hydrodynamic) bearings 


a) Process liquids have low viscosity (water, R134, LH2, LOx) 
b) Material compressibility important, low bulk modulues (LH2) 
c) Large pressure drops along axial direction with significant mass flow rates (annular 


damper seals & hydrostatic bearings – up to 6,000 psig in cryogenic turbopumps) 
d) Large heat capacity for transport of energy along axial direction 
e) Large rotor speeds (up to 100 krpm) will induce large shear flow energy 


dissipation 
f) Typically use macro-textured surfaces (roughened stator) to avoid generation of 


cross-coupled stiffness and to promote dynamic stability 
g) Inlet fluid flow circumferential swirl is important (for rotordynamic stability) 


 
These operation characteristics determine the need to account for 


a) Flow turbulence (induced by shaft rotation and pressure driven flow conditions) 
b) Fluid inertia effects – temporal and advective types. 
c) Fluid properties depend on pressure and temperature (needs equation of state) 
d) Adequate physics based modeling of machined surface texture (roughness)  
e) Two-phase flow conditions under certain operating regimes 
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Bulk-Flow Equations for Thin Fluid  Films  
The fluid flow within a thin film region, see Fig.1, is governed by the continuity (mass 
conservation), momentum and energy transport equations. In the flow region 


       0, , 0, , , , 0,x D y H x z t z L   , the smallness of the film thickness allows a 


simplification of the general transport equations.  


 
The coordinates in the plane of the bearing are circumferential (x=Rθ), axial (z), and 
across the film (y). Let  , , , ,U V W P T      be the fluid velocity field components along the (x, 


y, z) directions,  the fluid pressure and its temperature, respectively.  
 
 
The thin film fluid flow equations are (see Notes 8): 
 


Mass conservation   
( ) ( ) ( )


0
U V W


t x y z


      
   


   


  
    (1) 


 


 


x 


y 


z 


Lz 


Lx 


H(x,z,t)
U 


V 


(U, V) surface velocities 


U 


V 


W 


h << Lx,Lz


y 


 


x 
Lx 


H(x,z,t)


U 


V 


W 


V 


U 


Figure 1. Geometry of flow region in a fluid film bearing (H<<Lx,Lz) 
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Circumferential-momentum transport  



xyDU P


Dt x y







  


 



   (2) 


 


Axial-momentum transport   



zyDW P


Dt z y







  


 



    (3) 


 


Cross film momentum     



0
P


y







    (4) 


 


Energy-Transport (Bird et Al., 1960) 
 


            2 2


2p t xy zy


DT D T DP P P
C U W K T U W U W


Dt Dt y y Dt x z y


   
       


                 



 (5) 


 


 where       D
U V W


Dt t x y z


   
   
   


    (6) 


 
is the material derivative.   , , , ,P tC k    represent the fluid properties of density, 


viscosity, specific heat, thermal conductivity, and volumetric expansion coefficient, 
respectively. 
  
In a turbulent flow, the effect of the turbulent mixing far outweighs the 
fluid molecular diffusivity.  In consequence, the temperature raise by 
viscous dissipation tends to be distributed uniformly across the film 
thickness. Thus, temperature gradients across the film (y-dir) are 
confined to (very thin) boundary layers attached to the bearing and 
journal surfaces.  The fluid velocity field presents the same 
characteristics in regions without reversed flow or recirculation.  
 
Bulk-flow primitive variables (velocities and temperature) represent average quantities 
across the film thickness, i.e., 


 


  
0 0 0


1 1 1
; ;


H H H


U Udy W Wdy T Tdy
H H H


         (7) 


 
Integration of Eqs. (1-5) across the film thickness renders the bulk-flow equations (fully 
developed condition): 
 


Continuity:    
     


0
H HU HW


t x z


    
  


  
    (8) 
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Circumferential momentum:  
     2


0
H


xy


HUHU HUW P
H


t x z x


 



  
    


   
  (9) 


 


Axial momentum:   
   2


0


( ) H
zy


HWHW HUW P
H


t x z z


  
  


    
   


  (10) 


Energy transport:  


         2 2 2
( ) 1


2
t t t


p


HV HU V HW VHU T HW TH T
C


t x z t x z


         
               


  


 


    1 H
S t t xy


P P P
Q T H T H U W R


t x z
               


    (11) 


 
Where 2 2


tV U W   is the bulk-flow speed, and     S B B J JQ h T T h T T      (12) 


is the heat flowing from the film to the bounding (bearing and journal) surfaces at 


temperatures TB and TJ. Above, Bh  and Jh  denote heat transfer convection coefficients to 
the bearing and journal surfaces.  The fluid properties (density, viscosity and specific 
heat) depend on the fluid thermo physical state, i.e., functions of the fluid pressure and 
temperature. 
 


     , , , , , ,..., .p pP T P T C C P T etc          (13) 
 


From the bulk-flow theory for turbulence in thin film flows, the wall shear stress 
differences are (Hirs, 1973, Launder and Leschziner, 1978): 
 


0 ;
2


H
xy x J


R
k U k


H


     
 


   0 ;H
zy zk W


H


      
2 4


H
xy B J


H P
Uk U R k


x H


 
      


  (14)  


 
where the turbulent flow shear parameters  ,x zk k and  ,J Bk k  are local functions of the 


Reynolds numbers and friction factors based on the Moody friction factor. See Notes 8. 


Note that for the volumetric expansion coefficient, 1
t T 






     
     


    0, for incompressible liquids
1, for idealgasestT     (15) 


For example, tT  for 2LH  is not in the range of 0 to 1. 
 
Substitution of the bulk-flow momentum Eqs. (9-10) into Eq. (11) and using the mass 
conservation principle, Eq. (8), renders a more suitable form of the energy transport 
equation : 
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     
p S


H T HU T HWT
C Q


t x z


     
       


 


 


0 0


H H H
t xy xy zy


P P P
T H U W R U W


t x z
               


   (16a) 


 
And after substitution of the wall shear stress differences: 
 


     
p S


H T HU T HWT
C Q


t x z


     
       


 


 


         2 2


2 2 4t x J


P P P R P R R
T H U W H k U W U k R U


t x z x H


                                     
 (16b) 


 


This equation shows the energy transport and balance in the fluid film as: 
CONVECTION + DIFFUSION=COMPRESSION WORK + DISSIPATION 


(Energy Disposed) = (Energy Generated) 
 


In annular seals and hydrostatic bearings, the variation of temperature along the axial 
direction and the energy needed for compression work are retained since the pressure 
drops across a seal or bearing can be quite large.  These conditions differentiate this 
development from conventional THD analyses of incompressible fluid film journal 
bearings, for example (see Notes 7) 
 
Dimensionless Bulk-Flow Equations 
Define dimensionless coordinates  


*


; ; ; ;
x z H


x z h t
R R c


      


and flow variables 


* * * *


; ; ; ;
U W P T


u w p T
U U P T


        (17) 


and properties   *
* * *


; ; ;p
tp t


p


C
C T


C


    
 


     


 


with       


2
* *


*
*


c P
U


R
       (18) 


 
as a characteristic flow speed due to pressure.  The subscript * denotes characteristic 
values.  In dimensionless form, the flow equations in the film lands become:  
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Continuity    
 


( ) ( ) 0;
h


hu hw
x z



  





 
  


 
   (19) 


 
Circumferential Momentum


      * 2Re Re
2x J s p


p
h k u k hu hu hu w


hx x z


   



                    
 (20) 


 
Axial-Momentum  


         * 2Re Rez s p


p
h k w h w hu w h w


hz x z


   



            
  (21) 


 
Energy Transport 


        *Re Rep ps pC hT C huT h wT
x z


  

         


            (22) 


 


* 2 21 1
Re


2 2 4tp c x t Js


p p p p
Q E h u w T h k v u k u


hx z x


 



                                       
 


 
The dimensionless flow parameters are  


2
*


* * * *


; ; c
p


UR R
E


U U T C


 
     ;  


 
2


* ** * * * * *


* *


Re Re ; Re ; Re ReS p p p p


c U c c


R


  
 


      
 


    (23) 


 
The frequency    and speed    numbers denote the importance of squeeze film and 


shear flow effects relative to the pressure induced flow, respectively.  The reference 
Reynold numbers  Re p  denotes the ratio of fluid advection forces to viscous flow 


induced forces due to pressure.  Recall that in hydrostatic bearings and annular seals, the 
large pressure differentials can generate flow turbulence even without journal rotation. 
The Eckert number  cE denotes the ratio of kinetic energy to heat convection in the fluid 


film. The ratios  Re p cE  or  ReS cE  represent the effect of heat convection relative to 


shear dissipation.   
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APPENDIX. Heat Transfer Convection Coefficients to Bearing 
and Journal 


 
In the bulk-flow model, the heat transfer from the fluid film to the bounding surfaces is: 
 


   S B B J JQ h T T h T T        (A.1) 
 


where, Bh  and Jh are the heat transfer convection coefficients to the bearing and journal 
surfaces, respectively.  The Reynolds-Colburn analogy between fluid friction and heat 
transfer determines the heat convection coefficients (Holman, 1986).   
 
The average heat transfer over the entire laminar/turbulent boundary is: 
 


2/3


2t r


f
S                  (A.2) 


where: 
t


t
p t


h
S


C V
    (Stanton number)     (A.3) 


 


p
r


C


k



       (Prandtl number)      (A.4) 
 


1
me


m
m m


e


br
f a c


H R


  
    
   


      (A.5) 


 
is the Fanning friction factor based on Moody friction diagram.  From the relationships 
above, the heat transfer convection coefficient is: 
 


2/3


1


2
p t


t
r


C V f
h







      (A.6) 


and by analogy, 


2/3 2/3


1 1
;


2 2
p B B p J J


B J
r r


C V f C V f
h h


 
 


 
    (A.7) 


Where (VB, VJ) and (fB, fJ) are the fluid velocities and friction factors relative to the 
bearing and journal surfaces, respectively.  
 
The archival literature presents many other formulas – empirically based - for turbulent 
flow heat transfer coefficients (Holman, 1986). These formulas depend on the heat 
transfer process, for example a constant wall temperature or a constant heat flux 
magnitude and for a fully developed condition or one of evolving thermal flow 
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conditions.  Eq. (A.6) is used because of its simplicity and ability to include surface 
texturing effects (through the friction factor).   
 


Numerical Analysis of Unsteady Turbulent Bulk-Flow in 
Fluid Film Bearings 
 
Consider the unsteady flow fully developed turbulent bulk-flow in the thin film lands of a 
fluid film bearing or an annular seal. The governing equations are: 
 


Continuity:         0i
i


H U H
x t


  
 


 
  i=1(x),2(z)  (1) 


 


Momentum:      2
i


i i J


i i j
i i


k U k
P


H HU HU U
x H t x



 


 
 


      
  


  (2) 


i,j=1(x),=2 (y) 
 


Energy:     
2p i S t i


i i


P P H P
C H T HU T Q H T U R


t x t x x
  


       
             


 


     


    
2 2


2 2


2 4
x


x x y J x


RU R
k U U k U R


H


             
    


   (3) 


 
where i, j = x, y are the circumferential and axial coordinates1; and 0x yR     denote 


journal surface speeds in the x- and y-directions. , ,x y Jk k k  are the turbulent flow shear 


parameters. The fluid properties; namely density, viscosity, specific heat, and thermal 
expansion coefficient, are thermodynamic variables, i.e.  
 


   ( , ) ; ( , )P T P T          ( , ) ; ( , )p p t tC C P T P T    
 


In Eq. (3), ( ) ( )S B B J JQ h T T h T T     is the heat flow conducted into the bearing and 
journal surfaces. The film thickness H in an aligned journal is  
 


    ( , ) cos sinx y X YH c e e         (4) 


where c(x,y) is the bearing or seal radial clearance function, and  ( ) ( ),X t Y te e  are time 


dependent journal center displacements along the inertial coordinates (X,Y). See Figure 2 
for a schematic view of the coordinate systems, eccentric journal (rotor) and a bearing 
(pad). 


                                                 
1 Note the change in notation with coordinate y replacing z for the axial direction. Velocity V is in the axial direction. The 
discrepancy in notation will be fixed in the near future. 
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Film thickness:


l


p


t


X


Y


x/R


journal


e


Bearing center


Pad with 
preload





( , ) cos sinx y X Yh c e e   


Note: angle origin 
starts from -X axis


eY


eX


 
 


Figure 2. Depiction of bearing pad, eccentric journal, and coordinate 
system 


 
Dimensionless equations of motion 


Continuity:         0x yhu hu h
x y
   



  


  
  


    (5) 


 
Circumferential momentum: 


      * 22
Re Re


x x J


S x p x x y


k u k
p


h hu hu hu u
x h x y



  





                 
  (6.a) 


 


Axial momentum: 


  
       * 2Re Re


y y


S y p x y y


k Up
h hu hu u hu


y h x y



  



    


         
  (6.b)  


 
where:  x x R ; y y R ; t   ;       */h H c  


  *x xu U V  *y yu U V  *R V    ;  
2


*
*


sac P
V


R
 ; *R V   


  ( )a sap P P P  ;  *   ;   *     
 


* 2* * *
*


*


Re Rep p


c V
c


R R






   is a typical advection flow Reynolds number,  
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2 **
*


*


Re ReS pc
  



   is a typical squeeze film Reynolds number and ω is a characteristic 


whirl frequency (typically equal to the shaft rotational speed).  
 
The flow domain is divided into a number of staggered control volumes (CVs), as 
shown in Figure 3. Each control volume encloses a particular flow variable 
(circumferential and axial velocities, pressure and temperature) as a nodal quantity 
denoted by its P value. The boundaries of the CV are surfaces through which flow comes 
in or out. The control volumes are surrounded by nodal variables denoted as East, West, 
North and South. The notation defines with lower-case the fluxes (mass, energy or 
momentum) through the surfaces of the CVs, i.e. east, west, north and south.   
 


VN


VP


UEUW


PP PE


U,P,V-cvs
PS


VS


PW


x=R


y


PN


UP


 
 


Figure 3. Depiction of staggered control volumes for integration of flow 
equations 
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Integration of Axial Momentum Transport 
Equation 
 
Integrate the axial momentum transport equation (6.b) 
over the axial velocity V-control volume. 
 
 


7 
 
 
 
 


       * 2Re Re
e n e n e n


y y


S y p x y y


w s w s w s


k up
h dx dy dx dy hu hu u hu dxdy


y h x y



  



     


           
       (7) 


 


Consider the following approximations for the various terms in Eq. (7), 
 


     V
e n e


nV V
p p S Ps


w s w


p
h dxdy h p dx h p p x


y
 


   
        (8.a) 


i.e., assume the pressure is uniform over the south and north faces of the control volume,  
with an average uniform film thickness evaluated at the center of the V-control volume.   


      
V


e n
y y y V V


P


w s P


k u k
dx dy V x y


h h


 
 


 
  
 


        (8.b) 


i.e., assume an average film thickness, viscosity and turbulent shear coefficient yk  for the 


whole control volume.  
For the momentum flux terms, assume uniform circumferential flows  V


xhu y   


across the east and west faces,   


       
e n n


e e
V


x y x y x y
w w


w s S


hu u dxdy hu u dy hu u y
x
   



       (8.c) 


And, a uniform axial flow across the south and north faces of the V-control volume.   


       
e n e


n n
V


y y y y y y
S S


w s w


hu u dxdy hu u dx hu u x
y
   



       (8.d) 


 


For the temporal (unsteady) term,   


     
e n e n


y y


w s w s


hu dxdy hu dxdy 
 
 



          (8.e) 


 


Since the control volume size is fixed in space. Thus, Eq. (7) over the V-control volume 
becomes: 


VP


VN


VS


VE
VW


PP


PS


Fe


Fw


Fn


Fs


V-cv


Axial velocity control volume


xV


yV


VP


VN


VS


VE
VW


PP


PS


Fe


Fw


Fn


Fs


V-cv


Axial velocity control volume


VP


VN


VS


VE
VW


PP


PS


Fe


Fw


Fn


Fs


V-cv


Axial velocity control volume


xV


yV


xV


yV
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       *Re Re


V
e nyV V V V V V


P S P P S y p x y y y
w s


P


k
h p p x V x y hu dxdy hu u y hu u x


h



       





              
 


      (9) 
Before proceeding further, integration of the continuity equation (1) over the V-control 
volume gives 


         0
e n


e n
V V


x y
w s


w S


hu y hu x h dxdy     




 
       (10) 


The flow rates across the faces (e,n,s,w)  of the control volume are denoted by 
 


       ;
e w


V V V V
e x w xF hu y F hu y         (11) 


 


       ;
n s


V V V V
n y S yF hu x F hu x      


 


With these definitions, Eq. (10) becomes 
 


      0
e n


V V V V
e w n s


w s


F F F F h dxdy 




    
       (12) 


 


which establishes a balance of flows (in and out) through the V-CV faces and equaling the 
rate of fluid mass accumulation within the CV. 
 
The momentum flux terms in Eq. (9) are treated using the upwind scheme of Launder 
and Leschziner (1978).  This scheme establishes a selection of velocity based on whether 
the flow is into or out of the face of a control volume. For example:  


 


  if 0


if 0


V V
e e P eV V e


x y e y V V
e E e


F V F
hu u y F u


F V F
 



 



  where  eV V


e xF hu y   (a) 


 


That is, if flow leaves the e-face, Fe>0,  it carries the upstream velocity, VP. On the other 
hand, if flow comes into the e-face, it carries the downstream velocity, VE. This procedure 
is known as UPWINDING. 
 


Define the following operator, 
         ,0 max ,0a a       (b) 


Then, statement (a) can be conveniently written as  
 


, 0 ,0V e V V
e y e P e EF u F V F V             


 


Hence, the momentum fluxes are written as:  


  ,0 ,0
w


V V w V V
x y w y w W w Phu u y F u F V F V                
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     , 0 ,0
e


v V e V V
x y e y e P e Ehu u y F u F V F V                    


     ,0 ,0
s


V V s V V
y y s s y s S s Phu u x F u F V F V                  (13) 


  ,0 ,0
n


V V n V V
y y n y n P n Nhu u x F u F V F V                


 


The differences in momentum fluxes in Eq. (9) become: 


   e n
V V V e V w V n V s


x y y y e y w y n y s y
w s


hu u y hu u x F u F u F u F u         


      ,0 ,0 ,0 ,0V V V V
P e w n sV F F F F                             (14) 


     ,0 ,0 ,0 ,0V V V V
e E w W n N s SF V F V F V F V                            


Let,  
 


* *Re ,0 ; Re ,0V V V V
E p e W p wa F a F             * *Re ,0 ; Re ,0V V V V


N p n S p sa F a F              (15) 
 


Using the identities: 


        1 1
,0 ; ,0


2 2
a a a a a a             


The following relationship for the RHS of Eq. (14) is obtained: 
 


 


*


,0 ,0 ,0 ,0


1


Re


VV V V V V V V V
e e w w n n s s e w n s


V V V V
E W S N


p


F F F F F F F F F F F F


a a a a


             


     


                     
  (16.a) 


And using the discrete form of the continuity equation, Eq. (12), 
  


  
  *


,0 ,0 ,0 ,0


1


Re


V V V V V V V V
e e w w n n s s


e n
V
nb


nbpw s


F F F F F F F F


h dxdy a 



          



 


  


                     
   (16.b) 


 


where nb refers to the neighbor nodes (e, w, n, s) on each of the surfaces bounding the 
control volume. Substitution of Eq. (16.b) into the axial momentum equation (14) gives:  


 


   


 
 


*


*


Re


Re ,0 ,0 ,0 ,0


Re ,0 ,0 ,0 ,0


V


yV V V V
P S P s y


P


V V V V
p P e w n s


V V V V
p e E w W n N s S


k
h p p x x y hu dxdy


h


V F F F F


F V F V F V F V



   





  
      


       


     


 


                     
                     


   (17) 


 


And substituting Eq. (16.b), 







Notes 10. THERMOHYDRODYNAMIC BULK-FLOW MODEL IN THIN FILM LUBRICATION © Dr. Luis San Andrés (2012)        


   
14


 
   


 


Re


Re


V


yV V V V
P S P nb nb nb P s y


nb nb
P


P s


k
h p p x a V a V hu dxdy


h


V h dxdy



 









              







   


 


  (18) 


Hence, the difference form of the axial momentum transport equation is: 
 


    Re


V
VyV V V V V V


P S P nb nb nb P s P
P


nb nb
P


k
h p p x a V a V h x y V


h



   





                   
   (19) 


 


A suitable approximation for the unsteady term (time derivative) is needed.  An implicit 
first-order scheme is used, i.e., 


     
*


P P PV V V


 
 



 


               (*) 
 


where PV is the axial velocity at time t t  , and *
PV is the axial velocity at time t, 


respectively.  For the scheme to be implicit, all field variables (velocity and pressure) in 
Eq. (19) must be evaluated also at time t t  .  
 
Finally, the discrete form of the axial momentum transport equation is 


  
 


*
Re


V
V V


sV V V VP
P S P nb nb P P P


nb


h x y
h p p x a V V a V


  




   


    (20) 


 


where   Re


V
V VVyV V V V


P nb s
P


nb
P


k x y
a x y a h


h


    



 
      


   


 
Integration of Circumferential Momentum 
Transport Equation 
 
 
Integration of the circumferential momentum transport 
Eq. (6.a) over the U-velocity control volume, and using 
the continuity equation to simplify some terms (same as 
for the V transport equation) leads to the following 
algebraic equation:  


 
 
 
   


UP


UN


US


UEUW


PP PE


Fe


Fw


Fn


Fs


U-cv


Circumferential velocity 
control volume


xU


yU


UP


UN


US


UEUW


PP PE


Fe


Fw


Fn


Fs


U-cv


Circumferential velocity 
control volume


xU


yU
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     *Re


2


U
u


U U U U U U U UJ s
P P E nb nb P P P


p
nb P


k
h p p y a U x y h U x y a U


h


     



 
       


  (21)  


 


where *
pU U at time t, and  


   Re


U
U UU


U U U Ux
P nb s


P
nb P


k x y
a a x y h


h


    



 
   


 
  


 


 * * * *Re ,0 ; Re ,0 ; Re ,0 ; Re ,0U U U U U U U U
E p e W p W N p n S p sa F a F a F a F                            


 


        ; ; ;
e w n s


U U u U u U u U
e x w x n y s yF hu y F hu y F hu x F hu x            


 


Hence, the difference equations for fluid momentum transport are  
 
Circumferential momentum in U-CV  
 


    *U U U U U U
P P E nb nb P P P P


nb


h p p y a U S S U a U       (22) 


 


Axial-momentum in V-CV: 


    *V V V V V V
P S P nb nb P P P P


nb


h p p x a V S S V a V       (23) 


where: 


   ; Re


V
V VVyV V V V V V


P nb s
P


nb
P


k x y
a x y a S S h


h  


    



 
    


  
  


   ; Re


U
U UU


U U U U U Ux
P nb s


P
nbP


k x y
a x y a S S h


h  
    



 


      
  


    ; 0
2


U


U U U VJ
P P


P


k
S x y S


h


  
 


  
 


 


In general: 


   
   
   


; ;


;


r r
r r r r


e x w x
e w


r r
r r r r


n x s x
n s


F hu y F hu y


F hu x F hu x


   


   


 


 
 where  r = U or V 
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Derivation of the pressure correction equation 
Integration of mass conservation Eq.  (5) over the 
pressure control volume (P-CV) leads to: 


   0
e n


P P P P
e w n s


w s


F F F F h dx dy 




    
    (24) 


 
where the flow rates across the faces of the CV are: 


       


   
   
   
   


;


;


;


P P
P P P


e x P
e e


P P
P P P


w x W
w w


P P
P P P


n x N
n n


P P
P P P


s x S
s s


F hu y h U y


F hu y h U y


F hu x h U x


F hu y h U x


   


   


   


   


 


 


 


 


  (25) 


The term containing the unsteady variation of fluid density and film thickness is 
approximated as:  
 


     
Pe n P


PP P P P PPP
P P


p
w s


h
h dxdy h x y h x y


      
   


               
   


 


which implies that the P-CV is fixed in space, with film thickness h and density   taken 
as uniform within the control volume.   
 
The algebraic form of the continuity equation establishes the flow balance on a finite size 
control volume as: 


   0
PP


PP P P P P P P PP
Pe w n s P


h
F F F F x y h


   
 


  
      


   
   (26) 


 


Since ( ) ( )( , ) cos sinX t Y th c x y       , then: 
 


      cos sin cos sin
P
P X Y


P P X P Y P


h       
  


  
   


  
   


 


Note that simultaneous solution of the rotor-bearing equations of motion determines the 
journal (shaft) center coordinates  ( )


,X Y    and its time derivatives  ,X Y   .   
 


Incidentally,   
*


*
 where ( ) and 


P P P
P P


P P P
P Pt t


       
 


 
    


 
 


 


The algebraic form of the continuity equation in the P-CV is thus  
 


PN


PS


PE


PP


PW


FeFw


Fn


Fs


P-cv


Pressure
control volume


xP


yP


PN


PS


PE


PP


PW


FeFw


Fn


Fs


P-cv


Pressure
control volume


PN


PS


PE


PP


PW


FeFw


Fn


Fs


P-cv


Pressure
control volume


xP


yP
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*


0
P P


PP P P P p p P P
Pe w n s P PF F F F x y h h


    



 
      


  


    (27) 


 
The pressure correction method (Launder and Leschziner, 1978] 
Let the flow variables be expressed as:  
 


    ' ; ' ; 'U U u V V v p p p          (28) 
 


where the current velocities ( ,U V ) satisfy the momentum equations but not the mass 
continuity equation. Above u’, v’, and p’ are correction fields. Substituting Eq. (28) into 
the momentum equations (22) and (23) leads to: 
   


  
 
 


*


' ' ' '


U U U U U
nbP nb P PP E


nb


U U U U u
PP P E nb nb P P P


nb


h p p y a U S S U


h p p y a u a U a u








   


    






     (29) 


Then   ' ' ' 'U U u U
P P E nb nb P P


nb


h p p y a u a u         (30.a) 


and identically, from the axial transport equation: 
   


   ' ' ' 'V V v V
P S P nb nb P P


nb


h p p x a v a v         (30.b) 


 
Introducing the SIMPLEC procedure (Van Doormal & Raithby, 1984] 


  ' ' ; ' 'U U V V
nb nb nb P nb nb nb Pa u a u a v a v        (31) 


 
Equations (30) become: 


    


 


 


' '
' ;


' '
' ;


U
P P E U U U


P P PU U
P nb


V
P P E V V V


P P PV V
P nb


d p p
u d h y


a a


d p p
v d h x


a a









 






 









     (32) 


 


where   


 


 


; Re


; Re


U
U UU


U U U U U Ux
P nb s


P
P


V
V VVyV V V V V V


P nb s
P


P


k x y
a x y a S S h


h


k x y
a x y a S S h


h


 


 


    



    



 
    


 


 
       






  


Let    ;
U V


U VP P
P PU U V V


P nb P nb


d d
D D


a a a a
 


  
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Substitution of the correction fields, Eq. (28), into the continuity Eq. (27) gives: 


       
*


' ' ' ' 0
P P


P P P P
p p P P


e w n s Pe w n s P PF F F F F F F F x y h h
    





 
          


  
 (33) 


where    
   
    , etc.


P P
P


e x P
e e


P P
P


s y P
s s


F hu y h U y


F hu x h V x


   


   


 


 
    (34) 


 


and          ' ' ' ' ' ' ;
P P p


P U P P P P U
e P P P E e P E e P


e e e
F h u y h D p p y a p p a h y D            


  


              ' ' ' ' ' ' ;
P P P


P V P P P P V
s P P S P S S P S P


s s s
F h v x h D p p x a p p a h x D            (35) 


 


       ' ' ' ; ' ' 'P P
w W W P n N P NF a p p F a p p     


 


Let    
*


*


P
P P P P P P P P
e w n s PP P PS F F F F x y h h


    



 
      


  


     (36) 


 


Then, Eq. (33) becomes 
     


*
' ' ' ' Pe w n sF F F F S          (37.a) 


 


or         *
' ' ' ' ' ' ' 'P P P P


PE P E N W P N P N S S Pa p p a p p a p p a p p S            (37.b) 


  


    
*


' 'P P
PP P nb nb


nb


a p a p S       (37.c) 


 


where     PP P
P E W N S nb


nb


a a a a a a          (38) 


 


Note that if *' ' 0 then 0nb P Pp p S   and mass continuity is satisfied.  Thus, the momentum 
equations are also satisfied and the (current) flow field is considered as the solution to the 
fluid transport equations. 
 
Once the  correction pressure field 'Pp is obtained, correction to the circumferential u and 
axial v fields are performed using Eqs. (27).  In the numerical procedure, the pressure is 
typically under-relaxed as  


      


'


'


'


new old


new old


new old


p p p


U U u


V V v


 


 


 
     (39) 


 


with α as a relaxation parameter, whose value is typically less than one. 
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Discretization of Energy Transport Equation 
The dimensionless equation for turbulent bulk-flow energy transport is (Yang, 1992): 
 


 
     


* *


2
2 2


Re ReRe


1


2 2 4


pp p ps
x y s


c c c


tx y x x y x J x


CC
hT hu T hu T Q


E E x y E


p p p p
u u hT h k u u u k u


x y x h


  



 



   
      


                                 


 (40) 


 


where  
 


 
* * * *


**


; ; / ; ;


/ ; ; ; ;


; ;


x x y y


a sa t t


x x R y y R t h H c


u U U u U U R U R U


T T T p P P P T


 
 


 


   
     


   


 


 
and    
 


 
  


 
   


2 *
* *


* 2
* * *


2
* *


 is the Eckerd number


Re Re R  is a (modified) Reynolds number


Re  is the squeeze film Reynolds number


 is the heat flow to bearing and journal surfaces


c p


p p


s


B JB Js


E U T C


c R U c


c


Q h T T h T T


 


  





 





   


 
 


Define the following source terms: 


1 tx y


p p p
S u u h


x y
 



   


      
; 


2
2 2


2


1


2 2 4x x y x J x


p
S h k u u u k u


x h


                     
 (41)  


Integration of Eq. (40) over the temperature control volume (T-CV) leads to 


       
* *


1 2


Re ReRe n e
e npp p ps


Px y sw s
c c cT cv s w


CC
hT dxdy hu T dy hu T dx Q x y S T S x y


E E E
  





                
   


(42) 
 
Implementation of the upwind scheme for the thermal flux transport terms gives 


        ,0 ,0
e


e P Ex e e ehu T y F T F T F T           


        ,0 ,0
w


w W Px w w whu T y F T F T F T          (43) 


        ,0 ,0
n


P Ny n nhu T x F T F T      


TN


TS


TE


TP


TW


FeFw


Fn


Fs


T-cv


Temperature
control volume


xP


yP


TN


TS


TE


TP


TW


FeFw


Fn


Fs


T-cv
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control volume
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TS


TE
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TW


FeFw
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T-cv
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yP
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        ,0 ,0
s


S Py s shu T x F T F T      


where        ; ; ;e x w x n y s y
e w n s


F hu y F hu y F hu x F hu x           are the momentum 


fluxes through the control-volume faces. Using Eq. (43), the LHS of Eq. (42) is rewritten 
as 


 
   


 


.42


* *


Re


Re Re


p s
P nbEq nb nb


c T cv


p p p
Pe w n s s


c c


C
LHS hT dxdy a T a T


E


C
F F F F T Q x y


E E







  





      


  
    (44) 


where        
* * * *Re Re Re Re


,0 ; ,0 ; ,0 ; ,0
p p p pp p p p


e e w w n n s s
c c c c


C C C C
a F a F a F a F


E E E E
      (45) 


 


The discrete form of the continuity equation in the T-CV gives 


      e w n s


T cv


F F F F h dxdy 




    


       (46) 


Substitution of Eq. (46) into (44) gives:   


  


   


   


*


.42


*


ReRe


Re Re


p ps
P nbEq nb nb s


c cT cv


p
P s p


c T cv T cv


C
LHS hT dxdy a T a T Q x y


E E


hC
T dxdy h dxdy


E







 


 





 



     





    
  


 


  


   
 (47) 


Since *Re Res p  , the last two terms on the RHS of the previous expression add to zero; 


i.e., they satisfy the continuity equation.  Then: 


  
*


.42


ReRep ps
PEq nb nb nb s


c cT cv


C T
LHS h dxdy a T a T Q x y


E E







     


      (48) 


The integral form of the energy transport Eq. (42) becomes 


  
 


 


*


1 2


ReRep ps
Pnb nb nb s


c cT c


P


C T
h dxdy a T a T Q x y


E E


S x y T S x y



 



    





     


      (49) 
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Let  
*


p pT T T


 
 



 


 and     P B JB J B JsQ T h h h T h T    ; with 
*
pT  as the film temperature 


in the previous time step.  Then, the discrete form of Eq. (49) becomes: 


  
   


 


*


1


*
*


2


Re Re


ReRe


p Ps P P
PBnb J


c c


p pPs P
nb P B JB Jnb


c c


C h
a x y h h x y S x y T


E E


C h
a T S x y x yT h T h T x y


E E










 
           


          







  (50) 


The algebraic form of the energy transport equation is finally written as: 


  
T T T T T T


P E W N Sp E W N S ca T a T a T a T a T S         (51) 


where: 


* *


* *


Re Re
,0 ; ,0


Re Re
,0 ; ,0


p pT T T TP P
E e W w


c c


p pT T T TP P
N n S s


c c


C C
a F a F


E E


C C
a F a F


E E


   


   


         


         


     (52.a) 


  1 2 3,0T T T T T T T T
P E W N S P P Pa a a a a S S S                (52.b) 


  
*


1 2 3 4 2 ,0T T T T T T
Pc C C C C PS S S S S S T               (52.c) 


  


 
     


*


1


*


2


3


Re


Re


P


T P
B JP


c


P PT
tP P P e w P n s


pT Ps P
P


c


S h h x y
E


p p
S h x y U p p y V p p x


C h
S x y


E













   


 
         


  


  



  (52.d) 


  
 


 


2
2 2


1


2


*


3


*


4


1


2 4


2


Re


Re


T
C x x y x J x


P


T
C P e w


T P
B JB JC


c


pT Ps P
PC


c


S k u u u k u x y
h


S h p p y


S h T h T x y
E


C h
S x yT


E









                
     



  


   


  



    (52.e) 







Notes 10. THERMOHYDRODYNAMIC BULK-FLOW MODEL IN THIN FILM LUBRICATION © Dr. Luis San Andrés (2012)        


   
22


Note the terms involving  correspond to unsteady flow conditions.  As for the source 
term -  1 PS x y T  : 


1)    1 1 goes into  if 0;  orPS x y a S x y        


2)    1 1 into the source term of the RHS if 0.PS x y T S x y       


Assembling and solving the flow equations 
The generic algebraic form of the flow equations is  


   P P E E W W S S N N Pa a a a a S                 (53) 


where  is the flow variable and PS
is a source-like term. In Eq. (53) the nodal value 


(P) of the flow variable in the control volume is a function of its four neighbors (E, W, 
N, S) and the source term. Eq. (53) applied to all the CVs in the grid leads to a system of 
(penta) algebraic equations easily solved using efficient schemes for banded linear 
equations.  


In particular, when the flow direction is well known as in annular seals (axial flow 


dominance), 0Na  and the flow equations reduce to the tri-diagonal form    


   P P E E W W P S Sa a a S a                (54) 


where S , the upstream value, is known from solution of the prior equation. Eq. (54) is 
readily solved using very-fast schemes such as the TDMA solver. 
 
For unsteady journal (shaft) motions leading to unsteady flow conditions, at the current 
time (t), the algebraic flow equations are  
 


( )t t
P P E E W W S S N N P p pa a a a a S B t                     (55) 


 


where = {U, W, P, T},and 
( )t t
p
  is the value of the variable one time step before. That 


is, at each time step, the previous flow field must be known fully; in particular the one at 
the initial time when the solution procedure starts. 


Once the solution of the set flow equations is obtained at time t, integration of the 
pressure field P over the journal (rotor) surface gives the components of the bearing or 
seal reaction force (FX, FY)  
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These reaction forces are also known as (nonlinear) impedances since they depend on the 
journal center position and its velocity components, i.e.  


   YXYXfFYXYXfF YYXX
 ,,,;,,,     (57) 


A rotordynamics model predicting the transient response of a rotor-bearing system needs 
to integrate the (nonlinear) bearing reaction forces at each time step. The typical 
equations of motion are of the form 


     t R ext BM u + C + G u + K u = F u,u, + F u,u,      (58) 


where Ω is the rotor speed, and M, K, C and GR denote the system mass, stiffness, 
damping and gyroscopic matrices. The vector u represents rotor displacements 
(translations and rotations),  textF u,u,  contains the external forces such as weight and 


those due to mass imbalance, and  BF u,u,  corresponds to the bearing forces, for 


example those from Eqn. (57).  


Note that the solution of the rotor-bearing system equations of motion, Eqn. (58), is 
linked to the solution of the bulk-flow equations for each bearing (or seal), Eqs. (55).  


POSTCRIPT 2006, 2009 
The CFD method detailed above was quite popular in the 1980s and throughout the mid 
1990s. The author published many papers related to the numerical solution of the flow 
field in bearings and seals dominated by flow turbulence and with fluid inertia effects.  
 
Nowadays, however, CFD methods use efficiently non-staggered and non-structured 
grids and implement very fine meshes (large number of nodal points) without incurring 
into excessive computational costs. The CFD field has rapidly evolved thanks to the ever 
increasing speeds (and low cost) of personal computers. The governing equations 
remain unchanged, however. 
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Notes 11.  
High Pressure Floating Ring Oil Seals 
 


Bushing oil seals and mechanical dry-
gas (buffer) seals are the final sealing 
elements in compressors keeping the 
process gas within.  Oil bushings, also 
known as floating ring seals, can have a 
major detrimental effect on the 
rotordynamic stability characteristics of 
compressors; and in some cases act as 
additional support bearings, i.e., they 
generate radial loads. 
 


Oil seal rings minimize process 
product leakage while allowing a 


limited lubricant flow rate accompanied by a pressure drop. Oil seal rings are of the 
mechanical face type, with rotating and stationary faces, as well as with a carbon face in 
between the two.   


Shaft 
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Oil supply (PS+P) 
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Anti-rotation pin 
Seal loading 
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Fig. 1 Typical oil seal multi-ring assembly
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Oil seal rings come as an 
assembly cartridge with a preload 
spring. The cartridge contains two 
seals (low pressure and high 
pressure) with small radial 
clearances. The seals operate with 
some mineral oil supplied at a 
pressure slightly higher than the 
(gas) sealing pressure.  


 
The inner seal faces the process 


fluid, with lubricant flow (leakage) 
towards the process gas side, thus 
providing some degree of product 
contamination. The outer seal 
faces the rotor support bearings, 


and is subject to a larger pressure drop, from supply towards atmospheric condition. The 
oil flow rate returns to the main oil reservoir or sump.    
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At low rotor speeds, an oil bushing acts as a floating 


ring and follows the shaft motions. The oil seal reaction force 
is small, equal to the contact area force (FC), of Coulomb or 
dry-friction type. See Fig. 3 for a balance of forces acting on 
the seal ring. The contact force: 


 


FC = S N  
 


where N is the normal (wall) force and 
S is a friction coefficient, which 
depends on the materials of the seal face 
(typically an ISO carbon ring with a 
lapped surface) and the mating stationary 
casing. The balance of static forces in the 
axial direction gives the normal N force 
 


N = FS + P Areacontact 
 


where FS is the spring preload force and 
P is the pressure drop across the 
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Fig 3. Forces acting on a floating ring seal
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contact face.  
 
Note: The friction coefficient varies with time and with operation as the seal ages since 
the contact area wears out. 
 
As the rotor speed increases so does the process pressure. The increase in 
pressure generates larger normal forces, and thus larger friction forces result at the seal-
lap surface in contact with its mating stationary surface. Too large forces induced by the 
pressure differential eventually cause the seal to lock up, and thus the seal behaves as a 
hydrodynamic plain journal bearing. That is, the oil seal ring becomes a load path.  
 
Engineering facts about floating ring oil seals 
 The spring preload force prevents seal wear at low rotational speeds by impeding seal 


(carbon ring) displacements. 
 The seal lapped (contact) surface area is a major factor in determination of the lock-up 


speed and the ensuing equilibrium seal off centered position (eccentricity). 
 Seal operating eccentricities can be large, since to prevent lock-up, seals must develop 


film forces just equal or greater than the dry-friction force induced by the pressure drop 
across the seal. 
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 Oil seals, when locked at an off-centered position, can generate reaction forces of the 
same magnitude as the reaction forces from the tilting-pad bearings that support the 
whole rotor. At times seals may share rotor static load or weight with the support 
bearings; while at other times, oil seals can actually overload the primary bearings.  
See Figure 4 for a graphical description of the (possible) lock up conditions.  


Ring and rotor at rest 


casing
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ring


Static load = 
weight


Ring floating on spinning rotor 


rotor


ring


Ring locked at high speed. Seal 
load adds to weight


rotor


ring ring
Locked 
seal 
load


Locked 
seal 
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Ring locked. Seal unloads bearings


Bearing reaction 
load


Figure 4. Operation of seal ring: rest, floating and locked  
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 Tilting pad journal bearings must be designed to prevent damage from bearing 
overload, overheating, deformation and wear produced by the oil seals. 


 
 
 
Operation under a locked and off-centered 
condition causes the oil seal ring to generate 
significant levels of cross-coupled stiffnesses that 
could produce large amplitude rotor 
subsynchronous response and (severe) rotor 
stability problems (See inset figure taken from 
Allaire et al., 1985) 
  
The most important consideration in oil seal 


bushings is to determine the rotor speed at which the oil seals lock-up and act as 
destabilizing elements on the dynamic response of the rotor-bearing system. 
 
Recall that seal lock up occurs when the friction force at the seal lapped interface is 
larger than the oil seal film reaction force. The lock-up condition should occur at small 
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seal ring eccentricities to reduce the magnitude of the seal reaction forces (and cross-
coupled force coefficients). 
 
Seal lockup known to promote rotor-bearing system instability is prevented 
by redesigning the seals to  
a) reduce the cross-coupled force coefficients (KXY and KYX), while maintaining the same 


leakage rate, 
b) ensure concentric operation to avoid excessive radial forces,  
c) reduce the contact dry-friction force (FC = S N ) induced by the pressure drop across 


the seal face. Since N = Fs + AP Areacontact 
   lower the friction coefficient S 
   reduce the area of contact of the lapped surfaces 
   limits spring preload FS 


 
Most oil seals operate under laminar flow conditions and at very low flow Reynolds 


numbers (axial and circumferential). Therefore, floating ring pressure seals show little 
direct stiffness (KXX=KYY=0) even when locked at the concentric position (null 
eccentricity).  
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The flow rate (Q), cross-coupled stiffness (KXY=-KYX) and direct damping (CXX=CYY) 
coefficients are  


 
 


3 3
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where  is the lubricant viscosity, 
(L, D, c) are the seal ring length, 
diameter and radial clearance, P is the pressure differential 
across the seal, and = RPM (/30) is the rotor speed (rad/s). 
Note that the whirl frequency ratio of a centered (e=0) locked oil 
seal is 0.50 as for a plain cylindrical journal bearing 
[WFR=KXY/CXX ]. Also note that the cross-coupled stiffnesses 
are proportional to the third power of the seal length (L). 
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Allaire et al. (1985, 1987) recommend the substitution of 
long bushing seals with a series of short length sections 
separated by deep grooves. The grooved (multiple thin 
land) seal effectively divides the original seal land and 
reduces considerably the cross-coupled coefficients while 
preserving the same leakage rate.  
 
For example, modify the seal above into one with 
three lands, each of length Lm=L/3, and separated by 
deep & narrow  grooves, say of length Lg= Lm/5, 
then the flow rate and force coefficients are: 
 


33
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m XY m
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 i.e., the leakage rate is maintained, while the cross-coupled coefficients are 
reduced by nearly an order of magnitude since 3(Lm/L)3=3 (1/3)3=1/9. However, 
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the direct damping coefficients are also reduced and thus, the whirl frequency 
ratio remains unchanged at 0.50. 
 
Knowledge gained from analysis and practice 
 Operation of truly floating rings at large eccentricities is not encouraged because 


when locked the seal will produce very large reaction forces.  
 Note that the use of large clearance oil seals is not recommended due to excessive 


leakage rates of the sealing lubricant. 
 Seals with multiple inner grooves (separating film lands) have consistently smaller 


load capacities, cross-coupled stiffnesses, and direct damping coefficients than 
smooth land (groove less) seals. 


 Thermal effects (lubricant temperature rise and reduction in operating clearance) 
are typical in seals locked at high eccentricities. Mechanical energy dissipation is 
quite large. 
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Example from a typical compressor (Ed Wilcox, Conoco, 1998) 
In the following example, an oil bushing seal (L/D= 0.1875), can float 0.030 inch 
diametrically in the housing, but has only 3 mil axial travel.  The bushing was originally 
designed with a very low diametrical clearance of 5 to 7 mil.  Note that this clearance is 
less than the support fluid film bearing diametrical clearances, typically 6 to 8 mil. 
 
The 65-70 psi oil pressure drop pressure exerts approximately 500 lbf of normal force, 
pressing the bushing into the outer ring of the seal housing.  With a contact surfaces dry 
friction coefficient S =0.1 to 0. 3 (typical for smooth and rough or worn outstell 
surfaces), the contact force force FC is ~ 50-150 lbf . This force can readily “lock up” the 
bushing in an eccentric position. The radial load carrying capability of these seals is not 
enough to lift the rotor off the bearings.  However, the bushings can affect the rotor 
stability in two additional ways: 
 
a) Decreasing the radial load on the bearings would reduce the bearings stiffnesses and 


potentially cause the bearing to “whirl”.  
b) Act as an additional bearing support with a high cross-coupled stiffness 
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Recommendation: Cut a 1/16” square groove in the middle of the inside diameter of 
the bushing land. Increasing the clearance and cutting the groove in the bushing 
breaks up the hydrodynamic effect which produces the high cross-coupled stiffness.  
It also reduces the radial load capacity of the seal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


65-70  psig 
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Normal load = 500 lbfFriction load = 
50-150 lbf  


Cd = 0.005 inch (125 microns) 
Axial float = 0.003 inch (76 microns) 
Radial float = 0.030 inch 


0.375 in 1/16 inch square


Original and modified oil seal bushings 







Notes 11. HIGH PRESSURE FLOATING RING OIL SEALS  © Dr. Luis San Andrés 2009 
 


13


CLOSURE 
Test data from Childs et al. (2005-2007) show that narrow inner land grooves 
with depths as large as 15 times the thin land clearance DO NOT effectively 
reduce the oil seal cross-coupled stiffnesses. Most importantly, the tests also 
reveal very large added mass coefficients, much higher than predictions based on 
the classical formula of Reinhart and Lund (1975) for a smooth land seal.     
 


 
  


Seals tested by Childs et al. (2006)       Damping coefficients for the smooth-
3-groove seals at 7000 rpm from 
Childs et al. (2006)        


Added-mass coefficients for 3-groove 
seal at 7000 rpm from Childs et al. 
(2006)        
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A simple formula for prediction of the added mass coefficients (M) in a 
cylindrical bearing or seal whirling around its centered condition is (Reinhart and 
Lund, 1978) 
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where  is the fluid density. The formula is applicable to a full film condition (no 
liquid cavitation) in a smooth land (groove less) seal or bearing with length L, 
diameter D, and uniform radial clearance c.  
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For short length seals, L/D <<1;  
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Note that the mass of fluid within the seal thin annulus is just  fM DL c   
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Hence, the ratio of added or apparent mass to the fluid annulus mass, for the long 
and short length seals, is 
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That is, the fluid inertia coefficient is orders of magnitude larger than the 
physical mass in the seal annulus.  


In addition, note the mass of a solid journal is 
2
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where J is the 


journal material density (typically made of steel). Hence, for a long seal, the ratio  
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    shows that fluid inertia coefficients (apparent mass) can 


be higher than even the solid journal mass. 
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Recent advances in flow analysis by Delgado and San Andrés (2007, 2008) show 
model predictions that reproduce with great accuracy the unusual experimental 
results.  
 
A presentation on the most recent developments in oil-seal analysis follows. 
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Notes 11.  
High Pressure Long Oil Seals 


Small clearance oil seals minimize 
process gas leakage while allowing a 
limited lubricant flow accompanied by a 
pressure drop. Annular seals are used in 
agitators and mixers, balance pistons in 
centrifugal pumps, etc.   
 
Long annular seals (L/D>> 1),  however, 
have a major impact on the stability of 
rotating machinery since they introduce 
large cross-coupled forces. The imposed 
axial pressure drops prevents liquid 
cavitation, and hence full film conditions 


prevail for mot operating conditions.  
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In practice, long seals integrate two sealing sides, each with a small clearance, 
and fed with some mineral lubricant at a pressure (Ps) slightly higher than the 
pressure (Pi) of the process product.  
 
The inner side seal faces the process fluid and has a lubricant flow towards it, 
thus providing some degree of product contamination.  
 
The outer side seal faces the support bearing (also oil lubricated) and has a 
larger pressure drop (usually) to atmospheric conditions (Pa) with a return to the 
main oil reservoir or sump.  
 
Typical sealing pressures can be as high as 30,000 psig (2,040 bar). In 
these applications, the lubricant viscosity depends greatly on the local pressure 
(oil viscosity can increase to three orders of magnitude its value at ambient 
pressure). 
 
Oil seals have very small clearances (tighter than the support bearings) and 
dissipate large amounts of mechanical energy (lubricant heats) shear-induced 
by shaft rotation and by the extrusion of lubricant due to the pressure drop. In 
some cases, oil seal assemblies contain a water-cooling jacket to remove the 
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heat generated and to provide an accurate control of the seal clearances. The 
large pressure drops also produce elastic deformations of the seal bushing and 
shaft with enlarged clearances on the sides of the high pressure condition. 
 
The fluid flow in the seal is typically laminar since the (mineral oil) lubricant 
viscosity is large and the radial clearance is rather small. Operation without 
allowance for liquid cavitation makes the seal not able to generate direct 
stiffness coefficients, i.e. the seal cannot support radial loads.   
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SEAL MASS FLOW RATE 
In a centered long seal, the mass flow rates towards the inner  im  and outer 
 om  sides of the seal are given by the simple formulas: 
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where (,)i.o are the lubricant effective density and viscosity, (L,D,c)i,o are the 
seal axial length, diameter and radial clearance; and (Ps-Po) > (Ps-Pi) are the 
pressure differentials across the outer (o) and inner (i) sides of the seal.  
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Note that tight (small) seal clearances (c) have a pronounced effect on the seal 
leakage, i.e. 3~m c . Furthermore, the journal rotational speed () has no effect 
on the seal leakage for laminar flow conditions.  
 
SEAL POWER LOSS AND LUBRICANT TEMPERATURE RAISE 
The mechanical power loss S  due to shear (drag of the lubricant by shaft 
rotation) is given by 
 


3 3
22


2 2s si so
i o


D L D L
c c


  
                              


   (2) 


 


Also mechanical power E  is required to extrude (push) the lubricant through 
the thin film clearances, i.e. 
 


   1e ei eo A s i i o oT F v F v            (3) 
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where  


     ;i s i i o s o oF P P D c F P P D c       (4) 
 


are axial forces pushing fluid into the inner and outer sides of the seal, 
  


;i o
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m mv v
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      (5) 
 


are the lubricant axial velocities on each side of the seal; and  A is the oil 
volume-thermal expansion coefficient. Note that  
 


   ;i o
i i s i o o s o


i o
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 (6) 
 


A portion of the total mechanical power (shear + extrusion),  s e    is 
conducted into the seal cartridge or housing and into shaft. The other portion is 
carried away (convected) by the lubricant, thus increasing its temperature.  
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The temperature rise (T) on the lubricant (on each side of the seal) is 
determined from the balance of heat transported by the lubricant, i.e. 
 


   ~ ; ~i o
i i i o o s os


i p o pi o


T T T T T T
m C m C


  
     


     (7) 
 


where Cp is the lubricant specific heat and   represents a fraction of the 
mechanical power convected into the fluid flow. Note that lubricant temperature 
rises can be large since the fluid flow rates are (by necessity) small. =0.8 - 1.0 
when the seal walls are insulated. With a cooling jacket (typically water flow) 
then  <<1.  
 
LONG SEAL ROTORDYNAMIC FORCE COEFFICIENTS 
For a centered seal (vertical configuration or unloaded condition), the direct and 
cross-coupled stiffness (KXX, KYY and KXY, KYX) coefficients and damping 
(CXX, CYY and CXY, CYX) coefficients are: 
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where = RPM(/30) is the rotor speed in (rad/s).  
Note that the direct stiffnesses are zero and the 
cross-coupled stiffnesses increase (linearly) with 


shaft speed . The direct damping coefficients from the inner and outer sides 
of the seal are  
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  (9) 
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i.e. identical to that of a conventional (unloaded) cylindrical journal bearing. 
Thus, long annular seals are potential sources of rotordynamic 
instability! 
 


Note the cross-coupled stiffnesses are proportional to rotor speed () and to the 
third power of the seal diameter over clearance ratio (D/2c)3. 
 
In lieu of recent test data by Childs et al. (2006, 2007) that shows oil seal rings 
develop large added mass coefficients (smooth land and grooved 
configurations), formulas for direct added mass coefficients (MXX=MYY) are 
(Reinhardt, E., and Lund, J., 1975) 
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    (10) 


 
for the inner and outer sides of the seal, respectively. 
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OIL SEALS WITH IMPROVED STABILITY 
San Andrés (for Nova Corp., 1997) 


recommended the substitution of a long 
annular oil seal with a helically grooved seal 
to fix a (quite destructive) rotordynamic 
instability in a large size chemical mixer.  
The replacement was highly successful. 
 


A seal with axial grooves divides the 
overall seal length (L) into N-small 
portions, each of length Ls (<<D). In this 
case the seal cross-coupled stiffnesses 
reduce to: 
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Note that the direct damping coefficients are also reduced and the whirl 
frequency ratio remains unchanged at WFR=0.50. 
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An engineered helically grooved or 
spiral grooved seal pumps the 
lubricant backwards (towards the high 
pressure zone), thus producing a more 
effective sealing with a larger film 
clearance and reducing substantially 
the lubricant temperature raise. 
 


Furthermore, grooved seals provide 
direct stiffness (KXX, KYY) and reduce 
considerably the cross-coupled 
stiffnesses (KXY, KYX) while 
preserving the same leakage rate. 


 
FURTHER NOTES 
 Using large clearance seals is not recommended due to the excessive 


leakage rates of the sealing lubricant. 
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 Spirally grooved seals have consistently smaller load capacity, cross-
coupled stiffnesses and direct damping coefficients than smooth land 
seals. 


 Using a cooling jacket prevents overly large lubricant temperature rises 
and provides a way to control tight clearances.  
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NOTES 12(a) 


ANNULAR PRESSURE SEALS 
 
Summary 
Annular (damper) seals restrict secondary leakage between stages in a centrifugal pump 
or compressor . The lecture details the physical principle for generation of a direct 
stiffness in annular damper seals. Seals also generate force coefficients, stiffness-
damping-inertia, that greatly affect the rotordynamics of pumps, in particular those 
handling large density fluids. Highlights on the bulk-flow analysis of annular seals are 
given with details on the performance of two water seals – long and short, featuring the 
advantages of an anti-swirl brake to enhance the seal rotordynamic stability.  


Background 
Seal rotordynamic characteristic have a primary influence on the stability response of 
high-performance turbomachinery [1]. Non-contacting fluid seals, as shown in Figure 1, 
are leakage control devices minimizing secondary flows in pumps and compressors. The 
working fluid is a process liquid of light viscosity or a process gas. Annular seals, 
although geometrically similar to plain journal bearings, have a different flow structure 
dominated by flow turbulence and fluid inertia effects. Operating characteristics unique 
to seals are the large axial pressure gradients and large clearance to radius ratios, while 
the axial development of the circumferential velocity is of importance in the generation 
of cross-coupled (hydrodynamic) forces. Textured stator surfaces (macro roughness) to 
reduce the impact of undesirable cross-coupled dynamic forces and improve seal stability 
are by now common practice in damper seal technology [2]. Furthermore, annular seals 
as Lomakin bearings have potential application as support elements (damping bearings) 
in high speed cryogenic turbo pumps as well in process gas applications (compressors) 
[3]. 


Interstage Seal Impeller Eye Seal Balance Piston Seal  
Figure 1: Seals in a Multistage Centrifugal Pump or Compressor 
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The importance of seal flow phenomenon and its influence on the dynamic response of 
actual turbomachinery have prompted a large number of theoretical and experimental 
investigations. Seals, due to their relative position within the rotor-bearing system, can 
modify sensibly the system dynamic behavior since these elements typically "see" large 
amplitude rotor motions. This assertion is of particular importance in back-to-back 
compressor arrangements (see Figure 2). Furthermore, the force coefficients – stiffness, 
damping and inertia- of annular seals in large density liquid pumps can be as large as 
those arising in the oil-lubricated bearings; thus the seal elements effectively become load 
paths and modify the pump rotordynamic behavior. “Wet” and “dry” critical speeds, i.e. 
those accounting for seals’ forces and not, can be markedly different as noted in [1, 4]. 


Figure 2: Straight-Through and Back-to-back Compressor Configurations and 1st 
Mode Shapes (Childs [1]) 


 
Black [5] first explained the influence of seal forces on the rotordynamic behaviour of 
pumps. Since 1980, Childs and co-workers at TAMU conducted a comprehensive 
program for the analysis and testing of the dynamic force response of liquid and gas 
annular seals. Experimental programs with damper seals featuring various stator surface 
machined textures (macro roughness), see Figure 3, have confirmed the benefit of higher 
net damping forces and less leakage than in smooth surface seals. Reference [2] details 
major developments in gas seal applications, for example. 
 


 


 
Figure 3: Honeycomb seal for liquid turbopump (Childs [1]) 
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This lecture notes presents: 
a) The physical mechanism by which a direct stiffness arises in annular pressure seals 


even without journal (shaft) rotation. The model analyzes the flow balance and 
pressure drops at the entrance of a channel and on the ensuing thin film land. A 
maximum (optimum) stiffness is then predicted for a certain flow resistance balance 
between the entrance and land pressure drops. 


b) A brief description of the bulk-flow equations for prediction of the flow and force 
coefficients in annular pressure seals.  


c) Discussion of predictions for two water seals, long and short, for application as neck 
ring and interstage seals. The influences of seal length and inlet swirl on the 
rotordynamic force coefficients are thoroughly discussed.  


 
Refer to Childs [1] and San Andrés [6] for a critical review of the archival literature 
related to the chronological developments in annular pressure seal analyses as well as 
experimental results validating the model predictions. 
 
This lecture content material does not include a discussion on labyrinth seals or deep 
groove seals for liquid pump applications. Labyrinth seals are more common in 
centrifugal compressors.  
 
Non-contacting face seal technology has reached great maturity for specialized pumps 
handling chemically harmful fluids. This type of sealing system is not presented here, see 
Ref. [7] for details.   
 
Generation of stiffness in a sudden film contraction [8] 
Figure 4 shows the typical geometry of an annular pressure seal. Fluid at a high pressure 
(Ps) flows through an annular gap of radial clearance (c) and discharges at the exit 
pressure (Pa). L and D represent the seal length and diameter, respectively. 


L 


shaft D 


c 


Ps Pa 


Process 


Axial velocity, 
Vz 


fluid 
at high 


Exit pressure 


 
Figure 4: Geometry of an annular pressure seal 


The principle by which a direct stiffness originates in an annular seal is due to the inertial 
pressure drop at the seal inlet plane and its close interaction with the pressure drop (and 
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flow resistance) within the seal film land. The entrance effect is solely due to fluid inertia 
accelerating the fluid from an upstream stagnant condition to a flow with high axial speed 
and reduced static pressure at the seal inlet. The effect is known as Lomakin, in honor of 
the named Russian engineer who discovered the phenomenon in the late 1950's.  


 


 


L 


c Pa 


Axial velocity, Vz 


Ps 


Ps 


Pe 


Pa 


 z 


 
Figure 5: Sudden pressure drop due to fluid inertia in a sudden 


contraction 


In the following, the sealing fluid is regarded as incompressible and isoviscous and the 
turbulent flow through the film land fully developed. A similar analysis, though more 
laborious, can be conducted for compressible fluids (gases). Incidentally, laminar flow 
conditions may be easily accounted for in the following development [6]. 
 
Consider the flow through a channel of height c and length L, as shown in Figure 5. The 
channel is infinitely long in the direction perpendicular to the plane of the page. The fluid 
flows from a large plenum at pressure Ps, and as it enters the seal, there is a sudden 
pressure drop (and flow acceleration) at the sudden contraction. This Bernoulli-like effect 
is solely due to fluid inertia and expressed by, 


V )+(1 
2
1  -  PP 2


zse ξρ=     (1) 


where Ρe  is the fluid entrance pressure at the seal inlet, Vz is the bulk-flow axial velocity, 
and ξ is a non-isentropic (empirical) entrance loss coefficient (typical value ranging from 
0.0 to 0.25).  In equation (1), fluid stagnant conditions are considered well upstream of 
the seal inlet plane. Within the seal of land length L and small film clearance (c), a linear 
pressure drop evolves due to viscous (turbulent flow) effects, i.e.  


LV
c


k   +=   PP z2
z


ae
μ


−     (2) 


where κz = 12 for laminar flow or azz Rf=κ for turbulent flow. Note that the axial 
velocity is constant along the thin film due to flow continuity, i.e. Vz · c = Qz. In turbulent 
flows, the shear parameter κz is a function of the axial flow Reynolds number  (Ra). Using 
Hirs’ formulation [9], 
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with  n = 0.0066, m = -0.25 for smooth surface conditions. Thus, for turbulent flows, 
equation (2) becomes 
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Combining equations (1) and (4) renders the axial velocity Vz , i.e. 
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The procedure is iterative since the friction factor (fz) is a function of the axial velocity 
(Vz). Note that  f  


c
L   and  )  + (1  


2 zρζρ  can be thought as fluidic resistances [8]. The flow 


rate per unit depth (or seal circumference) is Qz = Vz · c. Thus, an increase in entrance 
loss factor as well as large friction in the land and seal length produce a reduction in 
leakage. The entrance pressure is also determined from equations (4) and (5) as  
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Note that the larger the ratio, [


L
c 


f 2
) + (1


z


ζ ], the larger the entrance pressure drop (Ps - Pe). 


Consider a small variation in film thickness so that c = co – Δc, with Δc<<c. A positive 
value of Δc means a reduction in the local film thickness.  The axial velocity and entrance 
pressure also undergo small changes, i.e. 
 


PPP;VVV eoezzoz ΔΔ +=+=     (7)  


A perturbation analysis of all variables, including the friction factors, leads to.  
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If ΔP is positive, then ΔVz is negative, i.e. when the film thickness decreases (-Δc<0) and 
ΔP raises, this produces a reduction in axial velocity Vz.  
 
Integration of the pressure field over the channel length (L) and depth (B) produces a 
fluid film reaction force (F)  
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The seal static stiffness (K) equals 
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=  is an entrance pressure ratio. A dimensionless stiffness follows as: 
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For smooth surfaces (m=-0.25). At peo=0.515 the stiffness is a maximum, maxK =0.3336. 
That is, an optimum stiffness arises when the inertial entrance pressure drop is slightly 
larger than 50% of the available pressure drop (Ps-Pa) across the channel length (L). 
Figure 6 displays the stiffness as a function of the entrance pressure ratio (peo). Small 
values of peo (→0) indicate too large entrance pressure losses due to fluid inertia, while 
too large values of peo (→1) show too much fluid resistance through the channel length 
(film land with tight clearance or overly long). None of these two conditions are 
favorable to induce a pronounced stiffening effect in an annular pressure seal. 
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Figure 6: Dimensionless stiffness versus entrance pressure ratio in a 
thin channel with a sudden inlet contraction 


Turbulent bulk flow model in annular pressure seals 
Most annular pressure seal analyses predict the dynamic force coefficients due to rotor 
axis translations about an equilibrium point, i.e. for cylindrical whirl motions. Dynamic 
force and moment coefficients due to rotor axis angular displacements are of importance 
in long annular seals, in particular balance pistons and in submerged pump motors [10].  
Figure 7 shows the four degrees of freedom in a long annular seal. For small amplitude 
shaft translational motions ΔeX(t), ΔeY(t) along two perpendicular axes (X,Y), and 
rotations δX(t),  δY(t) around these axes, the seal reaction forces (FX ,FY) and yawing and 
pitching moments (MX, MY) can be characterized by the following equation: 
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Equation (12) shows the complexity of a seal dynamic forced performance. There are 16 
stiffness coefficients, 16 damping coefficients, and 16 added mass or fluid inertia 
coefficients. Most rotordynamic software analyses consider only the 4 stiffness, 4 
damping and 4 inertia force coefficients due to shaft lateral motions (X, Y)1. 
 
In an annular seal, the flow regime is characterized by high levels of flow turbulence due 
to the large axial pressure drop (Ps - Pa) and high surface speed (ΩR) of the rotating shaft. 
A sudden pressure loss and fluid acceleration occur at the seal inlet plane due to the local 
contraction from the upstream plenum into the film clearance. The smallness of the seal 
clearance (c) as compared to its length or diameter (L, πD) allows cross-film integration 
of the three dimensional momentum and continuity equations, thus rendering a simpler 
set of transport equations for the bulk-flow velocities (Vx, Vz) and pressure (P) field [1, 6, 
10]. 


                                                 
1 XLTRC2 rotordynamics software suite at Texas A&M University does consider the full set of seal force and moment 
coefficients. 
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Figure 7: Seal with rotor translations 
(X,Y) and angulations (δX, δY)







NOTES 12(a): ANNULAR PRESSURE SEALS – © Dr. Luis San Andrés (2010)  
 


8


The bulk-flow equations for fully developed turbulent flows at high Reynolds numbers 
are given by [6]: 
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where h is the film thickness, (Vx, Vz) are the buk-flow (film averaged) circumferential 
and axial flow velocities, P is the pressure, and (κx κz) denote wall shear stress difference 
turbulence flow coefficients. These equations are strictly valid for flows without local 
recirculation zones, i.e. the bulk flow equations are of limited applicability in labyrinth 
seals or deep groove seals, for example. 
 
Chapters 4 and 5 of Childs textbook [1] provide full descriptions of the analysis and 
dynamic force response for liquid and gas seals, respectively. San Andrés et al. [11, 12, 
and 13] extend the model above by including thermal effects and two-phase flow 
characterization, both effects of importance in cryogenic liquid turbopump applications. 
 
There is commercial software available for prediction of seal leakage and dynamic force 
coefficients. Most seal practitioners use programs predicting the performance of centered 
seals, i.e. operating at a null or zero eccentricity. The rationale assumes the seals are NOT 
load bearing elements. However, this assumption may be quite unrealistic in liquid 
turbopumps, for example. That is, liquid seals are “load” paths that can affect the load 
distribution on the support oil lubricated bearings.  
 
The representation of seal forces for lateral motions (X, Y) is  
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where [K], [C], and [M] represent the matrices of stiffness, damping, and inertia force 
coefficients. Added mass or fluid inertia coefficients are of great importance in liquid 
seals due to the fluid density and the large flow Reynolds numbers typical of seal flow 
operation. Recall that fluid inertia effects are not important in (most) mineral oil-
lubricated bearings.  
 
Seal analysis at a centered position shows that the direct force coefficients are identical 
while the cross-coupled coefficients are anti symmetric, i.e. KYY = K XX , K XY = -K YX, etc.   
 
Note also that the seal force coefficients are frequency independent, i.e. remain constant 
for changes in excitation or whirl frequency. This assertion is correct only for (nearly) 
incompressible fluids such as water and liquid oxygen, for example. Other fluids, most 
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notably gases and liquefied natural gas, are quite compressible. Seals in these 
applications will produce force coefficients which vary greatly with excitation frequency 
[3]. 
 
San Andrés [8] presents an analysis for fully developed flow through a centered short 
length annular pressure seal. For small amplitude perturbations in rotor center 
displacements, a closed form first-order flow field is determined from the linearized fluid 
flow equations. Close form expressions for the force coefficients due to shaft (rotor) 
displacements are then derived and compared with predictions from other analyses. The 
analytical formulation is simple and easy to implement during preliminary pump design 
stages and multi-variable parametric studies.  
 
A predictive MATHCAD® computational program is available from the author upon 
request. The software tool is free. 
 
The prediction of annular seal static and dynamic force performance relies on the 
specification of  


• seal geometry (length, diameter and clearance); 
• operating conditions, speed and pressure supply and discharge; 
• fluid properties (density and viscosity); and, 
• empirical coefficients for the inlet pressure loss (ξ) and the inlet swirl ratio (α).  


 
These last parameters are of extreme importance since the direct and cross-coupled 
stiffnesses depend directly on the seal entrance conditions. At the inlet to the seal section, 
the typical boundary conditions are 


RVV +(1 
2
1  -  PP x


2
zse Ω== αξρ ,)              (17) 


where Ρe  is the fluid entrance pressure at the seal inlet, Vz is the bulk-flow axial 
velocity, and ξ is a non-isentropic (empirical) entrance loss coefficient. The inlet 
circumferential speed is a fraction of the rotor speed (ΩR). α=0.50 denotes a 50% inlet 
swirl typical of an entrance condition into an inter-stage seal or balance piston, for 
example.   α= ~ 0.60 is more appropriate at the inlet of a neck-ring seal. As will be seen 
shortly, the inlet circumferential condition plays a significant role in the generation of 
cross-coupled stiffness coefficients, the culprit elements leading to rotordynamic 
instability. In short, an inlet swirl factor α=0.50 leads to a whirl frequency ratio of 50%, 
i.e. an annular seal is “as bad” as a plain journal bearing in terms of generating follower 
forces that drive forward whirl in rotating machinery. 
 
Anti-swirl brakes, as shown in Figure 8, are used to reduce the pre-rotation of fluid into 
the seal, α→0.  In this way, rotordynamic stability is ensured at the cost of mechanical 
complexity. Other fixes, in particular in long seals representing balance pistons, include 
implementing “shunt injection,” i.e. forcing liquid somewhere along the seal length in a 
direction opposite to shaft rotation in order to reduce the development of the 
circumferential flow speed.  
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rotor
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retarding fluid swirl Fluid path


Rotor speed


Seal


 
Figure 8: Anti swirl brake at inlet of annular pressure seal 


The performance of annular seals is also affected by the condition of the rotor and stator 
surfaces.  Since seals are regarded as rub elements, i.e. subjected to temporary conditions 
of rubbing at start up and shut down; in practice, predictions are obtained for two 
clearances, one representing the nominal design or manufactured clearance, and the other 
clearance at twice the nominal value to denote a worn seal condition in actual operation. 
These predictions are obtained to determine the effect of clearance on seal leakage rate, 
power loss and, most importantly, force coefficients affecting the rotor dynamics of the 
pump (or compressor). In liquid pumps, changes in clearance can affect greatly the direct 
stiffness thus moving the rotor-bearing system critical speeds (natural frequencies) and 
producing significant changes in damping ratio. 
 


Comparison of performance between short and long annular seals for a 
water pump  
Predictions of leakage and force coefficients for two water seal configurations 
representing a neck ring seal (short length, L/D=0.2) and an inter-stage seal (~long seal 
L/D=0.5) follow. Table 1 shows the geometry of the smooth surfaces seals.  
The analysis shows results for the nominal clearance and twice its value representing a 
worn condition. In addition, an inlet swirl of 50% represents a fluid with an entrance 
circumferential velocity equal to 50% of rotor surface speed. The swirl factor α=0 
denotes the seal with an anti-swirl brake located at the seal inlet. The pressure drop across 
the seal varies in a quadratic form with rotor speed, ΔP ~ Ω2, with the nominal condition 
noted in the table. The speed range for the predictions is 1,000 to 5,000 rpm. 
 
Table 1: geometry and operating conditions of water seals in a liquid pump 


D = 152. 4 mm, L/D=0.20 and 0.50 
c=0.190 mm, nominal clearance 
smooth rotor and stator surfaces 
Nominal speed = 3600 rpm and pressure drop 34.4 bar 
Inlet loss coefficient ξ=0.1, Inlet swirl α=0.5 and 0.0 
Fluid: water at 30°C ( 0.792 cPoise, 995 kg/m3) 
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In the following figures, the left graphs show predictions for the long seal (L/D=0.50); 
while on the right graphs, results are depicted for the short seal, L/D=0.20. In addition, 
the predictions are shown are for the condition of inlet swirl at 50% rotor speed, unless 
otherwise stated. That is, the change in inlet swirl does not affect significantly several of 
the seal flow performance parameters. When important, the graphs and discussion will 
focus on this aspect.  
 
Inlet pressure. Figure 9 depicts the supply pressure into the seal increasing with rotor 
speed. The entrance pressures are lower for the worn seal (2c) due to an increase in flow 
rate that magnifies the fluid inertia inlet effect. The short seal shows a larger entrance 
pressure drop since the flow rate across the seal is larger (larger axial flow velocity). Inlet 
swirl has a minimal effect on the entrance pressure into the seal. 
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Figure 9: Supply and entrance pressures for two water seals, L/D=0.50 
and 0.20, and two clearances (c and 2c) versus rotor speed 


Flow rate. Figure 10 shows the worn seals (enlarged clearances) leak more than at the 
nominal clearance condition. The short length seals have a larger flow rate in spite of the 
reduced entrance pressure. The penalty in leakage increase as the seal wears will affect 
the overall efficiency of the liquid pump. Inlet swirl has no discernible effect on seal 
leakage. The seal leakage appears as proportional to shaft speed. However, its variation is 
proportional to ΔP1/2. Recall that the pressure drop varies with rotor speed, Ω2. 
 
Drag Power. Figure 11 shows that the long seals (L/D=0.5) have a larger drag power 
(torque x rotational speed) than the short length seals due to the larger area of fluid flow 
shearing. Inlet swirl is not significant in spite that the mean flow circumferential speed 
may be much less than 50% of rotor surface speed. 
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Figure 10: Leakage (flow rate) for two water seals, L/D=0.50 and 0.20, 
and two clearances (c and 2c) versus rotor speed 


Direct stiffness. Figure 12 depicts the direct stiffness coefficients, KXX=KYY, increasing 
rapidly with rotor speed, i.e. with supply (or entrance) pressure. The direct stiffness for 
the long seal is about twice as large as for the short seal, and comparable in magnitude to 
the stiffnesses of any oil lubricated bearing, for example. The worn seals show a dramatic 
reduction in direct stiffness. For example, at the nominal operating condition of 3,600 
rpm, the direct stiffnesses are ~50% of the values for the nominal clearances. This 
stiffness reduction will affect considerably the rotordynamic behaviour of a liquid pump. 
Recall that “wet” critical speeds depend on the seal direct stiffnesses which clearly drop 
as the seal wears out.    
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Figure 11: Drag power for two water seals, L/D=0.50 and 0.20, and two 
learances (c and 2c) versus rotor speed 
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Cross-coupled stiffness. Figure 13 displays the cross-coupled stiffness coefficients, KXY 
=-KYX, also increasing rapidly with rotor speed. The operating clearance has a direct 
impact on the generation of cross-coupled forces, in general KXY ~ 1/c for turbulent flow 
seals. Note that the vertical scale in both graphs is different. The long seal shows about 
five times larger cross-coupled stiffness than the short seal’s. The impact of inlet swirl is 
profound in the generation of cross-coupled forces. Note that in the long seal, a null pre 
swirl, α=0.0, aids to reduce considerably the generation of KXY since the circumferential 
flow is greatly retarded. This effect is more pronounced for the worn seal since the 
increase in leakage pushes faster the fluid through the seal without it having enough time 
to evolve towards the 50% surface speed condition.  
 
In the short length seal, on the other hand, the effect of null pre swirl is remarkable. The 
cross-coupled coefficients are effectively null (zero magnitude). Note that KXY < 0 
denotes a most favorable condition to avoid synchronous forward whirl, i.e. the cross-
coupled stiffness force acts effectively as a damping force. 
 
At the nominal operating condition, for the long seal and with a pre swirl ratio of 50%, 
KXY is as large as the direct stiffness coefficient, KXX, see Figure 12. In the short length 
seal, KXY ‘s are not as large as the direct stiffnesses. The larger the cross-coupled 
coefficients, the smaller the effective damping acting on the rotor-bearing system, 
Cef=CXX -(1/ω)KXY. 
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Figure 12: Direct stiffness coefficients for two water seals, L/D=0.50 
and 0.20, and two clearances (c and 2c) versus rotor speed 
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Figure 13: Cross-coupled stiffness coefficients for two water seals, 
L/D=0.50 and 0.20, and two clearances (c and 2c) versus rotor speed  
(note difference in vertical scales) 


 
Damping coefficients. Figure 15 shows the direct (CXX=CYY) and cross-coupled damping 
(CXY=-CYX ) coefficients for the two seals. In general, CXY < CXX, except for seals 
handling compressible fluids (gases). Incidentally, inlet pre swirl, α=0.0-0.50, has a 
negligible effect on the generation of damping coefficients. Damping arises from squeeze 
film effects and is not directly a function of rotor speed. The damping coefficients are a 
function of the effective turbulent flow viscosity, a function of the flow Reynolds number 
which increases with the pressure drop across the seal. In addition, for turbulent flows, 
the direct damping is inversely proportional to the operating clearance2. Note that the 
vertical scales in both graphs are different. Thus, the long seal shows about five times 
larger direct damping than the short length seal. Seal wear enlarging its operating 
clearance leads to a dramatic drop in direct damping.  


                                                 
2 In laminar flow journal bearings, the damping and cross-stiffness coefficients are proportional to (1/c)3. See Lecture 
5. That is, they grow rapidly with a decrease in clearance (c). 
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Figure 14: Direct and cross-damping coefficients for two water seals, 
L/D=0.50 and 0.20, and two clearances (c and 2c) versus rotor speed  
(note difference in vertical scales) 


Inertia force coefficients. Figure 15 shows the direct (MXX=MYY) added mass coefficient 
for the two seals. In general, |MXY| < MXX, and thus not shown here. Inlet swirl has no 
discernible effect on the direct inertia force coefficient. Note that the added mass is 
practically invariant with shaft speed, in particular for the long seal case. Incidentally, 
note the different scales in both graphs. The long seal renders a much larger inertia 
coefficient. Its magnitude is significant and will be added as an apparent mass into the 
pump rotor dynamic structural model. This is one more reason for the differences 
between “wet” and “dry” critical speeds in liquid pumps.  
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Figure 15: Direct and cross-inertia force coefficients for two water 
seals, L/D=0.50 and 0.20, and two clearances (c and 2c) versus rotor 
speed  (note differences in vertical scale) 
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The equation below gives a closed form expression for prediction of the added mass 
coefficient (MXX) in a seal or squeeze film damper [14]. The simple formula will serve to 
realize the importance of fluid inertia on seal dynamic force performance. Mfluid denotes 
the mass of liquid within the seal film land while Msteel represents the mass of a solid 
piece of steel with density set to 7,800 kg/m3.  


Mfluid ρ π⋅ D⋅ L⋅ c⋅:= Msteel ρ steel π⋅
D
2


⎛⎜
⎝


⎞⎟
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2
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MXX ρ π⋅
D
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⎞
⎟
⎟
⎟
⎠


⋅:=


    (18)  
 
The calculated magnitudes of added mass coefficients for the short and long seals 
(nominal clearance) are 


MXX 2.91kg=L
D


0.2=


Mfluid 2.76 10 3−
× kg= MXX


Msteel
0.67=


Msteel 4.34kg=


MXX 42.03kg=L
D


0.5=


Mfluid 6.9 10 3−
× kg= MXX


Msteel
3.88=


Msteel 10.84kg=  
 
Although the mass of water contained within the seal land is just a few grams, the seal 
added mass coefficient is orders of magnitude larger. The added mass or inertia 
coefficient (MXX) is of the same order of magnitude, and for L/D=0.5 even larger, than the 
mass of a solid piece of rotor of identical length. The approximate formula is very good 
for quick estimations of added mass coefficients, as a direct comparison to the numerical 
results shown in Figure 15 attests. 
 
Recently, Delgado [15] develops a comprehensible analysis for the prediction of damping 
and added mass coefficients in seals and dampers with internal grooves. The author 
demonstrates that both feed and inner-land grooves in annular seals act to amplify 
significantly the seal added mass, predicted magnitudes are much larger than simple 
models would otherwise predict, e.g. Eqn. (18). The novel analysis is on the mark when 
reproducing unusual test results obtained by Childs et al. [16]. 
   
Whirl frequency ratio: Figure 16 depicts the stability indicator (WFR) for the two seals.  
With an inlet pre-swirl equal to 50% of rotor speed, the WFR is always 0.50. In this case, 
KXY /(Ω CXX) =0.50, indicates that the pump can not operate at a sped above twice the 
critical speed of the rotor-bearing-seal system. Furthermore, consider that this critical 
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speed is the “wet” one, i.e. lower than the “dry” critical speed, since fluid inertia effects 
will effectively reduce the “dry” system natural frequency. 
 


Whirl ratio vs shaft speed
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Figure 16: Whirl frequency ratio for two water seals, L/D=0.50 and 0.20, 
and two clearances (c and 2c) versus rotor speed  (note difference in 
vertical scales) 


The effect of an anti-swirl break on the performance of the seal is dramatic. For a 
condition of no pre-swirl, the short length seal actually presents a negative whirl 
frequency ratio, meaning that the seal is impervious to (unstable) forward rotor whirl 
motions. The effect of the null pre-swirl is less notorious in the long seal, since the fluid 
flowing through the seal does have enough “residence” time to develop a circumferential 
mean flow velocity approaching the 50% rotor speed. Clearly, swirl brakes are inefficient 
devices for very long seals, L/D > 1, as it would be the case of a balance piston, for 
example.  
 
Extensive experimentation demonstrated that seals with macroscopic roughness; i.e. 
textured stator surfaces, offer major improvements in reducing leakage as well as cross-
coupled stiffness coefficients [2]. Figure 17 depicts two textured seals and a conventional 
labyrinth seal (teeth on stator).  A textured surface like a round-hole pattern or a 
honeycomb increases the friction thus reducing leakage, and aids to retard the 
development of the circumferential flow velocity -the physical condition generating the 
cross-coupled stiffness coefficients. However, surface texturing on the rotor works the 
other way around while still reducing leakage, i.e. the circumferential flow develops 
faster causing even more severe rotordynamic instabilities. Since the late 1990s, 
compressor and pump manufacturers, as well as end users, are implementing efficiently 
textured seals with great commercial success [17]. 
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Figure 17: Hole-pattern, honeycomb and labyrinth seal configurations 
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NOTES 12(b) 


HYDROSTATIC JOURNAL BEARINGS 
 
Summary 
In a hydrostatic bearing an external source of pressurized fluid forces lubricant between 
two surfaces; thus enabling non-contacting operation and the ability to support a load. 
Hydrostatic bearings can support large loads without journal rotation and provide large 
(accurate and controllable) direct stiffness as well as damping (energy dissipation) 
coefficients. 
 
Hydrostatic bearings rely on external fluid pressurization to generate load support and a 
large centering stiffness, even in the absence of journal rotation. The load capacity and 
direct stiffness of hydrostatic bearings do not depend on fluid viscosity, thus making 
them ideal rotor support elements in process fluid pumps. Current applications intend to 
replace oil lubricated bearing with hybrid bearings to improve efficiency with shorten 
rotor spans and less mechanical complexity. Current cryogenic liquid turbopumps 
implement hydrostatic bearings enabling an all fluid film bearing technology with very 
low number of parts and no DN limit operation. Details on the bulk-flow analysis of 
turbulent flow hydrostatic bearings are given along with the discussion of performance 
characteristics, static and dynamic, for hydrostatic bearings supporting a water pump. 
Angled liquid injection produces a hydrostatic bearing with unsurpassed dynamic force 
and stability characteristics.      


 
Introduction 
Hydrostatic bearings derive their load capacity not from shear flow driven effects 
(hydrodynamic wedge and surface sliding) but rather from the combination of pressure 
versus flow resistance effects through a feed restrictor and in the film lands. Figure 1 
depicts thrust and radial hydrostatic bearing configurations for process fluid lubrication 
turbopumps. Table 1 presents the major advantages and disadvantages of hydrostatic 
bearings. 


 
Fig 1. Hydrostatic radial and thrust bearings for process fluid rotating 


machinery 
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The hydrostatic stiffness is of unique importance for the centering of high-precision 
milling machines, gyroscopes, large arena movable seating areas, telescope bearings, and 
even cryogenic fluid turbo pumps for rocket engines. Note that hydrostatic bearings 
require an external pressurized supply system and some type of flow restrictor. Also, 
under dynamic motions, hydrostatic bearings may display a pneumatic hammer effect due 
to fluid compressibility. However, and most importantly, the load and static stiffness of a 
hydrostatic bearing are independent of fluid viscosity; thus making this bearing type very 
attractive for application with non-viscous fluids, including gases and cryogens. 
 


Table 1. Hydrostatic Bearings: Advantages and Disadvantages 
 
Advantages Disadvantages 
Support very large loads. The load support 
is a function of the pressure drop across the 
bearing and the area of fluid pressure 
action.  
 
Load does not depend on film thickness or 
lubricant viscosity. 
 
Long life (infinite in theory) without wear 
of surfaces 
 
Provide stiffness and damping coefficients 
of very large magnitude. Excellent for 
exact positioning and control. 
 
 
  


Require ancillary equipment. Larger 
installation and maintenance costs. 
 
Need of fluid filtration equipment. Loss of 
performance with fluid contamination. 
 
High power consumption because of 
pumping losses. 
 
Potential to induce hydrodynamic 
instability in hybrid mode operation. 
 
Potential to show pneumatic hammer 
instability for highly compressible fluids, 
i.e. loss of damping at low and high 
frequencies of operation due to compliance 
and time lag of trapped fluid volumes. 
 


 
Consider the fundamental operation of a simple one dimensional hydrostatic bearing 
[Rowe 1983, San Andrés 2002 ]. The flow is laminar and fluid inertia effects are not 
accounted for; i.e. a classical lubrication example. Figure 2 depicts a 1D bearing of very 
large width (B). A hydrostatic bearing combines two flow restrictions in series, one at the 
feed or supply port, and the other through the film lands. In the feed restrictor (orifice, 
capillary, etc.) the fluid drops its pressure from the supply value (Ps) to a magnitude (PR) 
within a recess or pocket of typically large volume (see Figure 3). Since the recess is 
deep, the pocket pressure is regarded as uniform over the entire recess area AR=bB. The 
fluid then flows from the recess into the film lands of small thickness h, and discharges to 
ambient pressure through the bearing sides, say Pa=0 for simplicity.  
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Fig. 2 Geometry of a simple 1-D hydrostatic bearing 


The flow rate (Qr) across the restrictor is a function of the pressure drop, Qt=f(Ps-PR). For 
an orifice and capillary feeding,   
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  (1)          
 
with Ao and Cd as the orifice area and empirical discharge coefficient, respectively. (d, ℓc) 
are the diameter and length of the capillary tube, typically ℓc » 20 d. The orifice 
coefficient (Cd) ranges from 0.6 to 1.0, depending on the flow condition (Reynolds 
number), the orifice geometry and even the film thickness. Under turbulent flow 
conditions, tests and CFD analysis evidence Cd ~0.80. 


 
Across the bearing film lands the fluid drops in pressure from (PR) to ambient pressure, 
Pa. In the laminar flow of an incompressible fluid, the flow rate is a function of the 
pressure drop and equals 
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where B is the bearing width and L is the film length with thickness h. Presently, no 
surface motion along the x-axis is accounted for, i.e. the bearing is stationary. Under 
steady state conditions, the flow through the restrictor equals the flow through the film 
lands, i.e. 
 ( ) laRlRsr QPPCPPfQ 2)(2 =−=−=    (3)  


with Cl = B h3/(12 μ L)  as a flow-conductance along the film land. Eqn. (3) permits the 
determination of the recess pressure (PR) given the film conductance (Cl) and feed 
restrictor parameters. For bearing design, a value of pocket pressure (PR) is desired, and 
Eqn. (3) serves to size the diameter of the supply restrictor. 


For the simple bearing considered, the pressure field on the bearing surface takes the 
shape shown in Figure 3. Note that the recess pressure is assumed uniform or constant 
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within the pocket extent (b). The assertion is not valid for flows with large Reynolds 
numbers (highly turbulent), shallow pockets and with large journal rotational speeds. The 
film pressure generates a reaction force,  
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where Pa=0 for simplicity. The force (F) is proportional to the recess pressure (PR) and 
the area B (L + b). Note that, in the absence of surface relative motion, a hydrostatic 
bearing has a limit load capacity, [B(L+b)]Ps. 
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Fig. 3 Pressure profile in a  simple 1-D hydrostatic bearing 


A static change in film thickness (h0+∆h) with ∆h « h0, causes the recess pressure to 
change to PRo +∆PR,  since the flow conductance varies. ∆PR <0 as ∆h>0. Integration of 
the change in pressure gives rise to a the hydrostatic stiffness K 
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−==  , a = 2 for orifice or a = 1 for capillary feed. The hydrostatic 


stiffness is proportional to the bearing area [B(L+b]), the recess pressure (PRo), and 
inversely proportional to the film thickness (ho). Most importantly, the stiffness is not an 
explicit function of fluid viscosity. Figure 4 depicts the dimensionless stiffness,  
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versus recess pressure ratio, pro=PRo/Ps, for bearings with orifice and capillary feeds, 
respectively. Hydrostatic bearings with orifice compensation have larger stiffness than 
capillary fed bearings. Orifices are usually preferred since their diameters are larger than 
those of capillaries. This is important since restrictor clogging may cause catastrophic 
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bearing failure, unless a micron size filtering device is used as part of the fluid feed 
(supply) system into the bearing.  
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Fig. 4 Static stiffness for simple hydrostatic bearing (laminar flow w/o fluid inertia 
effects, incompressible fluid) 


A maximum (optimum) hydrostatic stiffness occurs for a given recess pressure pro. For a 
capillary pro=0.500, while for an orifice pro=0.5857. In a capillary fed hydrostatic bearing, 
the pressure drops across the restrictor should match the pressure drop across the film 
lands. The optimum stiffness arises from an impedance matching between the feed 
restrictor and the flow resistance through the film lands. In the figure, a low value of 
recess pressure indicates a large flow resistance (small conductance) through the 
restrictor, while a large recess pressure denotes a large flow resistance through the film 
lands. 


 
In sum, hydrostatic bearings with orifice restrictors offer larger stiffness than with 
capillary restrictors. The bearing direct stiffness depends on the pocket pressure (< supply 
pressure) and does not dependent explicitly on lubricant viscosity. Without an external 
pressure supply and restrictor, there is no stiffness or load support. 


 
Effects of excitation frequency, pocket volume, and fluid compressibility 
on the dynamic force coefficients of a hybrid bearing 
The analysis above explains the physics for the generation of support stiffness in a simple 
hydrostatic bearing configuration.  The stiffness derived is static, strictly valid for low 
frequency motions. Motions at other frequencies produce notable changes in both the 
stiffness and damping force coefficients. Fluid compressibility within the recess volume 
and surface velocity (hydrodynamic effects) must be accounted for in a hybrid bearing 
(combination hydrostatic / hydrodynamic).  
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The conservation of mass within the recess of a hydrostatic bearing balances the flow 
through the restrictor (Qr), the flow into the film lands (2Ql) and the time rate of change 
of fluid mass accumulated within the pocket,  
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where Vrec=B d(h+hR) is the recess volume, h(t) is the film thickness, and hR is the 
machined pocket depth. The density and pressure in a compressible liquid are related 
through the material bulk-modulus κ, i.e. dPd


κ
ρρ = . 


 
Let the film thickness h be the superposition of a steady-state value (h0) and a harmonic 
motion of small amplitude Δh and frequency (ω), i.e. 
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with )( 00 Rrecrec hhAV += . Eqn (9) shows that the fluid mass in the pocket volume varies 
dynamically with changes in film thickness and pocket pressure, thus introducing a 
pressure-lag effect which can induce undesirable dynamic force effects, namely 
pneumatic hammer with generation of a “negative” damping coefficient. Introducing a 
break frequency (ωB)  [San Andrés 1991]  
 


  
( ) ( )


L
Bh


V
Z


V
Z


P
Q


recrecR


r
B μ


κκω
6


11 3
0


000


0 +=
+


=    (10) 


 
Note that ωB→∞ for an incompressible fluid (κ→∞). A lengthy algebraic analysis leads 
to the following expressions for frequency dependent force coefficients [San Andrés 
1991], 
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where 


B
f


ω
ω


=  is a frequency ratio, 
oB


o


C
K


ω
α =   is a damping loss ratio; and (K0, C0) are 


the stiffness and damping coefficients for an incompressible fluid, i.e. one without liquid 
compressibility ( ∞→κ ),  
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==  .  Note that the static stiffness coefficient (K0) is directly 


proportional to the recess pressure (PR). On the other hand, the "static" damping 
coefficient (C0) depends solely on the fluid viscosity and the bearing area, and it grows 
rapidly as the film thickness (h) decreases. Incidentally, the surface speed (U) does not 
aid to the generation of force coefficients in laminar flow hydrostatic bearings.  
 
Figure 5 depicts the hydrostatic bearing stiffness (K) and damping (C) coefficients for 
increasing excitation frequency ratios (ω/ωB). The results correspond to a bearing with a 
deep pocket depth (hR/h=10) and damping loss factor (α=0.42) typical of a LH2 
application. In general, the hydrostatic stiffness increases as the excitation frequency 
grows while the damping coefficient drops dramatically.  See [San Andrés 1991] for a 
more detailed analysis with examples related to cryogenic fluid hydrostatic bearings.  
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Fig. 5 Effect of excitation frequency on the (dimensionless) direct stiffness and 


damping force coefficients of a simple hydrostatic bearing 


For excitations at low frequencies, ω→0 (ω <<ωB),  
 


  ( )αωω −→→ == 1; 0)0(0)0( CCKK    (13)  
 
there is a loss of damping due to fluid compressibility effects (α>0). This reduction may 
cause the bearing to become unstable even under static conditions if α >1. This 
phenomenon, known as pneumatic hammer, is characteristic of gas hydrostatic bearings 
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with feed pockets. Fir stability purposes, gas hydrostatic bearings avoid pockets or 
volumes, using feed holes impinging directly on the bearing surface. 
 
For excitations at large frequencies, (ω→∞, ω >>ωB), 


  0; )(
0


)( === ∞→∞∞→ ωω α
C


K
KK    (14) 


there is  a complete loss of damping accompanied by an increase in dynamic stiffness. 
For excitations at a frequency coinciding with the break frequency (ωB), the stiffness and 
damping coefficients are 
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Thus, the damping coefficient is just 50% of the value obtained at low frequencies.  
 
The force coefficients are frequency independent in a nearly incompressible fluid (κ→0, 
ωB→∞). However, even in commonly assumed incompressible liquids, the fluid bulk 
modulus decreases rapidly with minute (volume) concentrations of dissolved gases.    
 
To reduce fluid compressibility effects (avoid loss of damping) it is desirable to design 
the hydrostatic bearing with a break frequency (ωB) as high as possible, and/or to operate 
the bearing under dynamic conditions with excitation frequencies well below the break 
frequency, i.e. f<<1.  
 
From Eqn. (10), to increase the break frequency, large values for the following ratio are 
needed,  
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That is, deep pockets (hR/h0>>1) tend to aggravate the loss of damping at low excitation 
frequencies.  
   
It is notable to mention that the whirl frequency ratio for a centered hybrid bearing is  
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Hence, hybrid bearings (combination hydrostatic – hydrodynamic) show the same limited 
whirl frequency ratio as plain cylindrical bearings. This ratio could even be worse, WFR 
> 0.5 if α > 0, i.e. if fluid compressibility –recess volume effects are important. 


 


Modern applications of hydrostatic bearings 
The importance of hybrid (combination hydrostatic and hydrodynamic) journal and thrust 
bearings and damping seal bearings as radial support elements cryogenic turbomachinery 
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has steadily grown. Compact - low count part turbo pumps operate sub critically at 
exceedingly high shaft speeds (> 100 krpm) and delivering pressures as large as 550 bar. 
Advanced primary power require of externally pressurized fluid film bearings to support 
the expected large thrust and lateral radial loads.  


 
Hybrid journal bearings (HJB) enable smaller and lighter turbopumps through no bearing 
DN life limitation and sub critical rotor operation, i.e. at speeds below the first elastic 
mode of the rotor-bearing system. HJBs offer durability, low friction and wear, accuracy 
of positioning, and large direct stiffness and damping force coefficients. These features 
enable the design (and operation) of un-shrouded impellers with a significant increase in 
the turbopump mechanical efficiency. The growth of an "all-fluid-film- bearing" 
technology for advanced and less costly (per launch cost) turbopumps demands the 
development of analytical models and design tools, the testing of components, and the 
implementation of the technology [San Andrés, 1990, 1995, 1997].  


 
Note that for the cryogenic fluid application as well as others handling low viscosity 
liquids, the large surface speeds and the large pressure differential determine flow 
conditions with high levels of flow turbulence and fluid inertia effects. Flow turbulence 
increases the lubricant “effective” viscosity, thus enhancing the load capacity due to 
hydrodynamic effects and increasing the bearing energy dissipation characteristics, i.e. 
more damping.  Computational programs based on the Reynolds equation of classical 
lubrication, i.e. no fluid inertia, are ill-prepared to render adequate predictions of hybrid 
bearing performance, static and dynamic force coefficients.  


 


Bulk flow analysis of turbulent flow hydrostatic bearings 
Comprehensive computational analyses for prediction of the static and dynamic forced 
response of process fluid hybrid bearings, radial and thrust, are available [San Andrés, 
1990-2000]. The analyses address to the most important theoretical and practical issues 
related to the operation and dynamic performance of cryogenic fluid film bearings, i.e. 
geometric configuration, operating conditions, flow turbulence, fluid inertia, realistic 
fluid properties, thermal effects, and two-phase flow phenomena. Extensive test 
measurements were conducted to benchmark the predictive codes. A brief overview of 
the physical model for the fluid flow in hydrostatic bearing follows. 
 
Figure 6 shows the geometry of a hybrid (combination hydrostatic/hydrodynamic) journal 
bearing.  A liquid at high pressure (Ps) is supplied through orifice restrictors and 
impinges into the bearing recesses with a mean pressure (PR).  The fluid injection is 
typically radial; though in some instances it could be at an angle opposing shaft rotation. 
Angled injection aids to reduce the development of the fluid flow circumferential speed 
and reduce, even eliminate, the cross-coupled stiffness force coefficients.  
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Fig 6. Schematic views of a radial hydrostatic/hydrodynamic journal bearing 


The computational model considers the fully developed turbulent bulk-flow of a fluid 
whose material properties depend on its local thermo physical state of pressure and 
temperature.  The general transport equations including these features are [San Andrés 
1995]: 
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Above (Vx, Vz) are the buk-flow (film averaged) circumferential and axial flow velocities, 
P is the pressure, and (κx κz) denote wall shear stress turbulent flow coefficients. The wall 
shear stress parameters κy=κx=½(κJ+κB) with κJ=fJ ReJ, κB=fB ReB, and the friction 
factors (fJ,B) depend on the bearing and journal surface conditions and the flow Reynolds 
numbers relative to the rotating (ReJ) and stationary (ReB) surfaces. 
  
The pressure field within the bearing pockets or recesses is determined from flow 
continuity with the film lands, momentum exchange at the orifice plane and a viscous rise 
due to journal rotation.  As shown in Fig. 7, at the recess edges, an inertial pressure drop 
also occurs due to the sudden transition from the recess of depth (hR) into the film lands 
of thickness (h).  Past the recesses, the liquid then flows through the film lands and the 
pressure drops to the discharge value (Pa).  
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Consider a recess with axial length (l) and circumferential extent (b). The recess area (AR) 
equals (lxb) and the feed orifice has diameter do with a feed volume equal to Vsupply. CFD 
predictions and measurements show the generation of hydrodynamic pressures within the 
pocket, followed by sharp inertial pressure drops at the recess edges [San Andrés 1990, 
1995].   
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Fig. 7. Turbulent flow pressure distribution in a pocket of a hybrid bearing 


The continuity equation at a hydrostatic recess establishes a balance among the mass flow 
through the feed orifice (MR), the flow through the boundaries of the recess into the film 
lands (MΓ), and the accumulation of fluid mass within the recess volume, VR=[AR 
(h+hR)+Vsupply]. That is,  
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where Ao = Cd (πdo


2/4) is the effective orifice area, and  ( )∫
Γ


Γ Γ⋅= dVhM ηρ is the 


outflow from the pocket into the bearing film lands. The circumferential pressure 
downstream of the feed orifice, +


RP , is given, as in a Rayleigh step bearing] 
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Fluid inertia causes a sudden pressure drop at the interface between a recess and the film 
lands. The fluid pressures, −


RP , entering into the film lands bounding a recess are 
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where (ξ) represents empirical entrance loss coefficients at the recess edges, axial and 
circumferential. The sudden pressure drop is accounted for only if the fluid flow 
effectively enters into the thin film lands.  
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San Andrés and Childs [1997] extend the bulk-flow model to account for fluid injection 
at an angle and opposing shaft rotation. This design feature retards the full development 
of the circumferential flow velocity, thus reducing the cross-coupled stiffness coefficients 
which prevent the operation of hybrid bearings at large rotational speeds. San Andrés 
[2007] presents time transient response predictions during the start-up of a cryogenic 
turbopump to determine the lift-off speed of the rotor on its hydrostatic bearings.  
  


Example of hydrostatic bearings for load support in a water pump 
The design of a water hydrostatic bearing to replace a mineral oil lubricated bearings in a 
multiple stage water pump follows. The hydrostatic bearing size, length and diameter, see 
Table 2, are similar to the original bearing to reduce costs in redesigning or re-machining 
the pump casing and shaft (journal). The pressurized water feeding the hydrostatic 
bearing is routed from the pump discharge volute.  Eliminating the lubrication system 
offers distinct advantages, including better system performance, lower operational cost, 
and extended periods for maintenance.  


 
Table 2: Geometry and operating conditions of a water lubricated hydrostatic 


bearing 


Diameter, D=Length, L = 152. 4 mm 
Nominal clearance, c =0.102 mm,  


5 pockets: axial length l=51 mm, arc 41° , depth=0.381 mm 
Orifice diameter: 3.2 mm (Cd=0.80) 
Smooth bearing and rotor surfaces 


Fluid: water at 30°C ( 0.792 cPoise, 995 kg/m3)  
Nominal speed = 3600 rpm, Supply pressure= 34.4 bar 


 
 
Note that L/D=1, D/c=1,465. The ratio of pockets area to bearing area, (L x D), equals 
0.19, and the pocket depth to clearance ratio is 3.75. The pocket area is relatively small to 
avoid excessive flow rate requirements. The pockets are shallow to reduce the likelihood 
of pneumatic hammer effects and to enhance hydrodynamic effects at the pocket ends.  
Hydrostatic bearings with reduced pocket areas (< 25 % of bearing area) and shallow 
pockets are modern considerations relying on the desired adequate dynamic forced 
performance of the bearing. 


 
The design analysis considers the bearing operating without an applied load at its 
centered position, i.e. null eccentricity. Figure 8 shows the bearing flow rate and drag 
power increasing as the orifice diameter is enlarged since the pocket pressure increases. 
The bearing flow rate is 1.67 kg/s (~100 liter/min), which is large when compared to the 
requirements of an oil-lubricated bearing, yet not large enough to cause a severe 
reduction in pump available flow rate (~ 4% pump flow routed to bearings).  At the 
nominal speed of operation (3.6 krpm), the size of the orifice is selected to provide the 
maximum direct (support) stiffness while keeping a low flow rate to avoid a penalty on  
pump performance.  
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Fig. 8 Performance parameters for water hydrostatic bearing: pocket pressure, 
flow rate and drag power versus orifice diameter.  Nominal centered operating 
condition 


Figure 9 depicts the stiffness coefficients, direct (KXX) and cross-coupled (KXY), versus the 
pocket pressure ratio. The direct stiffness peaks at a pocket pressure ratio ~ 0.60 which 
requires an orifice of diameter equal to 3.20 mm. The magnitude of direct stiffness equals 
350 MN/m, which is large enough to support the static load of 5 kN with a relatively 
small rotor eccentricity. Note that the cross coupled stiffness is about 50% lower than the 
direct stiffness, thus indicating journal rotation hydrodynamic effects will affect greatly 
the bearing dynamic forced performance.  
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Fig. 9 Direct and cross-coupled stiffnesses versus orifice diameter (and 
recess pressure ratio)  for water hydrostatic bearing. Nominal centered 


operating condition  (no load) 


Figure 10 presents the viscous damping (CXX, CYX) and fluid inertia (MXX, MYX)   force 
coefficients decreasing with the recess pressure ratio (and also with the size of the feed 
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orifice). The added mass coefficient is ~ 166 kg at the selected orifice diameter. In spite 
of the large mass predicted, its effect on reducing the direct dynamic stiffness is relatively 
small, as seen on Figure 8 in the (KXX - MXX ω2) curve. The direct damping coefficients 
are large due to flow turbulence conditions; however, the cross-coupled stiffness 
coefficients are also large. Thus, the whirl frequency ratio1, WFR= KXY /(CXX ω),  is ~0.60. 
This too restrictive stability indicator could easily prevent the implementation of the 
water bearing into the pump application. To resolve this issue, a modification with angled 
fluid injection directed against shaft rotation is recommended. See [San Andrés, 2006] for 
details on the water hydrostatic operation with a load of 5 kN and for speeds ranging 
from 1krpm to 5 krpm.  
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Fig. 10. Damping and inertia force coefficients versus recess pressure ratio. 
Nominal centered operating condition  


                                                 
1 The onset and persistence of severe (large amplitude) sub synchronous vibrations at rotational speeds 
above a certain threshold speed evidences a hydrodynamic instability in rotor-fluid film bearing systems 
that is due to the effect of journal rotational speed in the shear induced flow field. This condition is typical 
of fixed geometry bearings. The threshold speed corresponds to the rotor speed at which a bearing loses its 
effective damping, and any small perturbation from an equilibrium position will determine unbounded rotor 
motions.  The whirl frequency ratio (WFR) denotes the ratio between the onset whirl frequency (typically 
the system first critical speed) and the threshold speed of instability.  Plain journal bearings show a WFR 
equal to 0.50 for small to moderate operating eccentricities (light loads), and thus instability onsets at 
rotational speeds equal to twice the system first critical speed.  Measurements in hybrid bearings verify 
closely the prediction of WFR =0.50.  In some circumstances the WFR even increases above 0.50, in 
particular for low rotational speeds and large supply pressures 
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Closure 
Modern high performance turbomachinery operating at high speeds and large pressures 
incorporate process fluid hybrid (hydrostatic/hydrodynamic) journal and thrust bearings 
to reduce the numbers of parts and size, and to eliminate expensive mineral lubricant 
storage and pumping, thus further satisfying stringent environmental constraints.  
 
Despite the many advantages offered by hydrostatic bearings, rotordynamic instabilities 
due to hydrodynamic (shear flow) and fluid compressibility effects are issues of primary 
concern for high speed operation with large pressure differentials.  Pneumatic hammer 
effects are avoided by appropriate selection of the flow restrictor, by designing bearing 
recesses with small volumes, and by restricting bearing operation to flow conditions 
where the pressure differential is a small fraction of the liquid bulk modulus.  
 
Fixed geometry hydrostatic bearings have limited stability characteristics with a whirl 
frequency ratio (WFR) ~0.50, as in plain hydrodynamic journal bearings. The 50% 
frequency whirl condition limits severely the application of hydrostatic bearings to high 
speed, light weight and flexible rotating machinery. Concerted efforts have been directed 
towards conceiving hybrid bearings with improved stability characteristics, and without 
loss in centering stiffness and damping ability.  Some of the technological advances 
evolved from analysis and engineering design, while others followed empiricism and well 
known past experiences.   


 
The recommended fixes to improve the hydrodynamic stability of hydrostatic bearings by 
reducing or eliminating the whirl frequency ratio (WFR) are: 
a) Use textured bearing surfaces to decrease the cross-coupled   stiffness coefficients.  


Test results with a knurled-pattern HJB show a WFR as low as 0.30 but with a reduced 
load capacity and direct stiffness when compared to a smooth surface HJB [Franchek et 
al., 1995] 


 
b) Use angled liquid injection opposing journal rotation to reduce the development of the 


circumferential flow velocity leading to a virtual elimination of cross-coupled stiffness 
coefficients [San Andrés and Childs, 1997].  Measurements conducted on a five-pocket 
water hydrostatic bearing verify the analysis, demonstrating that angled injection aids 
in reducing the whirl frequency ratio without decreasing the bearing centering stiffness 
and load capacity. However, the effectiveness of angled injection is reduced as shaft 
speed increases towards high values where shear flow driven effects overcome the 
hydrostatic effect.  


  
c) Introduce geometrical changes in the bearing to induce a stiffness orthotropy. For 


example, circumferentially asymmetric grooved bearings can produce large anisotropy 
on the rotordynamic force coefficients [San Andrés, 2001]. This design enhances 
stability by rendering a lower direct stiffness in the plane of the axial grooves as 
compared to the orthogonal stiffness. Measurements have demonstrated the 
enhancement in performance.   
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d) Implement flexure pivot-tilting pad hydrostatic bearings [San Andrés and Zhu, 2007, 
San Andrés et al. 2008], see Figure 11. These bearings are mechanically complex 
though nearly free of instabilities, i.e. the pads support flexibility eliminates the 
generation of cross-coupled stiffnesses. This type of bearing with air as the lubricant 
has shown wondrous potential for ready implementation in high-speed micro 
turbomachinery.  


 


 
 


Fig. 11. Flexure pivot hydrostatic bearing for high speed turbomachinery 
 


Extensive analytical and experimental research has brought forward the technology of 
hybrid journal bearings for advanced cryogenic turbo pump and process fluid 
applications. Computational analyses accounting for flow turbulence, fluid inertia and 
compressibility, and thermal effects are available to bearing designers and rotordynamics 
engineers. Laboratory measurements of load, leakage and torque, and identification of 
rotordynamic force coefficients aided to benchmark the computational model predictions. 
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NOTES 13 
SQUEEZE FILM DAMPERS: OPERATION, MODELS AND 


TECHNICAL ISSUES 
 
Squeeze film bearing dampers are lubricated elements providing viscous damping in mechanical 
systems. Squeeze film dampers in rotating machinery provide structural isolation, reduce the 
amplitudes of rotor response to imbalance, and in some instances, assist to suppress 
rotordynamic instability. 
 
Background 
The most commonly recurring problems in rotordynamics are excessive steady state synchronous 
vibration levels and subsynchronous rotor instabilities. The first problem may be reduced by 
improved balancing, or by introducing modifications into the rotor-bearing system to move the 
system critical speeds out of the operating range, or by introducing external damping to limit peak 
amplitudes at traversed critical speeds. Subsynchronous rotor instabilities may be avoided by 
eliminating the instability mechanism, by rising the natural frequency of the rotor-bearing system as 
high as possible, or by introducing damping to increase the onset rotor speed of instability [Vance  
1988, Childs 1993].  


 
Lightweight, high performance engines exhibit a trend towards increased flexibility leading to a high 
sensitivity to imbalance with large vibration levels and reduced reliability. Squeeze film dampers 
(SFDs) are essential components of high-speed turbomachinery since they offer the unique 
advantages of dissipation of vibration energy and isolation of structural components, as well as the 
capability to improve the dynamic stability characteristics of inherently unstable rotor-bearing 
systems. SFDs are used primarily in aircraft jet engines to provide viscous damping to rolling 
element bearings which themselves have little or no damping. One other important application is 
related to high performance compressor units where SFDs are installed in series with tilting pad 
bearings to reduce (soften) bearing support stiffness while providing additional damping as a safety 
mechanism to prevent rotordynamic instabilities. In addition, in geared compressors, the SFD assists 
to reduce and isolate multiple frequency excitations transmitted through the bull gear, for example. 
[San Andrés, 2002]. 


 
Zeidan et al. [1996] give a history of the SFD in jet engines and detail design practices for successful 
SFD operation in commercial turbomachinery. Adilleta and Della Pietra [2002] provide  a 
comprehensive review of the relevant analytical and experimental work conducted on SFDs. San 
Andrés and Delgado [2007] discuss more recent SFD experimental research and present a 
mechanically sealed SFD impervious to air entrainment.  


 
In spite of the many successful applications, industry often recognizes that the design of SFDs is 
based on overly simplified predictive models that either fail to incorporate or simply neglect unique 
features (structural and fluidic) that affect the damper dynamic force performance. Actual damper 
performance can range from erratic to non-functioning depending on the operating conditions. Issues 
such as lubricant cavitation or air entrainment are of fundamental interest [San Andrés and Diaz, 
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2003]. 
 
Application fundamentals 


Figure 1 shows a typical SFD configuration consisting of an inner nonrotating journal and a 
stationary outer bearing, both nearly equal in diameter. The journal is mounted on the external race 
of a rolling element bearing and prevented from spinning with loose pins or a squirrel cage that 
provides a centering elastic mechanism. The annular squeeze film, typically less than 0.250 mm, 
between the journal and housing is filled with a lubricant provided as a splash from the rolling 
element bearing lubrication system or by a dedicated pressurized delivery. In operation, as the 
journal moves due to dynamic forces acting on the system, the fluid is displaced to accommodate 
these motions. As a result, hydrodynamic squeeze film pressures exert reaction forces on the journal 
and provide for a mechanism to attenuate transmitted forces and to reduce the rotor amplitude of 
motion. 


 
 


 


Fig 1. Squeeze film damper (SFD) configuration. a) SFD with central feed groove. b) SFD 
with end grooves and seals [1] 


 
 


Figure 2 shows conceptual views of intershaft dampers for multiple-spool gas turbine engines. These 
dampers are subject to whirl motions resulting from the combined imbalance response of both low 
speed (LS) and high speed (HS) rotors. Most SFDs in US aircraft engines incorporate the 
arrangements in Figure 2(a & b) where the journal (and rolling element bearing) is elastically 
supported, and the bearing is rigidly attached to the engine frame. The (soft) spring support and 
squeeze film damper “see” the same deflections though the dynamic loads divide unequally between 
them.  
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Fig. 2 Schematic views of intershaft damper configurations: a) squeeze film rotates with low 
speed (LS) rotor, b) Squeeze film rotates with high speed (HS) rotor, c) double ball bearing-
squirrel cage design 


 
Dampers in jet engines operate with low values of external pressurization (2 or 3 bar max.) to avoid 
excessive weight and volume in the lubrication system. Note also that most aircraft engines do not 
use any type of hydrodynamic journal bearings to avoid the risk of fluid film bearing induced 
instabilities. (However, in some dual shaft jet engines, the inter-spool fluid film bearing, shown in 
Figure 2a, is known to be a source of such instabilities).  
 
The amount of damping produced is the critical design consideration. If damping is too large, 
the SFD acts as a rigid constraint to the rotor-bearing system with large forces transmitted to 
the supporting structure. If damping is too light, the damper is ineffective and likely to permit 
large amplitudes of vibratory motion with likely subsynchronous motions. Note also that a 
damping element to be effective needs to be "soft", thus allowing for motion at the location of 
the support, in particular for the modes of vibration of interest. 


 
The damper geometry (length, diameter and clearance), operating speed and fluid properties (density 
and viscosity) determine, on first instance, the dynamic forced performance of SFDs. However, there 
are other important considerations that ultimately determine an appropriate operation.   
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The relevant issues are: 
 


a) kinematics of journal (tied to rotor system and acting forces) 
b) level of supply pressure for adequate flow rate and cooling, 
c) feeding and end sealing mechanisms, 
d) fluid inertia effects, 
e) type of lubricant dynamic cavitation (vapor or gaseous) or air ingestion and entrapment. 
 


Models for SFD dynamic forced performance 
Most dampers in practice are of short axial length, L/D < 0.50, and accommodate some type of end 
seals to increase their damping capability. SFDs include additional features such as high resistance 
orifices for pressure delivery and discharge and/or deep grooves acting as flow sources or sinks of 
uniform pressure.  


 
Squeeze film damper reaction forces and force coefficients are conveniently divided into two major 
types related to the specific journal center kinematics. For imbalance response analyses, SFD forces 
are obtained under the assumption of circular centered orbits. The model is applicable when the rotor 
traverses a critical speed, for example, where the imbalance force induces large amplitude orbital 
motions as the system may have little damping. On the other hand, for rotordynamic critical speed 
and stability analyses, SFD force coefficients are obtained for small amplitude journal center 
motions about a static (equilibrium) position. Only recently, computational tools analyze rotor-
bearing system transient response events by considering the instantaneous SFD reaction forces as a 
function of the time varying journal kinematics that satisfy the equations of motion of the rotating 
system. 


 
Figure 3 depicts a schematic view of a journal whirling within its bearing of radius R ( ½ diameter 
D) and length L. Lubricant of density ρ and viscosity μ fills the radial clearance c between the 
bearing and its journal. The film thickness h is squeezed as the journal whirls and displaces fluid. 
The film thickness equals 
 


         ( ) cos ( ) sin
o oX X Y Yh c e e t e e t           (1) 


where    , and ( ), ( )
o oX Y X Ye e e t e t   denote the static and dynamic components of journal motion, 


respectively. In operation, the dynamic journal motions coincide with the rotor speed for 
synchronous excitation from rotor imbalance, for example.  


 
Unlike in conventional oil lubricated journal bearings, fluid inertia affects the performance of SFDs 
due to their typically larger clearances and operation at high frequencies.  The squeeze film 


Reynolds number  2


Res


c
 ranges from one to 50 in most practical applications. Fluid inertia 


effects are relevant in dampers with large clearances, using light viscous lubricants and operating at 
high frequencies (well above 10,000 rpm). In general, large clearance SFDs generate significant 
direct added mass coefficients that may lower significantly the critical speeds of compact rotating 
machinery, as in some small jet engine applications. 
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Considering temporal fluid inertia effects only, the equation governing the generation of the 
dynamic pressure field P is  
 
 


 
 


Fig. 3   View of whirling journal and coordinate system for analysis 
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   (2) 


 
Numerical solutions to Eqn. (2) with specific boundary conditions and accounting for lubricant 
cavitation (vapor or gas) are readily available [San Andrés, 2002]. Detailed physics based solutions 
modeling air ingestion and entrapment are yet to appear. The phenomenon is exceedingly complex, 
only understood in a time ensemble averaged manner, as described by San Andrés and Diaz [2003].  
  
SFD rotordynamic force coefficients 
SFD reaction forces due to small amplitude journal center motions about a static eccentric or off-


centered position  , 0
o oX S Ye e e  , as shown in Fig. 4, are of importance in the evaluation of 


critical speeds and stability of rotor-bearing systems mounted on dampers with soft or no centering 
springs. The damper forces are represented in the linearized form  
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  (3)  


 
where (VX, VY) and (AX, AY) are the instantaneous journal center velocities and accelerations in the X 
and Y directions, respectively.  


, ,
,


X Y
C M    


 are the damping and inertia force coefficients, 


respectively. Recall that a SFD does not produce direct stiffnesses, i.e. without journal spinning, a 
damper cannot generate film pressures given a journal static displacement.  
 


 
Table 1 shows formulas for the linearized force coefficients of a short length, open ends SFD. The 
coefficients are nonlinear functions of the static journal eccentricity ratio ( = eS/c). The fluid inertia 
or added mass coefficients are strictly valid for small to moderate squeeze film Reynolds numbers, 


 2


Res


c
 < 10.  


 
 
 
 
 
 
 
 
 
 


static 
eccentricity 
(es)  


whirl 
orbit 


X 


Y 


-FX= CXX VX + CXY VY + MXX AX + MXY AY 


 
-FY= CYX VX + CYY VY + MYX AX + MYY AY 


Fig. 4. SFD model: small amplitude journal motions about an 
static off-centered position 


VX ,VY : velocities
 
AX ,AY : accelerations 







 
 


NOTES 13. SQUEEZE FILM DAMPERS: OPERATION, MODELS & ISSUES – © Dr. Luis San Andrés (2010)  
 


7


 
 
 


Table 1. Linearized force coefficients for open ends SFD 
(small amplitude motions about a journal off-center static position =ey/c) 
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  =  i , and  = 1.2-1.0 for small to moderately large squeeze film Reynolds numbers (Res < 


50). Note that the coefficients CYX and MYX are nil. 
 


 For an open ends damper with L=63.5 mm, D=127 mm, c=0.137 mm and a light oil (= 2.14 
10-3 Pa.s, kg/m3the graphs below depict the damping and inertia force coefficients derived 
for small amplitude motions about a static eccentric position (eX). Note that L/D=0.5, i.e., the 
geometry does not represent strictly a short length damper. Realize that CXX > CYY,  MXX > MYY; CXY 
=CYX=0,  MXY =MYX=0. Both damping and inertia force coefficients are nonlinear, growing rapidly 
with the (static) eccentricity (eX/c). Most importantly, the added mass coefficients are large in 
magnitude;  MXX. MYY >~ 24.4 kg. Consider that the mass of fluid in the annular region  is 
(DLc)=2.72 gram!  


 
Force coefficients for the -film (cavitated) damper are not shown. The author believes that these 


force coefficients are not usually apparent since for (very) small amplitude journal motions, oil 
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cavitation will not occur.   
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Fig. XX. Example: squeeze film damping and inertia coefficients for small amplitude motions 
about an off-centered journal static position (full film model)  


  
 
SFD force coefficients for circular centered orbits 


Figure 5 shows a SFD journal describing circular centered orbits of amplitude (e) and whirl 
frequency ().  The damper generates a constant reaction film force in a reference frame rotating 
with frequency . The radial (Fr) and tangential (Ft) components of the damper reaction force are 
 
      ;r rt t rr r t tt t tr rF C V M A F C V M A       (4) 


  
where Vt=e and Ar=-e are the journal center tangential speed and radial acceleration, 
respectively. (Ctt, Crt) denote the direct and cross-coupled viscous damping coefficients, and (Mrr, 
Mtr) are fluid inertia force coefficients, respectively. Recall that SFDs do not generate stiffness 
coefficients, i.e. reaction forces due to static journal displacements. The archival literature misleads 
the designer when referring to a damper direct radial stiffness, Krr= Crt , that is frequency 
dependent. 
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For the short-length open ends SFD model, the force coefficients using the rather simplistic -film 
assumption (i.e. half the damper circumference develops film cavitation) are [Vance 1988] 
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Fig. 5 SFD model: circular centered orbit with radius e 
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where (L, D, c) denote the damper axial length, diameter and radial clearance, respectively, (are 
the (effective) lubricant viscosity and density, and = e/c is the dimensionless orbit radius.  The orbit 
radius (e) should not be confused with the static journal offset displacement, null in this case. Note 
that the coefficients in Eqs. (5) and (6) are not strictly rotordynamic coefficients as their classical 
definition implies small amplitude motions (perturbations) about a journal equilibrium position. 
  
The coefficients above are determined under the assumptions of an isoviscous and incompressible 
lubricant that is supplied with a low feed external pressure. Most importantly, the model assumes a 
squeeze film fully submerged in a lubricant bath. For the full film model (no oil cavitation), the 
direct coefficients (Ctt, Mrr) are twice the values given by Eqs. (5) and (6), while the cross-coupled 
coefficients (Crt, Mtr) are null. The inertia force coefficients are strictly valid for small to moderate 


squeeze film Reynolds numbers,  2


Res


c
 < 10. 


 
Figure 6 depicts the damping and inertia force coefficients for a short length, open ends SFD 
describing circular centered orbits (CCOs). The damper length L=50 mm, c=0.080 mm, L/D=0.25, 
with  lubricant viscosity and density (,) equal to 20 centiPoise and 890 kg/m3, respectively. The 
predicted force coefficients are highly nonlinear functions of the orbit radius (e). Note the large 
magnitudes of direct damping (Ctt) even for the centered position (e=0). The rapid growth of the 
cross-coupled damping coefficient (Crt) is referred as a “stiffness hardening effect,” and the culprit 
of severe nonlinear (multiple valued) rotor response accompanied with jump-phenomenon and orbit-
instability. However, these effects, mostly predicted by overly simplified theoretical analyses, are 
hardly ever reported in practice. Note that air entrainment is most prevalent for large amplitude 
orbital motions (ec) and high frequencies of operation, determining a damper forced response 
quite different from the one derived from the force coefficients shown in the Figure.  
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Fig. 6. Open ends SFD force coefficients for circular centered motions. (Short length  
film model) 


 
In actuality, stiffness hardening, Krr >>0, is most likely due to contact and rubbing of the journal 


and bearing surfaces that may occur while a rotor traverses a critical speed with large orbital motions 
due to little damping or excessive rotor imbalance, for example. In these events, damper forces are 
negligible since the fluid film is probably ruptured with large amounts of air entrainment. Thus, 
predictions from a nonlinear rotor-SFD model based on the -film short length SFD bear little 
relationship to reality. 
 
The inertia force coefficients (Mrr, Mrt) have an effect on the system rotordynamic response, This is 
so in spite that the fluid mass, Mo, contained in the film (DLc) is just a few grams. Note that the 
journal mass (Mj=s R2L) for a steel construction (s=7,800 kg/m3) is 12.25 kg. Thus, the SFD 
added mass coefficients are of the same order of magnitude as the actual journal mass. Hence, fluid 
inertia in SFDs impacts the location of critical speeds in compact rotors operating at high rotational 
speeds.  
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For small amplitude motions (orbit radius e/c < 0.25), the SFD force coefficients in a full film, open 
ends SFD are [Reinhhart and Lund (1975), San Andrés (1985)]. The formulas are applicable to finite 
length SFDs.  
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(7) 


 
Note that the damping coefficient is proportional to 1/c3 while the inertia coefficient varies with 1/c. 
Most importantly, contrary to a too long mistakenly held assumption, the added mass coefficient is 
ever present; that is, it is a physical property of the mechanical system. Its influence on the dynamics 
of a rotor-bearing system, however, becomes dominant at high frequencies, i.e. when the rotor 
accelerations (Ar = -eω2) are large. At these operating conditions, the inertia forces |MrrAr| are of the 
same order or even larger than the viscous force |CttVt| , where Vt = eω. 


 
There is good correlation between test derived and predicted force coefficients for SFDs operating 
with circular centered orbits [San Andrés, 1996]. The test damping coefficients (Ctt, Crt) fall in 
between the - and full-film predictions. At low frequencies, the cavitation zone does not extend 
over half the damper circumference, and thus the damping coefficients approach the full film 
predictions. On the other hand, as the whirl frequency increases so does the squeeze film pressure 
and the cavitation zone extends. The experimental values thus approach those derived for the -film 
model. It is most important to note that the experiments were conducted in a damper fully 
submerged within a lubricant bath. The test rig had closed any path that would permit the natural 
ingestion and entrapment of air. This condition in practice is most difficult to achieve. San Andrés 
and Delgado 2007] present more recent SFD parameters agreeing well with predictions, in particular 
for added mass coefficients, see Figure 7. 
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Fig. 7. Squeeze film damping coefficients identified from varying load amplitude - multi-
frequency  sine sweep forced excitations.  Predictions for circular centered orbits (CCO) and 
radial motions about an off-centered journal static position (ORM).  


  
The effect of air entrainment on squeeze film pressures and damper reaction forces has been 
thoroughly researched qualitatively and quantitatively in the last decade. San Andrés and Diaz 
[2003] report fundamental experimental results and advance an analytical model for thus most 
prevalent operating condition (see later for a further discussion on this issue). 


 
A brief discussion follows on other physical and operating conditions that affect the performance of 
squeeze film dampers.  


 
SFDs with feed grooves 
Some dampers are designed with feed and discharge grooves to ensure a continuous flow of 
lubricant through the squeeze film lands, see Figure 8. A groove is thought to provide a uniform 
flow source with constant pressure around the bearing circumference. A central feed groove also 
divides the flow region into two separate squeeze film dampers working in parallel, i.e. the reaction 
forces from each land add.   


 
For the central groove configuration, theory predicts forces about one-fourth less than that available 
for a damper with twice the land length and no groove. Experiments, however, demonstrate that 
grooved dampers generate much larger levels of forces that those derived from accepted theory. 
Large amplitude dynamic pressures are measured at the groove regions connecting the two squeeze 
film regions. Thus, a central groove does not isolate the adjacent film lands, but rather interacts with 
the squeeze film regions [Arauz et al., 1997, Childs et al. 2007]. 


 
Delgado [2008]  presents a novel model for prediction of the forced response of grooved SFDs and 
grooved oil seal rings. The model includes fluid inertia and flow interactions at the groove-film land 
interface that amplify the generation of squeeze film pressures. Delgado’s model predictions are in 
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excellent agreement with measured stiffness, damping and inertia force coefficients in oil seal rings 
with multiple cavities and in dampers with inlet and discharge deep grooves. 


 


 
 
 


SFDs with end seals 
SFDs usually incorporate some type of end seals to reduce the through flow and to amplify the 
viscous damping. The most common end seal configurations include O-rings, piston rings, and end 
plate (clearance gap) seals, as shown in Figure 9. Measurements and analysis show larger forces for 
the end-sealed condition, although the lubricant heats rapidly (lower viscosity) for designs with little 
through flows. The design of end seals is highly empirical and requires of “leakage correction 
factors” that can only be extracted from exhaustive experimentation. To date, only experience 
dictates the best type of sealing to be implemented.  


 
SFDs in jet engine rotors incorporate piston rings as end seals. However, ring cocking and locking 
with a resulting excessive oil leakage is a pervasive problem. Implementing patented (proprietary) 
designs seems to resolve the reliability issue.  


 
Many industrial compressor applications also implement dampers with O-ring end seals due to their 
simplicity and good sealing. However, these applications are restricted to low static loads and low 
temperatures. Material compatibility of the O-rings with the lubricant and gas external medium is a 
design consideration. Long-term relaxation and creep of the elastomeric O-rings, when supporting 
large static loads, is an issue usually overlooked that later can prove fatal.   
 


film 


   Oil in 


SFD with feed groove 


journal 


bearing 
Oil in 


SFD with end grooves and seals 


bearing 


journal 


film 


seal 


                  Fig. 8 SFD: grooved configurations 
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Fig. 9 SFD: types on end seals 


 
San Andrés and Delgado [2007] detail parameter identification measurements conducted on a 
squeeze film damper (SFD) featuring a non-rotating mechanical seal that effectively eliminates 
lubricant side leakage. The SFD-seal arrangement generates dissipative forces due to viscous and 
dry-friction effects from the lubricant film and surfaces in contact. The identified system damping 
coefficients are frequency and motion amplitude dependent due to the dry friction interaction at the 
mechanical seal interface. Squeeze film force coefficients, damping and added mass, are in 
agreement with simple predictive formulas for an uncavitated lubricant condition and are similar for 
both flow restrictor sizes. The SFD-mechanical seal arrangement effectively prevents air ingestion 
and entrapment and generates predicable force coefficients for the range of frequencies tested. 
 
Lubricant cavitation vs. air ingestion in squeeze film dampers 
Zeidan et al. [1996] identify SFD operation with distinct types of dynamic fluid cavitation (vapor 
or gas) and a regime due to air ingestion and entrapment. The appearance of a particular 
condition depends on the damper type (sealed or open to ambient), magnitude of supply pressure 
and flow rate, whirl frequency, and magnitude of dynamic load producing (small or large) 
journal excursions within the film clearance.  
 
Gas cavitation following the journal motion appears in ventilated (open ends) SFDs 
operating at low frequencies and with small to moderate journal amplitude motions. A well 
defined cavitation bubble containing the release of dissolved gas in the lubricant or air entrained 
from the vented sides follows the whirling motion of the journal; i.e. the cavitation zone appears 
steady in a rotating frame. The traveling gas bubble appears not to affect the generation of the 
squeeze film pressure in the full film zone. The persistence of this cavitation regime upon 
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reaching steady operating conditions (high frequencies) in an aircraft application is remote. 
 
Lubricant vapor cavitation appears in dampers with tight end seals that prevent 
entrainment of the external gas media and for operation with a sufficiently large supply pressure. 
In this last case, the through oil flow also prevents the ingestion of air. Furthermore, the lubricant 
must be relatively free of dissolved gases such as air, a condition not readily found in practice.  
 
Figure 10 depicts a measured dynamic film pressure versus time in a damper operating with 
lubricant vapor cavitation. The experiment illustrates the variation of dynamic squeeze film 
pressure and gap (film thickness) for five periods of journal orbital motion. The whirl frequency 
and centered journal orbital amplitude equal 75 Hz and 0.180 mm, respectively. The damper 
radial clearance is 0.343 mm. The damper is fully flooded in a lubricant bath; the supply pressure 
is 1.45 bar and the discharge is at atmospheric pressure. Note that the pressure profile is smooth 
and shows nearly identical shapes for each consecutive period of motion. A (flat) constant 
pressure zone develops at nearly zero absolute pressure, and it corresponds to the rupture of the 
film and formation of a vapor filled cavity. The cavity appears only during that portion of the 
journal motion cycle where the film gap increases. The vapor bubble collapses immediately as 
the local pressure rises above the lubricant vapor pressure. In general, correlations of measured 
pressures and vapor cavitation extent with predictions based on traditional film rupture models 
are satisfactory. [Diaz and San Andrés, 1999]. 


 


 
Fig. 10 Dynamic film pressure (bar) and local film gap (mm x 10) in a flooded SFD leading 
to vapor cavitation 
 
 
Air ingestion and entrapment appear in vented dampers operating at high frequencies and 
with low magnitudes of supply (feed) pressure, i.e. small throughout flow rates. Figure 11 
depicts the measured dynamic film pressure versus time in a SFD with air entrainment. The 
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operating conditions are identical to those for the measurements depicted in Figure 10, except 
that the damper is open to ambient conditions, i.e. not submerged in an oil bath.  A suction 
pressure draws air into the thin film at the locations where the local film gap is increasing. The 
cyclic fluid motion leads to air entrapment, with bubbles remaining in the zones of dynamic 
pressure generation above ambient. Air ingestion leads to the formation of intermittent air 
fingering surrounded by liquid striations, see Figure 12 for vivid details. These islands of air may 
shrink, break up into smaller zones, or diffuse within the lubricant. The size and concentration of 
the ingested air fingers depend on the journal whirl frequency and amplitude and the flow rate. 
The fluid at the damper discharge is cloudy and foamy. [San Andrés and Diaz, 2003] 
 
 


 
Fig. 11. Dynamic film pressures (bar) and local film gap (mm x 10) in a SFD operating 
with air entrainment  
 
The dynamic pressures with air entrainment, Figure 11, show important differences when 
compared to those pressures induced by lubricant vapor cavitation, Figure 10. In the case of air 
ingestion, the squeeze film pressures differ markedly from one period to the next, and with peak 
pressures showing large variations. Furthermore, the pressure flat zone is nearly at ambient 
pressure. Note that subambient film pressures are also generated.  
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(a) t = 0.026 s      (b) t = 0.028 s    (c) t = 0.030 s 
P = 3 kPa at Z2         P = 30 kPa at Z2         P = 50 kPa at Z2 
h = 140m            h = 270m         h = 380m 


Z1 Z2 


1cm 


 
 
Fig. 12 Photographs of SFD flow field with air ingestion and entrapment. Tests with whirl 
frequency at 25 Hz and feed pressure 1.93 bar. Elapsed time for photographs is 2 ms 
(Period = 40 ms). 


 
Inevitably, the vast majority of SFDs operate with foam-like fluids considering the low values of 
pressure supply (small flow rate), large damper clearances, and high operating whirl frequencies. 
Of course, mixed operation regimes can also occur in practice. For instance, tightly sealed 
dampers may show both vapor and air entrainment type cavitation where gas bubbles may 
coexist around a large lubricant vapor bubble. Note that the entrapment of air delays the increase 
of film pressures since there is less liquid lubricant filling the damper clearance. Ultimately, 
operation at high frequencies leads to an increase in air ingestion, preventing any further oil 
vapor cavitation, and reducing considerably the forces available from the SFD.  


 
Careful experimentation demonstrates that air ingestion and entrapment degrades considerably the 
forced response of open ends SFDs [San Andrés and Diaz, 2003]. A simple criterion gives the 
likelihood of air entrainment in a damper. A feed-squeeze flow parameter () relates the lubricant 
supply flow rate Qoil to the dynamic change in volume within the squeeze film gap, i.e. 


     



eDL


Qoil       (7)  


If  >1 then no air entrainment occurs, i.e. the through flow is sufficient to fill the volume change 
caused by the journal whirl motion. On the other hand, air ingestion and entrapment will occur 
when  <1. The lower the feed-squeeze parameter (), the more severe the degradation in damper 
forced performance. The experimental results advance an empirical correlation between  and 
the amount of air entrained (volume concentration of air) in the lubricant, thus providing 
certainty in the modeling of the mixture. Note that Qoil is proportional to the difference between 
lubricant supply pressure and discharge pressure and to the flow conductances in the film lands 
and through the feed ports. The flow conductances (~1/resistances) are a function of the damper 
clearance and feed characteristics, lubricant and mixture viscosities, etc.   Thus, air entrainment 
is device dependent, and its severity increases with the amplitude and frequency of journal 
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motion. Air ingestion can be prevented by increasing the supply pressure (not practical) to 
ensure a sufficiently large through lubricant flow rate. 
 
Modern squeeze film dampers 
The basic design of SFDs changed little until the late 1990’s when the novel wire-EDM processes 
allowed the construction of integral SFDs which offer distinct advantages such as reduced overall 
weight and length of the damper structure with less number of parts, accuracy of positioning 
(centering), and a split segment construction allowing easier assembly, inspection and retrofit than 
with any other type of damper.  


 
Flexure pivot tilting pad bearings offer similar construction features while minimizing (assembly) 
stack up tolerances and avoiding pivot wear and fretting. These features are most important in 
aircraft engines where reduced weight and size are of utmost consideration. The integral damper, as 
shown in Figure 13, comprises of segmented pads instead of a fully cylindrical journal. Thin 
structured webs attach the inner and outer rings and perform the function of elastic supports. The 
thin gap between the pads and the outer ring forms the squeeze film lands. Each pad can be 
manufactured with a different clearance to counter the static deflection due to rotor weight. End 
seals restricting the axial flow through the film lands dampers provide the means to increase the 
damping coefficients by raising the hydrodynamic pressure in a pad film land. The series 
combination of a tilting pad bearing and a squeeze film damper has been implemented in numerous 
compressors to introduce flexibility and damping to the bearing support. The proper design of these 
two mechanical elements allows for the optimum damping coefficient at the bearing support and 
accurate relocation of the (rigid mode) rotor bearing system critical speeds away from the operating 
speed range. De Santiago et al. [1999] provide experimental verification and theoretical validations 
of the damping capability of sealed integral dampers and demonstrate the benefits of this novel 
technology for application in modern high performance turbomachinery.  


 


 
 


Fig. 13. Series integral SFD and flexure pivot tilting pad bearing 
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Closure 
Decades of practice demonstrate that SFDs generate the required damping even when operating with 
persistent air entrainment. Damper support flexibility (structural stiffness) is the key parameter that 
allows the device intended operation in a practical application. Incidentally, the actual reduction of 
predicted damping at high frequencies (due to air ingestion, for example) is beneficial in rotor-
bearing systems operating at supercritical speeds. However, the trend toward higher operating 
speeds and more stringent operating conditions demands of a reliable predictive physical model, 
experimentally verified.   
 
Childs [1993] noted that, because of lubricant cavitation and unquantifiable air ingestion, correlation 
between theory and experiment is less compelling for SFDs than journal bearings. In practice SFDs 
operate with low magnitudes of oil feed pressure (5 bar max.) that generally do not prevent the 
lubricant in the fluid film lands from liquid vaporization or entrainment of external gaseous media 
into the film lands. Open-ends SFDs are prone to develop a flow regime where the ingestion of air 
leads to the formation of a bubbly lubricant. Actual practice demonstrates that air ingestion greatly 
affects the SFD dynamic forced response.  


 
URL http://rotorlab.tamu.edu  stores digital movies recorded in a transparent squeeze film 
damper while operating with air entrainment1. The movies vividly depict air ingestion and 
entrapment cycles with notable effects on the recorded squeeze film pressures and ensuing 
damper dynamic forced response. 


 
Most (numerical) models  for prediction of finite length SFD forced response assume lubricant vapor 
cavitation, i.e. an operating condition likely to be found with very tight end seals or when the 
damper is fully submerged in a lubricant bath. Understanding of air entrainment, a pervasive 
phenomenon in SFDs, has just begun. 
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Handout # 14 (MEEN 626) Application example 


Experimental identification of bearing force coefficients 
 
Experimental identification of the dynamic force coefficients of bearings, seals and other rotor 
support elements is of importance (a) to predict, at the design stage, the dynamic force performance 
of a rotor using these elements; (b) to reproduce rotordynamic performance when troubleshooting 
rotor-bearing system malfunctions or searching for instability sources; and (c) to validate (and 
calibrate) predictive tools for bearing and seal analyses. The ultimate goal is to collect e a reliable 
data base from which to determine the confidence of bearing and/or seal operation under both 
normal design conditions and extreme environments due to unforeseen events.  


In addition, even advanced predictive computational physics based models are very limited or non-
existing for certain bearing and seal configurations and with stringent particular operating 
conditions, and thus experimental measurement of the actual element force coefficients constitute 
the only option available to generate engineering results of interest. Squeeze film dampers 
operating with persistent air ingestion and entrapment are an application example where systematic 
experimentation becomes mandatory. 
 
The widespread availability and low-cost of PC high-speed data acquisition equipment and (real 
time) data signal processing have promoted dramatic advancements in the field of bearing and seal 
parameter identification. In most cases, methods are restricted to the laboratory environment and 
strictly applicable to rigid rotor configurations and identical bearing supports. Time and frequency 
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domain based parameter identification procedures are based on the seminal works of Goodwin 
[1991] and Nordmann [1980], respectively.   
 
Tiwari, R., Lees, A.W., Friswell, M.I.  2004. “Identification of Dynamic Bearing Parameters: A Review.”  
The Shock and Vibration Digest,  36, pp. 99-124. 
The paper reviews the most popular test techniques and analysis methods to identify linearized force coefficients 
in fluid film bearings. The methods include time and frequency domain procedures, while experimentation 
focuses on the types of dynamic load excitation most efficient for a particular procedure.   The review also 
includes physics based mathematical modeling with governing equations of the test bearing element or rotor-bearing 
system, parameter extraction algorithms, and uncertainty in the estimates.  The classification of identification 
techniques is based on the method used to excite the test element or system: short duration (impacts and shock loads), 
periodic load excitation, fixed or sine-sweep and including imbalance induced forces, and random load excitation 
techniques. 
 
Identification algorithms consider the test bearing or support as a two degree of freedom 
mechanical system undergoing lateral motions (x, y)(t) and with readily available (measured) 
support transmitted forces and rotor displacements from which test impedances or mobilities are 
obtained. Curve fits to the appropriate transfer functions give the support mechanical parameters. 
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For lateral rotor motions (x, y), a bearing or seal reaction force vector f is usually modeled as 
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where fo is a static equilibrium force typically counteracting a fraction of the rotor weight, for 
example.  The test element force coefficients are four (4) stiffness K and four (4) damping C force 
coefficients in mineral oil lubricated bearings, oil seals, and also gas damper seals. In liquid annular 
(damper) seals and bearings (hydrostatic and/or hydrodynamic) working with process fluids (water 
or LOx, for example), four (4) inertia force coefficients M are also important.   


 Please note that these force coefficients (K, C, M) are mechanical parameters representative of a 
linear or rather linearinzed physical system. In this regard,   the (K, C, M) coefficients are to be 
determined in a system or test element undergoing small amplitude motions about an equilibrium 
condition. This operating condition is of utmost importance to obtain reliable and repeatable 
results. Unfortunately, the basic assumption – needed to ensure the physical model is linear- is 
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often not considered by the experimenters, and which explains the vast differences in parameter 
magnitudes when compared to analytical model predictions, for example.  


Incidentally, the linearized coefficient model for the test element, i.e. a bearing or a seal or a 
support, also assumes that the coefficients are frequency independent. Only in the last 10 years, 
since the late 1990’s, the engineering community has recognized this limitations and developed 
techniques to extract parameters from frequency domain measurements.  


Furthermore, note that the so called “experimental” force coefficients (K, C, M) are in actuality not 
measured parameters but mere ESTIMATIONS derived from procedures (ranging from simple or 
complex) that relate motions of the test system or element due to known applied forces.  


 


Until recently, estimation of bearing and seal rotordynamic force coefficients was traditionally 
based on time domain response methods. These techniques, often limited in scope, use only a 
limited amount of the recorded information rendering poor results with marginal confidence levels. 
Modern parameter identification techniques are based on frequency domain procedures, 
where dynamic force coefficients are estimated from transfer functions of measured 
displacements (velocities and accelerations as well) due to external loads of a prescribed time 
varying structure. Frequency domain methods take advantage of high speed computing and digital 
signal processors, thus  producing estimates of system parameters in real time and at a fraction of 
the cost (and effort) with cumbersome time domain algorithms. 
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Consider a test bearing or seal element as a point mass undergoing forced vibrations induced by 
external forcing functions. 
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Representation of point mass and bearing force coefficients used for 
identification of parameters from dynamic load and motion measurements  
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For small amplitudes about an equilibrium position, the equations of motion of a linear 
mechanical system are 
 


   M x C C x C y K K x K y fh XX hX XY XX hX XY X          
 


   M y C C y C x K K y K x fh YY hY YX YY hY YX Y             (2) 
 


where  







Notes 14. IDENTIFICATION OF BEARING FORCE COEFFICIENTS. © Dr. Luis San Andrés (2009) 6 


{fi}i=X,Y    external excitation forces,  
Mh     test element mass,  
{Khi, Chi}i=X,Y   (any) structural support stiffness and remnant damping coefficients1, and  
{Kij, Cij}i,j=X,Y   seal or bearing dynamic stiffness and damping force coefficients. 
 
Inertia force coefficients are not included in the model above.  Added mass coefficients are NOT 
significant, i.e. their magnitude is small, for highly compressible fluids (LH2 or gases) and in most 
bearing and seals lubricated with mineral oil2. The apparent simplification is easily removed and 
does not diminish the importance of the identification method.  The test system structural stiffness 
and damping coefficients, {Khi,Chi}i=X,Y, are obtained from prior shake tests results under dry 
conditions, i.e. without fluid through the test element 
 


Two independent force excitations (impact, periodic-single frequency, sine-swept, random, etc) 
(fX, 0)T and (0, fY)T, for example, are applied to the test element.  This process is formulated as 
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1 Refers to any  mechanical component assisting to support the test bearing, for example connecting rods or 
springs;  and damping from the test system DRY, i.e. without any lubricant,  for example.  
2 Note that test data by Childs et al. obtained for mineral oil tilting pad bearings, pressure dam bearings and 
floating ring seals actually evidence these test elements show large added mass coefficients; larger in magnitude 
than theoretical model predictions. See Notes 7 or Notes 11 for further details and discussion.  







Notes 14. IDENTIFICATION OF BEARING FORCE COEFFICIENTS. © Dr. Luis San Andrés (2009) 7 


2. Obtain the discrete Fourier transform (DFT)3 of the applied forces and displacements, i.e. 
Let  
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The DFT is an operation that transforms the information from the time domain into the 
frequency domain. Incidentally, recall that 
 


2
( ) ( ) ( ) ( );t ti X DFT x X DFT x                (5) 


 
                                                           
3 A sequence of N time-domain data points, say [(z1,t1=0), (z2,t2), …. (zN,tN=tmax )] and with t=t2-t1= t3-t2=…, 
will transform, using the DFT algorithm, into ½ N coefficients (complex numbers with amplitude and phase) at 
discrete frequencies Zk=akeik at discrete frequencies 0=0, 1=, 2=2,….. N/2=½ N = max= 1/(2t). 
Hence, =1/(N t) ~ 1/tmax.  Typically, N is a power of 2, i.e. N=256, 512, etc for efficient and fast data 
processing. Note that 1/t is known as the sampling rate. In addition, the longer the time span for analysis 
(tmax), the smaller is the frequency step (); while the faster the data acquisition sampling rate,  t is 
small, the highest is the maximum frequency (max) of the DFT. Satisfying both small   and very high max 
may require of exceedingly large number of data points. Often, these two conditions can not be attained 
simultaneously; and in which case care is needed to avoid aliasing of the recorded signal as well as other 
spurious effects. Read a dedicated book in Fast Fourier Transform analysis for more accurate and relevant 
details. 
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3. For the assumed physical model, the motion ODEs become for the first test set and in the 
frequency domain: 
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Or, written in matrix form as 
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FXK K M i C C K i C
Y FK i C K K M i C C


  
  


                         
 


Define complex impedances4 {Hij}i,j=X,Y  as 
 


   2
ij ij hi ij hi ij ij hi ijH K K M i C C                       (7) 


 


where 1i   ,  ij = 1 for i = j = X, Y ; zero otherwise.   
 


                                                           
4 As you know well, impedance is a misnomer. Dynamic (complex) stiffness is a more appropriate name.  
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The impedances comprise real and 
imaginary parts, both functions of the 
excitation frequency ().  The real part 
denotes the dynamic stiffness, while the 
imaginary part (quadrature stiffness) is 
proportional to the viscous damping 
coefficient, as shown in the figure.  


 
 
 
 


Real and imaginary parts of ideal 
mechanical impedance representative of 
assumed physical model 


 


 
With definition (7), the EOMs (6) become, for the first & second tests,   
 


( ) ( ) 1


( ) ( ) 1


1


1


XX XY X


YX YY Y


H H FX
YH H F


 


 


           
       


 and ( ) ( ) 2


( ) ( ) 2


2


2


XX XY X


YX YY Y


H H FX
YH H F


 


 


           
       


   (6a) 


 


Add these two equations and reorganize them as 
 







Notes 14. IDENTIFICATION OF BEARING FORCE COEFFICIENTS. © Dr. Luis San Andrés (2009) 10 


1 2


1 2


1 2


1 2


X XXX YX


XY YY Y Y


F FH H X X
H H Y Y F F


    
     
      


    (8) 


 


At each frequency (ωk=1,2,…n), Eq. (8) represents four independent equations with four 
unknowns, (HXX, HYY , HXY , HYX). Hence, 
 


1 2


1 2


1
1 2


1 2


X XXX YX


XY YY Y Y


F FH H X X
H H Y YF F


    
     
     


   (9a) 


 


1(1) (2) (1) (2) 
   
   H = F F X X  where  


1 2


1 2


1 2(1) (1) (2) (2)


1 2
& , &


X X


Y Y


F FX X
Y YF F


      
         
         


F X F X  (9b) 
 


The meaning of linear independence of the test forces (and ensuing motions) should now be 
clear. That is, the forces in the second test cannot be a multiple of the first set of forces since then, 
both the matrix of forces [F(1) F(2)] and the matrix of ensuing displacements [X(1) X(2)] become 
singular.  
 


The experimenter must select sets of excitations that are linearly independent, for example (fX, 0)T 
and (0, fY)T are preferred (and easy) choices.  
 
In the identification process, the importance of linear independence in the application of forces 
and ensuing test system or bearing displacements is MOST important to obtain reliable and 
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repeatable results. In actual practice, measured displacements may not appear similar to each other 
but nonetheless produce an identification matrix that is ill conditioned, i.e., the determinant of 
matrix [X(1) X(2)] is close to zero or is zero. In this case, the condition number of the 
identification matrix is of importance to determine whether the identified coefficients are any 
good. Test elements that are nearly isotropic and that are excited by periodic (single frequency) 
loads producing circular orbits of the test system usually determine a too ill conditioned system 
(Murphy, 1990).  
 
Often enough the calculation of the matrix [X(1) X(2)] condition number and checking for ill-
conditioning is easily overlooked.  
 
Preliminary estimates of the system parameters {M, K, C}i,j=X,Y   are determined by curve fitting 
of the test derived discrete set of impedances (HXX, HYY , HXY , HYX)k=1,2…., one set for each 
frequency ωk, to the analytical formulas over a pre-selected frequency range.  That is, for example 
 


   2 RealXX hX h XXK K M H        ImaXX hX XXC C H        (10) 
 
Since 1993, Childs and students excel in employing the impedance identification method to 
“measure” rotordynamic force coefficients in hydrostatic bearings and annular seals with water as 
the lubricant (Rouvas and Childs, 1993). The method lends itself to simple curve-fitting of the 
recorded impedance functions H to physically representative analytical functions, i.e.  K-ω2M and 
ωC. 
 







Notes 14. IDENTIFICATION OF BEARING FORCE COEFFICIENTS. © Dr. Luis San Andrés (2009) 12 


Analytical curve fitting of any data renders a correlation coefficient (r2) representing the 
goodness of the fit. A low value of the correlation coefficient, r2 << 1, does not mean the test data 
or the obtained impedance are incorrect, but rather that the physical model (analytical function) 
chosen to represent the test system does not actually reproduce the measurements.  On the other 
hand, a high r2 ~ 1 demonstrates that the physical model, say with a constant stiffness K and 
viscous damping C in K-ω2M and ωC, respectively, actually describes the measurements (system 
response) with accuracy. 
 
System transfer functions (output/input) are often used to obtain more precise estimates of the 
seal or bearing force coefficients (Nordmann and Schollhorn, 1980, Massmann and Nordmann, 
1985).  This process leads to curve fits of nonlinear functions. 
 
Transfer functions (displacement/force) known as test system flexibilities G are derived as 
functions of the impedances, (Hij)i,,j=X,Y from the fundamental equation G = H-1, i.e. 
 


1 2


1 2


( ) ; ( )


( ) ; ( )


YY XY
XX XY


YX XX
YX YY


H HG TF X G TF X


H HG TF Y G TF Y



   


 



   
 


   (11a) 


 
 


where            H H H HXX YY XY YX       (11c) 
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Next, the Instrumental Variable Filter (IVF) method of Fritzen (1985), an extension of a 
least-squares estimation method, is used to simultaneously curve fit all four transfer functions 
from motion measurements due to two sets of (linearly independent) applied loads. The IVF 
method has the advantage of eliminating bias typically seen in an estimator due to 
measurement noise. 
 
The product of the flexibility (G) and impedance (H) matrices should be identically equal to the 


identity matrix 
1 0
0 1
 


  
 


I  since G=H-1.  
 


However, in any measurement process there is some noise associated with the experiments. Thus, 
an error matrix (e) is introduced into the fundamental relationship, 
 


2 i       G H G K M C I + e     (12) 
 


where K, C and M are matrices of system stiffness, damping  and added mass coefficients.   
 


, ,XX hX XY XX hX XY XX h XY


YX YY hY YX YY hY YX YY h


K K K C C C M M M
K K K C C C M M M
       


              
K C M  


 
For generality, added mass coefficients (MXX, MYY , MXY , MYX) are included in the matrices 
above.  
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In Eq. (12) G denotes the measured flexibility matrix while H represents the (to be) estimated 
test system impedance as defined in Eq. (7). Recall that Eq. (7) corresponds to the physical 
model ASSUMED to best represent the test system or test element.  
 
In the present method, the flexibility coefficients (G) work as weight functions of the errors in a 
minimization procedure. Whenever the flexibility coefficients are large, the error is also penalized 
by a larger value. As a result, the minimization procedure will become better in the neighborhood 
of the system resonances (natural frequencies) where the dynamic flexibilities are maxima (i.e., 
null dynamic stiffness, (K-2M)=0. That is, the measurements containing resonance regions will 
have more weight on the fitted system parameters. External forcing functions exciting the test 
system resonances are more reliable because at those frequencies the system is more sensitive, and 
the measurements are accomplished with larger signal to noise ratios.  
 
In addition, it is precisely around the resonant frequencies where all the physical parameters 
(mass, damping and stiffness) most affect appreciably the system response. For “too low” 
frequencies the important parameter is the stiffness, while for “too high” frequencies the inertia 
dominates the response. Only near the resonance do all three parameters have an important effect 
on the system amplitude response.  
 
Therefore, it is more accurate to minimize the approximation errors using Eq. (12) rather than 
directly curve fitting the impedances, i.e. simply using Eq. (10). Unfortunately, the process is not 
straightforward and leads to a rather complex minimization scheme. 
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Write the impedance matrix H representing the test system or  test element as 


2
( ) i  


 
      
 
 


M
H I I I C


K     (14)  


  


with 1i    and 1 0
0 1
 


  
 


I . Thus Eq. (12) becomes at each discrete frequency  k=1,2…,n 


2k k
k ki 


 
     
 
 


M
G I I I C I+e


K     (15a) 


 


Let       
2k k
k ki    A G I I I     (16) 


And write Eq. (15a) as  


k k
 
 


 
 
 


M
A C I+e


K        (15b) 
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Now, stack all the equations, one for each frequency k=1,2…,n , to obtain the set  
 


 
 


  
 
 


M
A C Ι e


K        (17) 


where  


1 1


2 2,
n n


   
   
    
   
      


A e


A A e e


A e
      and    


0 1 0 1 0 1 .. .. .. .. 0 1
1 0 1 0 1 0 .. .. .. .. 1 0


T  
  
 


I  (18) 


 


A contains the stack of measured flexibility functions (at discrete frequencies k=1,2…,n).  Eq. (17) 
is an over determined set of equations, i.e. there are more equations than unknowns. Hence, its 
solution by least-squares aims to minimize the Euclidean norm of e.  This minimization 
leads to the normal equations, 
 


  1
 
 
 
 
 


T T


M
C = A A A I
K


      (19) 


 


A first set of force coefficients (M,C,K) is determined from these equations. 
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Fritzen (1985) introduced the elegant Instrumental Variable Filter Method (IVF) to solve 
the system coefficients that minimize the Euclidean (L2) norm of the system error e. The IVF 
procedure was originally developed to estimate parameters in econometric problems. Massmann 
and Nordmann (1985) applied successfully the method to fluid film annular seal elements.  
 


In the IVF method, the weighting function, A, is replaced by a new matrix function, W, created 
from the analytical flexibilities resulting from the (initial) least-squares curve fit, i.e., solution of 
Eq. (19). This weighting function W is free of measurement noise and contains peaks only at 
the resonant frequencies as determined from the first estimates of stiffness, mass and damping 
force coefficients.  
 


At step m,  


 


1
1


m


T Tm m



 


               
 


M
C W A W I
K


    (20) 


where  


2
1 1( )1


2
( )


m


m


m
n nn i








 


 


       
  
        


F I i I I


W


F I I I



   and   


1


2
( )


m


m i  



               


M
F I I I C


K
 (21) 
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A first iteration (m=1) is performed with W1=A, which corresponds to the standard least-squares 
solution of the problem, eq. (19). Then, Eqs. (20) and (21) are applied iteratively until a given 
convergence criterion or tolerance is satisfied. This criterion can be conveniently chosen depending 
on the desired results. For example, the square summation of the differences between the 
parameters at iteration m and (m-1) can be required to be less than a certain value, i.e. limiting the 
Euclidean norm of the error. Alternatively, it can be required that the largest difference be less than 
the largest acceptable error, i.e. limiting the L1 norm of the error. Different tolerances to each 
variable could also be asserted depending on their physical units and significance.  


It should be clear that the substitution of W for the discrete measured flexibility A (which also 
contains noise) improves the prediction of the system parameters. Note that the product ATA 
amplifies the noisy components and adds them. Therefore, even if the noise has a zero mean value, 
the addition of its squares becomes positive resulting in a bias error. On the other hand, W does not 
have components correlated to the measurement noise. That is, no bias error is kept in the product 
WTA. Consequently, the approximation to the system parameters is improved. 
 
Note that the force coefficients are identified in the frequency domain. Thus, magnitudes of 
uncertainty for the estimated force coefficients must be obtained by comparing the original 
frequency responses with the frequency response of a reference excitation force and 
associated displacement time response. Evaluation of coherence functions then becomes 
necessary to reproduce the exact variability of the identified force coefficients.  
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Closure 
Read the paper of Diaz and San Andrés (1999) – following pages- for further insight on the IVF 
method as applied to a n-DOF system. A MATHCAD® program is available for your self-study 
and further learning.  
 
An example of parameter identification representative of your lecturer’s research will be 
presented in class.  
 
Recent developments on field or in-situ parameter identification methods 
Field identification of fluid film bearing parameters is critical for adequate interpretation of 
rotating machinery performance and necessary to validate or calibrate predictions from restrictive 
computational fluid film bearing models. The key features of a successful method for ready field 
implementation are minimal external equipment, little or no changes to existing hardware, and the 
use of measuring instruments commonly used in machine protection and monitoring.  
 


 DeSantiago and San Andrés (2004, 2007) detail a simple method for estimating in-situ bearing 
support force coefficients in flexible rotor-bearing systems. The model neither adds 
mathematical complexity to existing rigid rotor models nor requires additional instrumentation 
than that already available in most high performance turbomachinery. The method requires two 
independent tests with known mass imbalance distributions and the measurement of the rotor 
motion (amplitude and phase) at locations close to the supports. A good rotor model (elastic and 
mass properties) must represent the (non observable or not measured) degrees of freedom. The 
procedure finds the bearing transmitted forces as a function of observable quantities (rotor 
motions at one side of the bearings). Imbalance response measurements conducted with a two-disk 
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flexible rotor supported on two-lobe fluid film bearings allow validation of the identification 
method estimations. Predicted (linearized) bearing force coefficients agree reasonably well with 
the parameters derived from the test data.   
 


A commercial compressor company uses successfully the method advanced to qualify its 
equipment as per API requirements and for real-time assessment of bearing condition from 
measurements of rotor motions while the compressor is in operation. 
 
Recent developments on the identification of force coefficients in non-linear 
systems 
San Andrés and Delgado (2007-2009) have developed efficient methods to identify force 
coefficients in test systems that combine both linear and nonlinear mechanical elements. They 
apply the method to a SFD that integrates a contacting end seal to prevent air ingestion.  The 
system motion is non-linear due to dry friction interaction at the mechanical seal mating surfaces. 
Single parameter characterization of the test system would yield an equivalent viscous damping 
coefficient that is both frequency and motion amplitude dependent.  The algorithm takes the 
nonlinear test system as a combination of linear and nonlinear inputs with linear operators on a 
multiple-input/single output scheme (Rice and Fitzpatrick, 1991)  
 


The identification method suited for nonlinear systems allows determining simultaneously the 
squeeze film damping and inertia force coefficients and the seal dry friction force. The 
identification procedure shows similar (within 10 %) force coefficients than those obtained with a 
more involved two-step procedure that first requires measurements without any lubricant in the test 
system to determine the dry-friction parameter.  The identified SFD damping and inertia force 
coefficients agree well with model predictions that account for end flow effects at recirculation 
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grooves. The nonlinear identification procedure saves time and resources while producing reliable 
physical parameter estimations. 
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Structural parameters
Kshaft= 243 lbf/in (42.5 kN/m)
Ms+d= 9.8 lb (4.45 kg)
ζ: 0.01 % (damping ratio)


Installation:
6.550” diameter brush seal 
Max. air Pressure: 60 psig 
Shaker (20 lb max)
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Brush Seals
Reduce secondary leakage in turbomachinery
Replace labyrinth seals in HP TM (hot side of steam & gas turbines)
Wear and thermal distortions are a reliability problem


Hybrid Brush Seals
Novel improvement over BS. Reduce more leakage and do not 
introduce wear or thermal distortion. Allow bi-directional rotation
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Conclusions


• A structural loss factor (γ) and a dry friction 
coefficient(μ) effectively characterize the energy 
dissipation mechanism of a Hybrid Brush Seal (HBS).


• HBS Direct stiffness (Ksxx = Ksyy) decreases minimally 
with rotor increasing rotor speed for Pr = 1.7 and 2.4 HBS 
Cross-coupled stiffness (Ksxy = -Ksyx) is much smaller than the direct 
stiffness coefficients.


• HBS Direct viscous damping coefficients decrease as a 
function of increasing excitation frequency.
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Introduction 


Microturbomachinery (MTM)1 demands gas bearings to ensure compactness, lightweight and 


extreme temperature operation. Gas bearings with large stiffness and damping, and preferably of 


low cost will enable successful commercial applications. Gas film bearings offer advantages of 


low friction and reduced heat generation. These advantages enable their successful applications 


in air-cycle units for airplane cabins, high-precision instruments, auxiliary power units, and high-


speed MTM. In addition, gas bearing systems do not require costly, complex sealing and 


lubricant circulation systems; hence ensuring system compactness, low weight and extreme 


temperature operation. Furthermore, these bearings eliminate process fluid contamination and are 


environmental friendly. Gas foil bearings are in use; however, their excessive cost, protected 


technology and lack of calibrated predictive tools have prevented widespread use in mass-


produced applications. 


Gas bearings have a low load carrying capacity and require a minute film thickness to 


accomplish their intended function. Thus, their fabrication and installation tends to be expensive 


and time consuming. Another disadvantage is poor damping because of the inherently low 


viscosity of the gas. 


The literature on the analyses of gas bearing analyses is extensive, albeit experimental 


verification and successful commercial implementations have not always been reported. Gross 


[1] (1962) covers the fundamentals of analysis that span the fast development of gas bearing 


technology in the 1960’s. Pan [2] gives a serious description of the analysis and performance of 


(rigid surface type) gas bearings summing knowledge until 1980. The textbook of Hamrock [3] 


(1994) provides comprehensive analyses for the static load performance of both thrust and radial 


gas bearings. Czolczynski [4] (1999) gives a comprehensive review of the analyses for prediction 


of frequency dependent force coefficients of gas bearings.  


The last decade (2000s) has seen a rebirth of gas bearings, in particular gas foil bearings for 


MTM [5] and aerostatic gas bearings for spindle machines [6]. San Andrés et al. [7-16] report the 


results of a comprehensive research program, experimental and analytical, evaluating and 


developing cost effective reliable gas bearings for MTM.  


 


 


                                                           
1 As per the IGTI (International Gas Turbine Institute), a microturbomachinery has power < 250 kW.  
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Types of gas bearings 


Bearings in rotating machinery are of two types: (a) radial bearings supporting lateral loads 


including rotor weight, and (b) thrust bearings carrying axial loads. See Figure 1 for a few 


relevant gas bearing configurations. These loads can be either static or dynamic or both. Gas film 


bearings behave as mechanical elements that provide stiffness, damping and inertia force 


coefficients that, in conjunction with the structural parameters of a rotor, determine the stability 


and dynamic behavior of the entire rotor bearing system (RBS).  


In a gas bearing, a film of gas, hereby liberally referred as the lubricant, separates the rotating 


component (a journal, for example) from the stationary part (a housing or stator).  Hydrodynamic 


shear action from the moving component enables the generation of the lubricant wedge where a 


hydrodynamic pressure evolves to produce the reaction force opposing the externally applied 


load. Gas bearings operating under the hydrodynamic (self-acting) principle are, in general, of 


simple construction although at times difficult to manufacture and install because of the required 


minute film clearances. Other bearings employ external pressurization supplied through 


restrictors (orifices, slots or capillaries) to enable a hydrostatic action that separates the surfaces 


thus inducing journal or rotor lift without rotation, for example. Hydrostatic bearings are 


mechanically more complex than hydrodynamic bearings because of their additional supply 


ports; albeit their major advantage lies on their usage in applications without rotor spinning. This 


advantage must be weighed against the extra cost plus the need of an external source of 


pressurized gas. More importantly, in a hybrid bearing configuration, i.e., one where both 


hydrostatic and hydrodynamic operating principles act jointly, the external supply pressure is 


typically used to promote early rotor lift off thus reducing temporary rubs, avoiding wear of 


surfaces and extending bearing life. 


There are (probably) as many types of gas bearing configurations as there are applications; 


that is, a gas bearing is selected to fulfill certain functions while keeping a cost low, including 


component fabrication and installation, and of course, operation. The archival literature features 


successful applications of gas bearings; often failing to notice that, in contrast to liquid lubricated 


bearings, gas bearings have inherent limitations that prevent their widespread usage as load 


support elements in (heavy) commercial machinery.  


Gases, although chemically more stable than liquids, have an inherent low viscosity – one or 


two orders of magnitude lower than that of mineral oils for example. Recall that the load 
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carrying capacity (W) of a self-acting hydrodynamic film bearing is roughly proportional to 


2
min


AU
h


 
 
 


 [3] where  is the lubricant viscosity, U is the surface speed, A is the area of action, 


and hmin is the minimum film thickness. Hence, in order to achieve a desired load capacity, a gas 


lubricated bearing replacing a similar size oil-lubricated bearing must operate at an exceedingly 


high surface speed (U) or with a minute film thickness (h). That is, hydrodynamic gas bearings 


are not intended for supporting rotating machinery that operates with relatively low surface 


speeds or if the film clearance or gap is too large. Hence, the need for accurate manufacturing of 


parts which increases both cost and makes installation complicated. Of course, externally 


pressurized (aerostatic) gas bearings can be used efficiently to carry loads at low or even zero 


surface speeds. However, aerostatic bearings require a source of pressurized gas which adds cost 


and complexity [1,6,10].    


To enhance the hydrodynamic action, designers have produced a number of bearing 


configurations that exploit geometrical features such as steps, grooves, pockets and dimples, for 


example. Figure 1 shows several typical commercial gas bearing configurations. The bearing 


types with textured surfaces, known as (spiral) grooved bearings and herringbone journal 


bearings have been instrumental to the operation of gyroscopes for aircraft and satellite 


navigation [2], enabled non contacting gas face seal technology [7]; and more recently, allowed 


the revolution in digital storage hard-drive technology [17]. In these applications, static and 


dynamics loads are relatively low. Note that, for optimum load performance giving the maximum 


static (centering) stiffness, the depth of the machined steps or grooves or pockets is just equal or 


a little larger than the operating film gap or clearance, as will be demonstrated later. Until 


recently, these geometrical features were difficult to machine at low cost, except in certain 


materials like silicon-carbide for non-contacting face seals. However, current casting and 


manufacturing processes allow the manufacturing of these bearings (or seals) at a relatively low 


cost and with near identical performance in one or millions of pieces. 


Other radial bearing configurations of interest, i.e., undergoing close scrutiny and 


commercial development, include bump-type foil bearings [5, 15, 18], flexure pivot tilting pad 


bearings [13], and (low cost) metal mesh foil bearings [19]. 
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Spiral grooved thrust and radial bearings 


 


 
Flexure pivot tilting pad bearing 


 


Bump-type foil bearing 


 
Flexure pivot tilting pad bearing with 
hydrostatic pressurization 


    


Metal mesh foil bearing 
 


Overleaf-type foil bearing 


 


Fig. 1 Typical commercial gas bearings for microturbomachinery 
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The fundamentals of gas film lubrication analysis 


The fluid flow in a hydrodynamic gas bearing or gas face seal is typically laminar and 


inertialess, i.e. the Reynolds numbers Re=Uh/ <1, because of the smallness in film thickness 


(h) and the low lubricant density (). Gas annular seals, such as labyrinth and honeycomb types, 


are notable exceptions, since in these applications large pressure drops, high surface speeds and 


large clearances promote flow turbulence accompanied by strong fluid compressibility effects 


[20]. 


Consider, as shown in Figure 2, the flow of an ideal gas in a region confined between two 


surfaces separated by the small gap h. The top surface has velocity U along the x direction.  For 


an isothermal process, the gas density () and pressure (p) are related by
g


p


T
 


 
, with g  


and T representing the gas constant and operating temperature, respectively.  
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Fig. 2 Geometry of a gas lubricated thin film bearing 
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Table 1 shows a list of the physical properties of the most common gases used as lubricants 


in thin film bearings. The gas viscosity () increases with its absolute temperature (T) as 


*


0


*


1


1
o


o


T


T T
T T
T


 


 
 


 
  
 


 where T* and To are reference temperatures and o=(To). 


 


Table 1. Viscosity and molecular weight of gases used in thin film bearings 


Gas formula Molecular   T o T*
weight Pa-s K K


Acetylene C2H2 26.036 10.2 293 198
Air O2+N 29.000 17.1 273 124
Ammonia NH3 17.034 9.82 293 626
Argon Ar 39.950 22.04 289 142
Carbon dioxide CO2 44.010 13.66 273 274
Carbon Monoxide CO 28.010 16.65 273 101
Chlorine Cl2 70.900 12.94 289 351
Chloride HCl 36.458 13.32 273 360
Helium He 4.003 18.6 273 38
Hydrogen H2 2.016 8.5 273 83
Hydrogen sulfide H2S 34.086 12.51 290 331
Methane CH4 16.042 10.94 290 198
Neon Ne 20.180 29.73 273 56
Nitrogen N2 28.020 16.65 273 103
Nitric Oxide NO 30.010 17.97 273 162
Nitrous Oxide N2O 44.020 13.66 273 274
Oxygen O2 32.000 19.2 273 138
Steam H20 18.016 12.55 372 673
Sulfur Dioxide SO2 64.070 11.68 273 416
Xenon Xe 131.300 21.01 273 220  


Gas constant Rg=(8,314,34 J/kg-K)/MW 


Source:  http://periodic.lanl.gov/default.htm  


 


Reynolds equation describes the generation of the film pressure within the flow region [2].  


 


   
3


0
12 2


h p U
p p h p h


x t


   
         


 
   (1) 
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Eq. (1) represents an isoviscous condition without fluid inertia effects. Furthermore, the 


derivation of Eq. (1) assumes the gas satisfies the no-slip condition, i.e. it adheres to the 


surfaces2.  As a boundary condition, the pressure is typically ambient (pa) on the boundary of the 


domain.  


The gas film Reynolds equation is nonlinear; and hence exact solutions exist for a handful of 


limiting conditions [2,3]. The left hand side of the equation is elliptic in character, while the 


terms on the right hand side are known as the shear induced flow and squeeze film flow terms. 


It is convenient to normalize Eq. (1) in terms of dimensionless variables and parameters. To 


this end, let 


* * *
; ; ; ;


a


x z h p
x z t H P


L L h p
         (2) 


where L* is a characteristic length of the bearing surfaces and h* is a characteristic film thickness; 


typically the minimum film thickness or the clearance (c) in a radial bearing. Above  denotes an 


excitation whirl frequency representative of unsteady or time transient effects. With the 


definitions given, Reynolds equation is written in dimensionless form as 


   3 3P P
P H P H P H P H


x x z z x




        


              
  (3) 


 where     
2


* *
2 2
* *


6 12
and


a a


U L L


p h p h


        (4) 


are known as the speed number and the frequency number, respectively [2]. Both parameters 


represent the influence of fluid compressibility on the performance of the gas bearing. For  and 


 small, typically < 1, the gas bearing operates as an incompressible fluid film bearing, as seen 


next.   


For steady state applications, i.e., the film thickness (h) and the pressure (p) do not vary with 


time, and hence squeeze film effects are nil (Eq. (3) reduces to 


                                                           
2 As the film thickness (h) decreases into the nano meter scale, its size approaches that of the gas molecular free path 
(= 60 nm for air under standard conditions); and hence, slipping effects become significant. Magnetic recording 
and digital hard drive applications fall within this category. The Knudsen number (Kn=/h ) aids to distinguish the 
flow regime of operation;  Kn> 15 denotes molecular flow, 0.01< Kn< 15 represents slip flow, and Kn<0.01 gives a 
continuum flow, as in the applications discussed herein [21].   
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 3 3P P
P H P H P H


x x z z x


       
            


   (5) 


For low speed numbers,  <<1, an expansion of the dimensionless pressure as 1P P  , 


and substitution into Eq. (5) gives the simplified Reynolds equation [2] 


 3 3 )P P
H H H


x x z z x


       
           


    (6) 


which is formally identical to the Reynolds equation for an incompressible lubricant. Hence, its 


solution can be easily sought – analytically for either the short length or long journal bearings, or 


using numerical schemes for finite length bearings of any geometry. Refer to Lecture Notes 4 


and 7 for details on the analytical and numerical solution of Eq. (6). 


Clearly, the assumed solution is strictly valid for 0 . Hence, the pressure field cannot be 


much higher than ambient pressure (pa), and consequently, the bearing load capacity is also small 


albeit proportional to the speed number, i.e. it increases linearly with surface speed (U), for 


example. Note that the dimensionless pressure 
  2


*


*


1


6
ap p hP


P
U L



 



as is typical in mineral oil 


lubricated bearings. Analytical solutions to Eq. (5) are available for either the short length or 


infinitely long cylindrical journal bearings, for example. Closed form solutions are also available 


for simple one-dimensional slider or Rayleigh-step bearing geometries, see Refs. [2, 21] for 


example. 


On the other hand, for large speed numbers,  >>1, Eq. (5) is written as 


 3 31 P P
P H P H P H


x x z z x


        
              


   (7) 


and, in the limit  , the left hand side of the equation can be neglected to obtain3 


   0
( )
b


a
h


P H p p
x h x



  



    (8) 


where hb is the film thickness at the boundary where the pressure is ambient. The limiting speed 


solution, Eq. (8) above, shows that the pressure within the film is bounded and independent of 


the surface speed U. This result is in opposition to that in incompressible fluid bearings where 


                                                           
3 The PH solution is an inner field which must be matched to an outer (boundary) solution satisfying the side 
pressure condition (P=1) [2]. For the purposes of this review, the PH solution is adequate.  
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the generated hydrodynamic film pressure is proportional to the surface speed U. Since the 


pressure has a definite limit, it also means that the bearing load capacity has also a limit, i.e. an 


ultimate value. In this regard, gas film bearings do show a significant difference with 


incompressible fluid (mineral oil lubricated) bearings whose (theoretical) load capacity increases 


with surface speed. 


Closed form solutions for finite speed numbers () are not readily available. Hence, 


predictions of bearing film pressure and its force reaction supporting an applied load must rely 


on numerical analysis. For low to moderate speed numbers, finite differences or finite element 


methods applicable to elliptical differential equations are quite adequate. However, it is well 


known that these numerical methods are inaccurate and numerically unstable for large speed 


numbers () since the nature of the Reynolds equation evolves from a (second order) elliptical 


form into a (first order) parabolic form. See Ref. [8] for a significant advance that resolves the 


issue of pressure oscillations and numerical instability for large speed numbers () 


 


Simple slider gas bearings 


Consider, as shown in Figure 3, three typical one-dimensional4 slider bearing configurations: 


tapered, Rayleigh-step, and tapered-flat. In these configurations, the width (B) >> length (L), and 


thus the hydrodynamic pressure does not vary along the z-axis. The bearing peak pressure and 


maximum load capacity are a function of the ratio between the inlet film thickness (h1) and the 


exit film thickness (h2) and the extent of the step or tapered length (L1). Integration of the 


pressure field over the bearing surface gives the reaction load that opposes the applied load (W)  


   1


0 0
or = 1


L
a


a


W
W B p p dx w P dx


B L p
        (9) 


 


                                                           
4 In this case, the bearing width (B) is much longer than its length (L); and hence the film pressure is only a function 
of the coordinate (x). The analysis calls for P P


z x
 


  . 
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Fig. 3 Schematic view of (simple) one-dimensional slider bearings 


 


For small speed numbers incompressible fluid, Table 2 shows closed-form expressions  


for the peak hydrodynamic pressure and the bearing reaction force (load) as a function of the 


film thickness ratio 1
2


h
h   and the land to length ratio 2L


L  in a Rayleigh step bearing 


[22]. Simple calculations show that the maximum load maxw requires of thickness ratios on the 


order of two, i.e., =2.189 for a tapered bearing ( w  =0.0267), and =1.843 for a step bearing 


with w  =0.034). Hence, the taper height difference or the step height (h1-h2) is of similar 


size as the minimum film thickness (h2). In gas bearings, the smallness of the film thickness 


required to support realistic loads also poses a difficulty in manufacturing mechanical features 


such as ridges and steps. Furthermore, manufacturing processes must ensure a surface roughness 


(RMS value) at least one order of magnitude (~1/10) lower than the minimum film thickness 


[21]. 
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Table 2. Closed form expressions for  peak hydrodynamic pressure and load in one 
dimensional tapered bearing and Rayleigh step bearing. Low speed operation 


(incompressible fluid approximation)  2
26 aU L p h   [22]


 
An example of gas bearing performance follows. Predictions are obtained for a film thickness 


ratio 1
2


h
h  =2.2 and length ratio 2L


L  =0.30 for the Rayleigh-step and tapered flat 


bearings. The parameters used are close to those delivering a maximum reaction force (load 


capacity) in an incompressible lubricant slider bearing.   


For increasing speed numbers (Figure 4 depicts the evolution of the hydrodynamic 


pressure field versus the coordinate (x/L). Note that the peak pressure displaces towards the 


minimum film location as  increases. Most important is to realize that the peak pressure, see 


Fig. 5, is not proportional to the speed, as is the case in incompressible lubricant bearings. The 


largest peak pressure cannot exceed that of the limit at high speeds, i.e., maxp 



 = h1/h2. 


This feature may entice designers to implement or promote high aspect ratios for the film 


thicknesses, However; too large inlet/exit film ratios (>>1) will cause the gas flow to 


choke at the bearing exit plane. This is an undesirable operating condition that produces noise 


and shock wave instabilities and could cause severe mechanical damage [2].     


Figure 6 depicts the (dimensionless) load (w=W/BLpa) versus speed number () for the three 


slider bearings. Note that at low speeds, typicallythe load capacity is proportional to the 


speed number. However, as increases, the load reaches an asymptotic value. It is important to 
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note that knowledge derived from incompressible lubrication theory does not extend to gas 


lubrication theory. For example, the selected Rayleigh-step configuration offers the largest load 


at small speed numbers, i.e. in the incompressible fluid flow region. However, as evidenced in 


the predictions, at the highest speed numbers (), the Rayleigh-step bearing produces the 


smallest load albeit it shows the largest peak pressure. Note that, see Fig. 4, in the step bearing 


the region of pressure generation is confined to the film land with small thickness (h2); while the 


rest of the bearing is basically at ambient pressure. 
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Fig. 4 Pressure field in one-dimensional slider bearings (tapered, Rayleigh step 
and tapered-flat) for increasing speed numbers (=2.2, =0.3)  
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Fig. 5 Maximum film pressure in one-dimensional slider gas bearings versus 
speed number ( (= 2.2, = 0.3)  
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Fig. 6 Load capacity (w) in one-dimensional slider gas bearings versus speed 
number ( (= 2.2, = 0.3)  
 


Dynamic force coefficients for slider gas bearings 


Fluid film bearings support both static and dynamic loads. Thus far, the analysis has focused 


on the static load capacity. Consider a bearing that undergoes motions of small amplitude (y) 


and frequency () about an equilibrium condition with film thickness ho(x). This equilibrium 
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film thickness renders a static reaction load balancing the external applied load (Wo). The 


(dimensionless) film thickness adds the static and dynamic components as5 


*
;i


o
yH H H e H h


         (10) 


and the film pressure equals the superposition of the equilibrium pressure (Po) and a perturbed, 


dynamic or first-order pressure field (P1),  


 1
i


oP P P H e          (11) 


Substitution of Eqs. (10-11) into Reynolds equation (3) gives, to first-order effects6, 
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    (12) 
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 (13) 


The bearing reaction force equals 


 1 1
1 10 0


1 i i
o ow P dx H P dx e w w H e              (14) 


The real and imaginary parts of w1 give raise to the bearing stiffness (K) and damping (C) force 


coefficients, i.e. 


1
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aB L p
Z K i C P dx
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In dimensionless form, the stiffness and damping coefficients become 


1 1
1 130 0


*
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 


    (16) 


Unlike bearings lubricated with incompressible fluids, the stiffness (K) and damping (C) 


force coefficients of gas bearings are strong functions of frequency [2, 4, 23]. In particular, for 


high speeds and high frequency operation ( ,  ) 0C  ; i.e., damping is lost. Thus, 


                                                           
5 See Lund [23] for the original and most elegant description of the analytical perturbation method for calculation of 
dynamic force coefficients in gas bearings. 
6 Products of first order terms are neglected, i.e. P1 H2 ~ 0 for example. 







NOTES 15. GAS FILM LUBRICATION – Dr. Luis San Andrés © 2010 16


gas bearings need to be used with great caution in applications that require mechanical energy 


dissipation  to ameliorate or reduce vibrations of the mechanical system.  


For the tapered-flat slider with 1
2


h
h  =2.2 and length ratio 2L


L  =0.30, Figs. 7 and 8 


depict the stiffness  K and damping  C coefficients versus increasing frequency numbers () 


and various speed parameters () . Note two important dynamic force performance features: (a) 


the bearing stiffness rises rapidly with frequency, a typical hardening effect of gas bearings, and 


(b) damping decreases quickly, as expected7. It is also important to realize that, at low 


frequencies ( the (nearly static) stiffness reaches a maximum at a certain speed (), 


not increasing further with sliding speed. This is also expected since, as shown in Fig. 6, the load 


capacity also reaches its ultimate limit for operation at     


0


0.2


0.4


0.6


0.8


1


1.2


1.4


1.6


1 10 100 1000


Frequency number () 


S
ti


ff
n


es
s 


co
ef


fi
ci


en
t Sp #= 1


Sp #= 5
Sp #=10
SP #=20
Sp #=100
Sp #=500


















h2
h1


U


L2/L=0.3


 


*
a


K
K


B L p
h





 


Fig. 7 Stiffness coefficient for 1D tapered-flat gas bearing versus frequency 
number ( and increasing speed numbers () (= 2.2, = 0.3)  


                                                           
7 Negative damping coefficients are not unusual in stepped gas bearings such as in spiral grooved or herringbone 
grooved configurations, see Ref. [7]. 







NOTES 15. GAS FILM LUBRICATION – Dr. Luis San Andrés © 2010 17


0.00E+00


5.00E-03


1.00E-02


1.50E-02


2.00E-02


2.50E-02


3.00E-02


1 10 100 1000


Frequency number () 


D
am


p
in


g
 c


o
ef


fi
ci


en
t Sp #= 1


Sp #= 5


Sp #=10


SP #=20


Sp #=100


Sp #=500




















h2
h1


U


L2/L=0.3


 


Fig. 8  Damping coefficient for 1D tapered-flat gas bearing versus frequency 
number ( and increasing speed numbers () (= 2.2, = 0.3)  
 


Cylindrical gas journal bearings 


Cylindrical hydrodynamic bearings support radial (or lateral) loads in rotating machinery. 


Using gas as the lubricant in the fluid film bearing offers distinct advantages such as lesser 


number of parts, avoidance of mineral oils8 with lesser contamination; and most importantly, 


little drag friction (minute power losses) and the ability to operate at extreme conditions in 


temperature, high or low, since gases are more chemically stable than liquids. On the other hand, 


gas bearings suffer from chronic problems including difficulties in their design and analysis, cost 


in manufacturing, and issues with installation and operation since bearing clearances are by 


necessity rather small.  


Figure 9 shows three typical radial bearings of increasing mechanical complexity. The 


bearings portrayed are a cylindrical bearing (an idealized configuration), a multiple-pad bearing 


with hydrostatic pressurization, and a flexure-pivot bearing with hydrostatic pressurization. The 


external supply of pressure extends bearing life by aiding to promote an early lift off journal 


speed and reducing “hard landings” or transient rubs that lead to early wear of surfaces. In 


addition, hydrostatic pressurization enables the design and operation of gas bearings with 


                                                           
8 Recall that liquid lubricated bearings may show cavitation, i.e. the hydrodynamic pressure cannot be lower than the 
liquid saturation pressure or that of the dissolved gases in the liquid. Gas bearings obviously do not show cavitation.  
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relatively large clearances, hence reducing their manufacturing costs and difficulties associated 


with their installation [10].  
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Fig. 9 Cylindrical gas bearings – some typical configurations 
 


External pressurization through restrictor ports also creates a centering stiffness and thus 


decreases the journal eccentricity needed for the bearing to support a load. A hybrid mode 


operation (combining hydrostatic and hydrodynamic effects) ultimately results in reduced power 


consumption. Disadvantages in gas bearings stem from two types of instabilities [2]: pneumatic 


hammer controlled by the flow versus pressure lag in the pressurized gas feeding system, and 


hydrodynamic instability, a self-excited motion characterized by sub synchronous (forward) 


whirl motions. Proper design of a hybrid bearing system minimizes these two kinds of 


instabilities9.  Gas bearing design guidelines available since 1967 [24] dictate that, to avoid or 


delay a pneumatic hammer instability, externally pressurized gas bearings have restrictors 


impinging directly into the film lands, i.e. without any (deep) pockets or recesses. 


The analysis herein does not discuss textured or etched bearings, i.e. ones with herringbone 


grooves, for example. See Ref. [7] for the appropriate analyses and predictions. The textured 


                                                           
9 A self-excited instability means that a change in the equilibrium or initial state (position and/or velocity) of the 
RBS leads to a permanent departure with increasing amplitudes of motion at a certain frequency, usually a natural 
frequency. A self-excited instability does not rely on external forces (load condition), including mass imbalance, for 
its manifestation.  
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bearings are still costly to manufacture, offer little improvements in load capacity, and have 


severe limitations in terms of rotordynamic stability [12]. 


For certain static load dispositions, tilting pad bearings can eliminate the typically harmful 


hydrodynamic instability by not generating cross-coupled stiffness coefficients. Critical 


turbomachinery operating well above its critical speeds is customarily implemented with tilting 


pad bearings. The multiplicity of parameters associated with a tilting pad bearing demands 


complex analytical methods for predictions of force coefficients and stability calculations [10]. 


Incidentally, conventional (commercial) tilting pad bearings cannot be easily modified to add 


external pressurization (holes through pivots and pads) without constraining severely the pads’ 


motion and adding sealing issues.  


The flexure pivot – tilting pad bearing (FPTPB), see Fig. 9, offers a marked improvement 


over the conventional design since its wire discharge machining (EDM) construction renders an 


integral pads-bearing configuration, thus eliminating pivot wear and stack up of tolerances on 


assembly [13]. Each pad connects to the bearing through a thin flexural web, which provides a 


low rotational stiffness, thus ensuring small cross-coupled stiffness coefficients and avoiding 


subsynchronous instabilities into very high speed operation.  


Thin film flow analysis for cylindrical bearings [10] 


Figure 10 depicts the ideal cylindrical bearing with relevant nomenclature. The journal 


rotates at speed () and  YX e,e  denote the journal displacements within the bearing clearance 


(c). The film thickness (h) around the bearing circumference is just 


cos sinX Yh c e e        (17) 


Figure 11 depicts a schematic view of a flexure pivot tilting pad bearing. For operation with 


external pressurization, a feed orifice is machined through the thin web. A pad extends from l to 


t (leading and trailing edge angular coordinates) with three degrees of freedom corresponding 


to angular (tilt) rotation (p), radial (p) and transverse displacements (p). The gas film thickness 


(h) in a pad is  


cos sin ( )cos( ) ( )sin ( )p X Y p p p p p ph c e e r R                          (18a) 


where cP and rp are the nominal machined clearance and pad preload at the offset P angle where 


the web is attached. 
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Fig. 10  Geometry of cylindrical gas bearing, coordinate system and 
nomenclature 
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Fig. 11 Geometry of a flexure pivot pad bearing, coordinate system and 
nomenclature 


 


Note that for a rigid pad with offset angle offset P and preload rp , the film thickness simplifies 


to  
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      cos cos sinp p X Yh c r e e                       (18b) 


In a radial bearing, Reynolds equation for the laminar flow of an ideal gas and under 


isothermal conditions governs the generation of hydrodynamic pressure within the thin film 


region, i.e., [2] 


     
3


12 2 OR g
h p


p p h p h m T
t


    
           



 


   (19) 


where ORm  denotes mass flow through a supply port at pressure pS . The pressure is ambient (pa) 


on the sides (z=0, L) of a bearing pad.   


For an inherent restrictor, the flow rate is a function of the pressure ratio or
S


pP p  , the 


orifice diameter (d) and the local film thickness (h), i.e. from [24], 


( )S
OR


g


p
m d h P


T
 



      (20) 


with   
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                     
            


  (21) 


 


where κ is the gas specific heats ratio. The orifice restriction is of inherent type10 whose flow is 


strongly affected by the local film thickness.  


An applied external static load (Wo) determines the journal center to displace eccentrically to 


the equilibrium position  YX e,e o with steady pressure field po and film thickness ho, and 


corresponding pad deflections (P, P, P)o, p=1,…Npad.  


As shown schematically in Fig. 12, let the journal center whirl with frequency  and small 


amplitude motions  ,X Ye e   about the equilibrium position, The general motion of the journal 


center and the bearing pads11 is expressed as, 


                                                           
10 Externally pressurized gas bearings should not be manufactured with pockets or recesses to avoid pneumatic 
hammer effects, i.e. a self-excited instability characterized by sudden loss of damping even under static conditions 
(low frequencies) [24 ].   
11 For rigid cylindrical or multiple-pad bearings, the only displacements kept are those of the journal center 


 ,X Ye e  ; hence, the analysis is much simpler and straightforward.  
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,i t
X Xo Xe e e e    ,i t


Y Yo Ye e e e       


,i t
p po p e     ,i t


p po p e        i t
p po p e         p = 1,2,...,Npad (22)   


with 1i . The film thickness and hydrodynamic pressure are also given by the superposition 


of equilibrium (zeroth order) and perturbed (first-order) fields, i.e. 


i t
oh h h e    ;        i t


op p pe                        (23) 


where  


      cos sin cos( ) sin ( )X Y P P P P Ph e e R              (24) 


and              X X Y Y P P Pp p e p e p p p                               (25) 
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Fig. 12 Depiction of small amplitude journal motions about an equilibrium 
position 
 


Substitution of Eqs. (24) and (25) into the Reynolds equation leads to a nonlinear PDE for 


the equilibrium pressure (po) and five linear PDEs for the first-order fields. For the equilibrium 


pressure po,  


 
3 3


2
1


12 12 2
o o o o o o


o o
p h p p h p


p h
z zR     


       
              


        (26) 
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See Ref. [10 ] for details on the first-order equations. 


The external load vector with components  ,X YW W acts on the journal. This load has a static 


part  ,0oW and dynamic components  , i t
X YW W e   . The hydrodynamic pressure fields act 


on the rotor surface to produce reaction forces  ,
X YP PF F ,  


  cos


sin
X


Y


P
a


P


F
p p R d dz


F


   
         


      (27) 


which balance the applied load, i.e.  


,
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i t
X o X P


p


i t
Y Y P


p


W W W e F


W W e F








  


  






    (28) 


The film forces (with opposite sign) also act on each pad to induce a pitching moment (MP), 


 [ sin cos ]
X YP p P p PM R F F         (29)  


Substitution of the pressure fields, zeroth and first order, into the pad force and moment 


equations leads to 


     


  


                                                                                                  (30) 


                                                                                                


where       ,,,},{ YXCiKZ      (31) 


represent the gas film impedances acting on each pad, i.e. 25 stiffness (K) and damping (C) 


coefficients. The equations of motion for a pad with angular (P), radial (P) and transverse (P) 


displacements are: 
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                    p=1,….Npad   (32) 
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are matrices representing the pad inertias, and the structural web stiffness and viscous damping 


coefficients, respectively.  


Frequency reduced force coefficients for tilting pad bearings 


Most analyses consider bearings as two degrees of freedom mechanical elements with lateral 


forces reacting to radial displacements (x, y). Bearing rotordynamic force coefficients are, by 


definition, changes in reaction forces due to small amplitude motions about an equilibrium 


position. The linearized model for a gas bearing is 


X XX XY XX XY


Y YX YY YX YY


F K K C Cx x


F K K C Cy y


        
         


        



  = F = -K z -Cz  (34) 


where F={FX, FY}T
 and z={x(t) ,y(t)}


T are vectors of lateral reaction forces and displacements, 


respectively. Figure 13 shows a schematic idealized representation of the force coefficients as 


mechanical spring and viscous dashpot connections between the rotating journal and its bearing. 


Recall that gas bearings due to the fluid compressibility will show force coefficients that are 


strong functions of the excitation frequency. In tilting pad bearings, the complicated behavior is 


further compounded by the pads’ radial and tilting motions. 
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Fig. 13 Idealization of bearing force coefficients as viscous damping and stiffness 
elements   
 


 


Clearly, in a tilting pad bearing the number of degrees of freedom equals = 2 (x, y) + 3 x Npad. 


Hence, for example, a five pad bearing has 17 degrees of freedom. Clearly, the overabundance of 


degrees of freedom complicates the integration of bearing predictive tools into existing 


rotordynamic analyses. Hence, it is customary to reduce the bearing force coefficients by 


assuming that the pad motions are at the same frequency as the journal center lateral motions 


(X,Y). The set of frequency reduced impedance coefficients is [10] 
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   (35) 


The matrix [Z]R contains the frequency reduced stiffness and damping coefficients for rotor 


lateral motions (X,Y),  
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    (36) 
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In the equation above,    
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  (37a)    


and              Pc
S
P


S
PfP MZCiKZ 2        (37b) 


 


is the composite (pad plus film) impedance matrix at frequency . For prediction of RBS 


imbalance responses, synchronous force coefficients are calculated with    . For eigenvalue 


RBS analysis, i.e. prediction of damped natural frequencies and damping ratios, iterative 


methods allow the determination of the coefficients at frequencies coinciding with the RBS 


natural frequencies.  


As emphasized earlier, gas bearings (rigid surfaces, tilting pads and foil types) have 


frequency dependent force coefficients because of the fluid compressibility and the compliance 


of the bearing par surfaces. The dependency on frequency cannot be overlooked! 


 


Some considerations on the solution of Reynolds equation for gas films 


Most often the numerical solution of Reynolds equations (equilibrium and its variations for 


the dynamic first order pressure fields) is performed using algorithms suited for elliptical-type 


differential equations. Note also that Reynolds equation for the generation of gas film pressure is 


nonlinear due to the density varying with the pressure. In the case of a hydrostatic bearing 


carrying a static load, the equation becomes linear, i.e., Eq. (19) reduces to 


3
2 0


24


h
p





 
    


 


 
     (38) 


This equation can be solved efficiently for (p2) as the independent variable with either central 


finite differences or finite element methods. 


However, the more general bearing case that includes both hydrodynamic and hydrostatic 


effects remains nonlinear. In particular, one must realize that for large rotor speeds 


  and/or large whirl frequencies    , the character of the Reynolds equation 
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changes from elliptical to parabolic. Recall, in dimensionless form, that the compressible fluid 


film Reynolds equation is 


   3 3P P
P H P H P H P H


z z
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  (39) 
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   (4) 


are the well-known speed and frequency numbers, respectively. At large speed numbers or 


frequency numbers  1, 1  , the first order terms on the right hand side dominate the 


generation of the hydrodynamic pressure in the gas film region. For low rotational speeds () 


and low frequencies, i.e.,  , 0  , the expansion 1P P  gives the linearized Reynolds 


equation 
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   (40) 


which is elliptical in character and formally identical to the Reynolds equation for an 


incompressible fluid.  The numerical solution of the linear equation above can be easily 


performed using (central) finite differences, for example. More importantly, any predictive 


computational tool predicting pressure fields for bearings lubricated with incompressible fluids 


(oils) can also be used for gas films operating at low rotational speeds and/or low whirl 


frequencies. See Lecture Notes 7 for details on the numerical solution of Eq. (40) 


For operation with large speeds, the infinite speed     equation for pressure generation 


is  


   
0 a


a
h


p h p p
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 


    (41) 


  


which12 establishes a limit on the generation of hydrodynamic pressure in a radial bearing. 


Consequently, the bearing reaction load will also reach a definite limit. The ultimate load 


capacity (wu) of the cylindrical gas bearing is, as  , [3] 


                                                           
12 This solution is to be taken with caution since it does not satisfy all the boundary conditions, in particular at the 
bearing axial edges, i.e., 
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with the journal static eccentricity (=e/c) is along the direction of the applied load. Figure 14 


shows that the ultimate load (wu) grows modestly with journal eccentricity. Most importantly, the 


ultimate load is independent of the bearing clearance (c). The prospective user must realize that 


gas bearings, unlike liquid lubricated journal bearings, are not able to support heavy loads, as 


those typical in large rotating machinery13.  The graph shows a recommended safe upper bound 


for load capacity selection at wu=2 which renders an eccentricity () 0.60. Note that operation 


at any finite rotational speed will produce a higher shaft eccentricity. Furthermore, safe operation 


should avoid too large journal eccentricities that can provoke transient rubs and impacts that 


could quickly destroy the rotor bearing system. 
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Fig 14. Ultimate load capacity (W/paLD) of cylindrical journal bearing. Infinite speed 


solution     


 
                                                           
13 Specific load capacities  a


W
p L D  in oil bearings easily exceed 20 (bar) or more.  
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Incidentally, for operation with infinite frequency    , and for simplicity not 


accounting for shear flow effects  0  , the squeeze film pressure is just  


   
0


,
a


a
h


p h p p
h 



  
 


    (43) 


Thus, the pressure is in-phase with the film thickness, i.e., solely determined by the 


displacements  YX e,e  and not its time variations, i.e., not a function of the velocity at which the 


film thickness changes. These operating conditions thus lead to a stiffening or hardening of the 


gas film and absence of squeeze film damping effects. Examples showing this behavior were 


introduced for one-dimensional slider bearings. 


Importantly enough, high frequency motions of a squeeze gas film can generate a mean 


pressure above ambient; and hence the ability to carry a static load (albeit small). See Ref. [2] for 


details on this rectification phenomenon.  


   


Example of performance for a plain cylindrical journal bearing  


Table 3 shows the geometry and operating conditions of a cylindrical journal bearing 


operating with air at ambient condition. The bearing application is typical for a miniature high 


speed spindle.   


Table 3. Geometry and operating conditions of cylindrical gas bearing 


Journal diameter, D 0.0285 m L/D=1 


Length, L 0.0285 m  


Clearance, c 0.020 mm R/c=712 


Lubricant: Air at 26.7 C   


Ambient pressure, pa 1.01 bar  


Viscosity,  0.0185 c-Poise  


Density,  1.16 kg/m3  


Specific load, paLD 82 N  


Journal speed 10-100 krpm RPM /30 


Load  W 10 -100 N  


 


To show the bearing performance, define the following parameters: 
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a


W
w


p L D
 , 


2
N L D R


S
W c


    
 


, 
2


6


a


R L


p c



      (44) 


which represent the dimensionless load, Sommerfeld number and speed (or compressibility) 


number, respectively. Above N is the rotational speed in rev/s. Note that in the design (and 


selection) of a gas bearing the Sommerfeld number is (usually) known or serves to size the 


bearing clearance14. 


Figures 15 and 16 show the static (equilibrium) eccentricity () and attitude angle () versus 


Sommerfeld number (S). This angle is between the load vector and the ensuing journal 


eccentricity vector. Each graph includes the (unique) curve representative of the operation for the 


journal bearing with an incompressible lubricant.  With an incompressible lubricant, large 


Sommerfeld numbers S , denoted by either a small load W, a high rotor speed , or large 


lubricant viscosity , determine small operating journal eccentricities or nearly a centered 


operation, i.e.  0 and  ½ (90). That is, the journal eccentricity vector e is nearly 


orthogonal or perpendicular to the applied load vector W. 


A  cylindrical (plain) gas bearing does not offer a unique performance curve; albeit the 


maximum journal eccentricity is bounded by the solution for the incompressible lubricant. The 


specific loads in a gas bearing are, by necessity, rather small. That is, even w=1.50 (see Fig. 15a) 


determines large operating eccentricities, in particular when the speed number () is also low.  


As per the attitude angle ( , gas bearings show a smaller angle than with incompressible 


lubricants, in particular at high speeds, as evidenced by the predictions in Fig. 17 depicting 


versus the journal eccentricity.    


 


                                                           
14 Even to this day, turbomachinery is designed (and built) with little attention to the needs of bearings and adequate 
lubrication for cooling and load support, static and dynamic. That is, thermo fluidic and aerodynamic considerations 
dictate the speed and size of the rotating elements. Fixed diameter and length for a bearing and the lubricant to be 
used, as well as the load to be supported, severely constrain the design space.   The bearing designer has only the 
bearing clearance (c) to play with. 
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Fig. 15(a) Journal eccentricity vs. Sommerfeld # for cylindrical gas journal bearing. Load 


(w) increases 
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Fig. 15(b) Journal eccentricity vs. Sommerfeld # for cylindrical gas journal bearing. 


Speed # () increases 
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Fig. 16(a) Journal attitude angle vs. Sommerfeld # for cylindrical gas journal bearing. 


Load (w) increases 
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Fig. 16(b) Journal attitude angle vs. Sommerfeld # for cylindrical gas journal bearing. 


Speed # () increases 
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Fig. 17 Journal attitude angle vs. eccentricity for cylindrical gas journal bearing. Load (w) 


increases 


Figure 18 shows the drag friction coefficient, orqueT
f cW , is indistinguishable between 


incompressible fluid and gas film journal bearings. This is so since the shear stress model is 


viscous in character, i.e., not affected by fluid compressibility. The result does not mean a gas 


bearing has the same drag torque (and power loss orqueT  ) as a mineral oil bearing. The 


difference in viscosities causes the gas bearing to have a much lower drag coefficient;  f is quite 


small, two orders of magnitude at least. 
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Fig. 18 Drag friction coefficient (f) vs. Sommerfeld number for cylindrical gas journal 


bearing. Load (w) increases 
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Bearing force coefficients and dynamic stability 


Figure 19 depicts the bearing stiffness and damping force coefficients evaluated at a 


frequency coinciding with the journal rotational speed (). In the example, the dimensionless 


load w=0.488 while the journal speed increases from 10 krpm to 100 krpm. Hence, the bearing 


Speed number 1.17 to 11.7, and the Sommerfeld number S=0.032 to 0.318. The 


dimensionless force coefficients are  
3


*
**


, ; where
4


D LCKK C CCC c
        


.  See Fig. 


15(a) for the relation between the journal eccentricity and the Sommerfeld number. Note that the 


direct stiffnesses (KXX, KYY) and damping (CXX, CYY) coefficients increase with the journal 


eccentricity (). At low eccentricities  0  or high speeds    , i.e., 1S  , then KXY=-


KYX and CXY=-CYX. 


The stability of the rotor-bearing system is of interest. In general, this is an elaborate 


procedure that requires the integration of the fluid film bearing reaction forces into a 


rotordynamics model. Simple analyses consider a point mass (M) rigid rotor supported on a gas 


bearing. The (linearized) equations of motion of the system about an equilibrium conditions 


(W=F) are 


e


e


XXX XY XX XY


YX YY YX YY Y


e


FK K C Cx x x
M


K K C Cy y y F


                       
           


M z + K z +Cz = F


 
 


 
  (45) 


where z={x(t) ,y(t)}
T is the vector of dynamic displacements of the journal center. Above, 


Fe={FX,FY}T is the external dynamic force vector acting on the system, for example due to mass 


imbalance. The stability of the system considers the homogeneous form of Eq. (45) and assumes 


an initial state  i iz , z away from the equilibrium condition (x=y=0).  


 







NOTES 15. GAS FILM LUBRICATION – Dr. Luis San Andrés © 2010 35


K/K*


0.1


1.0


10.0


100.0


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0


eccentricity (e/c )


B
ea


ri
n


g
 s


ti
ff


n
es


se
s Kxx


Kyy


Kxy


Kyx


w =0.488



X


Y


Load, W








X


Y


Load, W





KXX


KYY


KXY


KYX


 


C/C*


0.1


1.0


10.0


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0


eccentricity (e/c )


B
ea


ri
n


g
 d


am
p


in
g


Cxx


Cyy


Cxy


Cyx


w =0.488



X


Y


Load, W








X


Y


Load, W





CXX


CYY


-CXY


CYX


 


Fig. 19 Synchronous frequency stiffness and damping force coefficients vs. journal 


eccentricity for cylindrical gas bearing. Load w=0.488 


 


The solution of the homogeneous form of Eq. (45) is straightforward. Let  z=zo e
st, hence Eq. 


(45) turns into the algebraic form 


 2
os s  K M +C z = 0     (46) 


The roots of the characteristic equation  2 0s sK M +C =  are 1,2s i   . If the real 


part < 0, then the rotor bearing system (RBS) is stable; that is, a system that returns its 


equilibrium position, as t z 0 . If, on the other hand, > 0, then the RBS is unstable and z 
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grows without bound15.  At the threshold of instability, when = 0, the system will perform self-


excited motions with whirl frequency i.e. z=zo e
t. Hence, Eq. (46) becomes 


 2 whereo i     Z M z = 0 Z K C    (47) 


Solution of Eq. (47) is straightforward for incompressible fluid, rigid surface, journal 


bearings since their force coefficients are frequency independent. The analysis leads to the 


estimation of the system critical mass (MC) and the whirl frequency ratio (WFR) [25]  


2 XX YY YY XX YX XY XY YX
C S eq


XX YY


K C K C C K C K
M K


C C
   


 



 


  2
2 eq XX eq YY XY YXs


XX YY XY YX


K K K K K K
WFR


C C C C


        
   (48) 


On the other hand, gas bearings have frequency dependent force coefficients, K() and C(). 


As an example, for the particular operating conditions noted, Fig. 20 depicts the dimensionless 


stiffness (Kij)ij=X,Y and damping (Cij)ij=X,Y coefficients versus frequency ratio (where  is 


the rotational speed; denotes whirl frequency excitation synchronous with the rotational 


speed. Note that the direct stiffnesses increase with whirl frequency, a typical hardening effect 


due to fluid compressibility. On the other hand, the damping coefficients at high frequencies are 


zero, 0asijC   , also due to fluid compressibility. An iterative method is required to solve 


for the characteristic Eq. (47),  
2 0 Z M = . Lund [24] restated Eq. (47) as  


2
 Z = M , 


and hence the instability threshold occurs at frequency s where the imaginary part of the 


complex impedance Ze is zero while its real part must be greater than zero. The equivalent 


impedance is 


             ( )


22
1


4


1


2e XX YY XX YY XY YXZ Z Z Z Z Z Z
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       
  (49) 


     Im 0 and Re 0
s s


e eZ Z
 


      (50) 


The first statement above implies the effective damping is nil. For the data shown in Fig. 20, 


the RBS critical mass is just Mc=0.968 kg and the WFR=0.48. That is, for operation with journal 


                                                           
15 It is a common misconception that the “no bound” statement implies system destruction. In actuality, the journal 
will whirl with a large amplitude whirl orbit bounded by the bearing clearance. As the motion amplitude grows, the 
bearing nonlinearity determines the size of the limit cycle. Of course, sustained operating under this condition is not 
recommended. 
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rotation at 50 krpm (833 Hz), the RBS becomes unstable if is physical mass is greater than Mc. If 


the actual system mass M > Mc, the RBS will begin self-excited motions at a frequency equaling 


48% of the running speed, i.e. s=400 Hz. This whirl frequency is also the natural frequency of 


the RBS for the noted operating condition.  Czolczynski .  For cylindrical gas bearings of various 


types Czolczynski [4] lists tables of rotordynamic force coefficients, critical mass and whirl 


ratios. 
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Fig. 19 Bearing stiffness and damping force coefficients versus whirl frequency ratio 


(). Cylindrical gas bearing. Load w=0.488, speed = 50 krpm (5.843), S=0.158 


(e/c=0.485) 


 


Performance of a flexure pivot – tilting pad hydrostatic gas bearing  


Cylindrical hydrodynamic journal bearings are notoriously limited in its load capacity as well 


as its dynamic stability. Hence, practice dictates the use of bearing configurations with multiple 


pads with a mechanical preload and, if possible, implementing hydrostatic pressurization to aid  


early rotor lift off as well as to reduce wear during start up and shut down events. As is well 


known in the rotating machinery industry, tilting pad bearings are preferred for high speed 


applications because of their excellent rotordynamic stability characteristics.  
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Figure 21 depicts a flexure pivot – tilting pad hydrostatic bearing that has undergone 


exhaustive investigation, analytical and experimental [13]. The test set up consists of a 190 mm 


rotor, weighing 0.827 kg, supported on a pair of gas bearings. Table 4 lists the geometry and 


operating conditions of the gas bearing installed for a load on pad condition. Note that the 


bearing pads have no pockets or recesses to eliminate pneumatic hammer effects. The gas feed 


orifices impinge directly on the rotor surface.  In the application, the DN value= 2.9 million, 


where D and N = (journal diameter in mm) × (rotating speed in rpm). Note that the static load 


(W) on each bearing is low, typical of a high speed spindle motor or a small turbocharger, for 


example. Furthermore, compared to the journal bearing analyzed earlier, the current bearing 


clearance is larger for easiness in installation.  


 


Table 4. Geometry and operating conditions of four pad flexure pivot, tilting pad 


hydrostatic bearing [13] 


Journal diameter, D 0.0285 m L/D=1.165 


Length, L 0.0332 m  


Clearance, c 0.0375 mm R/c=380 


Preload, r/c 0.0071 mm r/c=0.20 


Pad arc length and pivot offset 72 60% 


Orifice diameter 0.62 mm  


Pad inertia and stiffness, IP and K 0.253 g-mm2 20 Nm/rad 


Lubricant: Air at 26.7 C 1.01 bar Ambient pressure, pa 


Viscosity,  0.0185 c-Poise  


Density,  1.16 kg/m3  


Supply pressure, pS 2.39, 3.77, 5.15 bar  


Load, W along X 4.05 N w=W/paLD=0.042 


Journal speed,  10-100 krpm RPM /30 
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Fig. 21 Dimensions of flexure pivot hydrostatic gas bearing (units: mm) [13] 


 


Figure 22 shows the bearing static eccentricity (), attitude angle () and friction coefficient 


(f) versus speed number (). The predictions are for speeds from 10 to 100 krpm, 


with S=0.234-2.346, with hydrodynamic operation (no external pressurization) and 


hydrostatic pressurization with pressure supplies, pS= 2.39, 3.77 and 5.15 bar (absolute) [20, 40, 


60 psig]. External pressurization leads to small journal eccentricities () and attitude angle (), 


with a minor reduction in friction coefficient (f). In particular, the highest supply pressure gives a 


nearly centered journal operation. Figure 23 shows the flow rate (g/s) versus pressure and 


comparisons with experimental data. The supplied flow is quite small (max. 14.7 LPM), easily 


bleed off from a compressor in an actual RBS without significant penalty in its efficiency.     
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Fig. 22 Static performance of flexure pivot hydrostatic gas bearing versus speed (): 


journal eccentricity (e/c), attitude angle (),  journal center locus eY vs. eX, and friction 


coefficient (f) vs. Load (w) fixed 
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Fig. 23 Predicted and measured flow rate for flexure pivot hydrostatic gas bearing versus 


supply/ambient pressure ratio 


 


Figure 24 depicts the (dimensionless) bearing force coefficients, synchronous speed reduced 


(), versus speed for increasing magnitudes of external pressurization. Note that the cross-


coupled stiffnesses (KXY, KYX ) are a small fraction of the direct stiffnesses (KXX, KYY ), these 


growing with the level of supply pressure. The direct damping coefficients (CXX, CYY ), on the 
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other hand, decrease rapidly with an increasing pressure supply and less steeply with journal 


speed.  


The drop in damping as speed increases is a typical effect of fluid compressibility. The sharp 


reduction in damping with pressurization is problematic since, with the increase in bearing direct 


stiffness, it will produce a significant reduction in system damping ratio. Nonetheless, the model 


predicts the bearing will have a low whirl frequency ratio (WFR)~0.15, a significant 


improvement over the conventional cylindrical journal bearing.   
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Fig. 24 Stiffness (K) and damping (C) coefficients of flexure pivot hydrostatic gas bearing 


versus speed (). Synchronous speed force coefficients. Load (w) fixed 


 


Figure 25 shows the predicted and measured synchronous rotor imbalance response for 


operation with 2.36 bar and 5.08 bar (ab) feed pressure into the bearings. Note the effect of 
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supply pressure on increasing the system critical speed as well as in reducing the damping ratio. 


See Refs. [26,27] for further details on the experimental investigation which includes tests with 


external loads to determine the reliability of the gas bearings under intermittent shocks and 


periodic forces simulating maneuver loads and uneven road conditions. Furthermore, the test 


data in the figure suggests the possibility of controlling the supply pressure to move critical 


speeds and avoid the passage through resonances. Ref. [13] discusses and implements a simple 


and inexpensive control strategy that demonstrated remarkable results. In brief, external 


pressurization is only needed at low rotor speeds, while at high rotor speeds it can be safely 


dispensed with.    
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Fig. 25 Comparison of predicted and measured imbalance response of rotor 


supported on flexure pivot hydrostatic gas bearings. Operation with pS= 2.36 bar 


and 5.08 bar (abs) supply pressure [26].  


 
An introduction to gas foil bearings 


Oil-free systems have a reduced part count, footprint and weight and are environmentally 


friendly with demonstrated savings in long-interval maintenance expenses. Until recently, gas 


bearings were constructed with hard or rigid surfaces to reduce friction during start up or shut 


down events. However, bearing types such as herringbone groove bearings require tight 







NOTES 15. GAS FILM LUBRICATION – Dr. Luis San Andrés © 2010 43


clearances (film thicknesses), and with their hard surfaces offer few advantages for use in high 


speed MTM.  


Gas foil bearings (GFBs) have emerged as a most efficient alternative for load support in 


high speed machinery. These bearings are compliant surface hydrodynamic bearings using 


ambient air as the working fluid media. Recall Fig. 1 showing two typical GFB configurations, 


one is a multiple overleaf bearing and the other is a corrugated bump bearing. Both bearing types 


are used in commercial rotating machinery, yet the open literature presents more details on 


bump-GFBs, along with measurements and analyses. The corrugated bump foil bearing is 


constructed from one or more layers of corrugated thin metal strips and a top foil. In operation, a 


minute gas film wedge develops between the spinning rotor and top foil. The bump-strip layers 


are an elastic support with engineered stiffness and damping characteristics [5,18]. 


GFBs offer distinct advantages over rolling elements bearings including no DN16 value limit, 


reliable high temperature operation, and large tolerance to debris and rotor motions, including 


temporary rubbing and misalignment, Current commercial applications include auxiliary power 


units, cryogenic turbo expanders and micro gas turbines. Envisioned or under development 


applications include automotive turbocharger and aircraft gas turbine engines for regional jets 


and helicopter rotorcraft systems [5]. Alas, GFBs have demerits of excessive power losses and 


wear of protective coatings during rotor startup and shutdown events. In addition, expensive 


developmental costs and, until recently, inadequate predictive tools limited the widespread 


deployment of GFBs into mid size gas turbines. In particular, at high temperature conditions, 


reliable operation of GFB supported rotor systems depends on adequate engineered thermal 


management and proven solid lubricants (coatings).  


Successful implementation of GFBs in commercial rotating machinery involves a two-tier 


effort; that of developing bearing structural components and solid lubricant coatings to increase 


the bearing load capacity while reducing friction, and that of developing accurate performance 


prediction models anchored to  dependable (non commercial) test data.  Chen et al. [18] and 


DellaCorte et al. [5,28] publicize details on the design and construction of first generation foil 


bearings, radial and thrust types, aiming towards their wide adoption in industry.  


 


                                                           
16 DN, the product of journal diameter (mm) times rotational speed [RPM], is a limiting factor for operation of 
rolling element bearings (DN= 2 Million in specialized bearings with ceramic balls, for example) 
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Performance of a simple one dimensional foil slider bearing 


Figure 26 depicts a one dimensional tapered foil (bump strip) bearing. The dimensionless 


film thickness (H) and Reynolds equation for the hydrodynamic pressure (P) are:   


( ) ( 1)RH H x S P    ;    


      3 0H P P P H P H
x






 
       


 
    (51) 
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Fig. 26 Schematic view of tapered foil-bump strip bearing (width B) 
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hR
 is the film thickness for a rigid surface bearing and 


 
1


1b


s
k i






 is the foil support 


compliance or flexibility coefficient17, also accounting for material damping with a loss factor 


(). In most applications reported in the literature, the parameter (S) does not exceed a magnitude 


equal to 5. Indeed, typical bump foil stiffnesses range from kB = 5 to 100 (MN/m2)/mm [18], and 


thus, operation at ambient conditions (pa= 1 bar) with a film thickness of 5 micrometer leads to S 


varying from 0.2 to 4 for fixed end and free end bump-foil strips, respectively. Compliance (S) 


magnitudes below 0.1 imply an almost rigid surface bearing; while S> 5 correspond to a bearing 


too soft to support any practical load.  


                                                           
17 The description is rather simplistic, it neglects the elastic forces of the top foil and assumes that only the local 
pressure deforms a bump. Realistic physical models are available, see Ref. [16] for example. 
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The most difficult issue in foil bearing design relates to the estimation of the actual film 


thickness separating the foil from the moving surface. The operating thickness is unknown since 


all foil bearings have zero clearance at the stationary condition, i.e. without surface speed. The 


issue is resolved in a simple and ingenious manner.  


The applied (dimensionless) load on the bearing is 
a


Ww p L B , where B is the bearing width. 


At static conditions, the surface speed is U=0  0 , and the bearing supports the load through 


the elastic deformation of the bump foil strip along the length (L-LT). The contact pressure is 


simply 
   


;
1c c


T T


W w
p P


L L B l


 
     


, which determines the largest deflection on the foil bump 


structure,  0 /U c a bp p k    . Clearly, () should be within the elastic region of the elastic sub-


structure (bump strip)18. Note that this simple condition dictates the choice of the foil stiffness 


within acceptable engineering practice. 


Now consider the bearing operates at an exceedingly large surface speed,  ΛU   . 


This condition reduces Reynolds Eq. (51) to the (PH) limit, i.e. 


    0 1 1i o R o o oP H P H H P H S P P H
x



      



  (53) 


where (Po, Ho) denotes the gas pressure and film thickness in the downstream section of the foil, 


and Hi=HT+Ho is the film thickness at the inlet section. This last equation is easily solved with 


the load constraint
1


0


( 1)w p dx  , to determine the film thickness Ho. Note that this ultimate film 


thickness is the largest ever to occur. Thus, actual operating conditions (with finite speed) must 


render a smaller film thickness.  


Figure 27 shows the foil bearing ultimate load (w) decreases rapidly as the bearing 


compliance (S) increases for two inlet film thickness (Hi=3, 6)19. Figure 28 displays the bump 


strip elastic deflection, and contact and lift pressures versus the bearing compliance (S). Note that 


for operation at “infinite” speed the foil elastic deflection and lift pressure are smaller than for 


the contact condition since the hydrodynamic pressure distributes more evenly over the whole 


                                                           
18 Other constraints also apply. Most notably those related to tip clearances on rotating wheels and on inter-stage 
seals within a typical turbomachinery.  
19 Even a rigid bearing (S=0) does have an ultimate (speed limited) load capacity due to the gas compressibility. See 
prior sections. 
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bearing surface (see Fig. 29). At U=0, the contact zone conforms to the non-tapered portion of 


the bearing.  
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Fig. 27 Ultimate load capacity versus compliance (S) for two inlet films. Tapered length 
L1/L=0.5 
 


The results demonstrate the ultimate load capacity of a (simple) compliant gas bearing with 


non-zero film thickness. Unlike incompressible fluid (liquid) bearings, gas bearings do have a 


limited load capacity solely determined by the bearing geometry, the inlet and outlet film 


thicknesses, and the compliance parameter. The results in Figs. 27 and 28 are then used to 


estimate the operating film thickness since for a desired S parameter, and given the bump strip 


stiffness, then *
a


b


ph k S . 
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Fig. 28 Foil elastic deformation and maximum (contact and lift) pressures versus 
compliance parameter (S) for two inlet film conditions 
 


Figure 29 shows the predicted pressure field on the bearing surface for rigid (S=0) and 


compliant (S=3) surface bearings at a finite speed condition (=50). The figure also contains the 


contact pressure for operation without a hydrodynamic film (=0). The predicted gas pressures 


correspond to numerical solutions of Eq. (51) using a fast, accurate and stable algorithm for thin 


gas films [8]. The predictions correspond to a load w=0.25, just 20 % below the ultimate load for 


the compliant surface bearing. Note the more uniform pressure distribution for the foil gas 


bearing on the non-tapered portion of the bump foil strip layer. 


Figure 30 displays the predictions of load capacity (w) and minimum film thickness versus 


speed number () for a rigid (S=0) and compliant surface bearings (S=3, 6). At low speeds, the 


load is nearly proportional to surface speed, though it soon levels off and reaches the ultimate20 


load capacity for >100. Note that the predictions based on the simple design formulae, Figs. 27 


and 28, match perfectly those of the numerical predictions at high speed numbers.  


 


                                                           
20 Some foil bearing providers erroneously claim ever increasing load capacities as (surface speed) increases. The 
claim has no scientific grounds and merely reflects the commercial aspect of an emerging technology.    
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Fig. 29 Pressure field on bearing surface for speed number =50. Rigid and compliant  
(S=3) surface bearings with Hi =3, w=0.25, and contact pressure at =0 
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Fig. 30 Load capacity (w) and minimum film thickness versus speed number () for rigid 
(S=0) and compliant surface bearings (S=3, 6). Hi =3. 
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Dynamic force coefficients representative of small amplitude motions about an equilibrium 


condition are of importance to determine the dynamic forced response and stability of a 


mechanical system. Figure 31 depicts the predicted (dimensionless) stiffness and damping 


coefficients for rigid (S=0) and compliant surface (S=3) bearings at =50, with film inlet Hi=3 


and load w=0.25. The force coefficients are displayed as functions of increasing frequency 


numbers (), i.e. as the excitation frequency grows, and two loss factors, = 0 and 1, 


representative of low and high values of material damping within a foil bump strip, respectively.  
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Fig. 31. Stiffness and damping force coefficients for rigid and compliant surface bearings 
versus frequency number (). Effect of loss factor () on dynamic force coefficients. Hi=3, 
=50, w=0.25 
 


The stiffness coefficient (KB) shows a typical hardening effect as the frequency of excitation 


grows, while the damping coefficient (CB) decreases rapidly. However, the compliant surface 


bearing with a large loss factor (=1) has more damping capability than the rigid surface bearing. 


The results demonstrate that foil bearings may be tuned (designed) to give desirable dynamic 


force characteristics to control the placement of critical speeds and enhanced damping in 


operating regions of interest.  


Ref. [14] shows a similar (simple) analysis giving the limit or ultimate load capacity of radial 


foil bearings. 


 


Considerations on foil bearings for oil-free turbomachinery 


 Until recently GFB design was largely empirical, each foil bearing being a custom piece of 


hardware, with resulting variability even in identical units, and limited scalability.  At present, 
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the advances in radial GFB technology (design, construction and predictability) permit OEMs 


and end users to implement radial GFBs for deployment into novel MTM or to upgrade and 


improve outdated rotating machinery. That is, there is enough published know-how on materials, 


guidelines for design and construction of radial GFBS including engineered coatings for high 


temperature applications, a reliable data base of GFB forced performance (static and dynamic), 


and computational tools benchmarked to test data.  


Research on radial GFBs for lateral support of oil-free rotating machinery has steadily 


progressed with comprehensive analyses accounting for most relevant physical aspects to 


accurately predict GFB static and dynamic load performance, power loss, and the management 


of thermal energy in high temperature applications. Empirical research has gone beyond showing 


a few instances of acceptable mechanical performance, to demonstrate GFB multiple-cycle 


repeatable performance in spite of persistent large amplitude whirl motions at low frequencies, 


typically coinciding with the system natural frequencies.  Many developmental efforts have 


attempted to fix or suppress these undesirable motions. One could hastily attribute the sub 


harmonic whirl motions to a typical rotordynamic instability induced by hydrodynamic effects of 


the gas film, i.e. generation of too large cross-coupled stiffness coefficients that destabilize the 


rotor-bearing system. However, as learned from the measurements [29], rotor imbalance triggers 


and exacerbates the severity of subsynchronous motions. The subsynchronous behavior is a 


forced nonlinearity due to the foil bearing strong nonlinear (hardening) stiffness characteristics, 


as is demonstrated in Ref. [30]. The predictions and measurements validate the simple FB model, 


i.e. a minute gas film with effective infinite stiffness, with applicability to large amplitude 


rotordynamic motions. 


Challenges for gas FBs include intermittent contact and wear at startup and shut down, and 


potential for large amplitude rotor whirl at high speeds. Subsynchronous motions are common in 


FBs due to their strong structural hardening nonlinearity. Incidentally, the ultimate load capacity 


of a gas foil bearing depends mainly on its support structure. Hence, engineers must pay close 


attention to the bearing structural components (design, fabrication and assembly). 
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Texas A&M University, Turbomachinery Laboratory      
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Nomenclature 
B  Bearing width [m] 
c  Radial clearance in journal bearing [m] 
cP  Machined clearance in a tilting pad bearing [m] 
C  Damping coefficients [Ns/m]; X,Y. C C/C* 


C*  


3


4


D L


c
  


 
 


. Factor for damping coefficient in radial bearing 


C   
3


*
*


12


C


LB h   
 


Dimensionless damping coefficient (slider bearing)   


d  Orifice diameter in externally pressurized bearing [m] 
D  Journal or rotor diameter [m] 
eX, eY  Components of journal eccentricity vector [m]. =e/c 
FX, FY  Components of bearing reaction force [N].  
f  Torque/cW. Drag friction coefficient in journal bearing 
h  Film thickness [m].  
H  h/h*, h/c. Dimensionless film thickness 
K  Damping coefficients [Ns/m]; X,Y. K K/K* 
K*  C*. Factor for stiffness coefficient in radial bearing 


K   


*
a


K
B L p


h


Dimensionless stiffness coefficient (slider bearing) 


kb  Foil bearing stiffness/unit area [N/m/m2] 
Kn  (/h). Knudsen number. > 15 for continuum flow. 
L  Length of bearing [m] 
MP  Pad moment [Nm] 


ORm   Orifice mass flow rate [kg/s] 


M  Rigid rotor mass [kg] 
Mc  Critical mass of rigid rotor-bearing system [kg] 
N  Rotational speed [rev/s] 
npe  Number of nodes in finite element 
p  Pressure [Pa]. P=p/pa 
pa, pS  Ambient and supply pressures [Pa] 
p0, p1  Zeroth and first order pressure fields. [Pa], [Pa/m] 
q  Flow normal to an element 
rP  Machined preload in a multiple pad and tilting pad bearings [m] 
R  ½ D. Journal radius 
Re  Uh/Shear flow Reynolds number 
g  Gas constant [J/kgK] 


S  Sommerfeld number. 
2


N L D R
S


W c


    
 


 


S  (s pa/h*). Foil bearing compliance number 
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s  
 


1


1bk i
Foil bearing compliance parameter [m3/N] 


s  s i   . Eigenvalue of characteristic equation 
t  Time [s] 
T  Temperature [K] 
Torque  Drag torque [Nm] 
U  Surface speed [m/s]. R in journal bearing 
W  Load [N]. w= W/(BLpa), W/(LDpa) 
WX, WY  Components of load acting on bearing [N].  
WFR  (). Whirl frequency ratio 
X,Y  Inertial coordinate system for journal bearing analysis 
x, y, z  Coordinate system in plane of bearing 
 
z  {x(t) ,y(t)}


T . Vector of journal center dynamic displacements [m]  


Z  Complex impedance [N/m]; Z = (K + i  C), 1i  



y  Small amplitude motion [m] 
eX, eY Small amplitude journal center motions [m] 
 
   (h1/h2). Ratio of inlet to outlet film thickness in slider bearing 
   (L2/L). Ratio of lengths in Rayleigh step and tapered-flat slider bearings 
   Material loss coefficient in foil bearing 
  Gas specific heats ratio 
e  Element boundary 
  ngle between load vector and journal eccentricity vector [deg]  
  t. Dimensionless time 
  Coordinates for pad tilt, radial and transverse displacements 
  (e/c). Journal eccentricity ratio  
  x/R. Circumferential coordinate fixed to stationary 
P  Angular location of pad pivot 
  Gas molecular free path [m]


  Speed number. *
2
*


6


a


U L


p h



  , 


26


a


R


p c


      
 


 


  Gas viscosity [Pas]  
  Gas density [kg/m3] 


  Frequency number. 
2
*


2
*


12


a


L


p h


 
1
2







 


 i


npe


1
 Shape functions within the finite element 


  Frequency of dynamic motions [rad/s] 
  Whirl frequency of unstable dynamic motions [rad/s] 
  (2N). Rotor or journal speed [rad/s]  
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e  Finite element sub-domain 
 
Subscripts 
o  Zeroth-order 
1  First-order 
*  Characteristic value 
P  Pad 
u  Ultimate limit at   
 
Acronyms 
FPTPB  Flexure pivot tilting pad bearing 
GFB  Gas foil bearing 
RBS  Rotor-bearing system 
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Appendix Numerical solution of Reynolds equation for gas films 


There are numerous methods for the numerical solution of the gas film Reynolds equation, 


including finite differences, finite elements, control-volume methods and boundary element 


methods. Prior to 1990, finite difference methods were favored. However, into the present day, 


the finite element method has gained in popularity because of its ability to seamlessly tackle 


complex configurations, including textured (spiral groove) geometries, and including supply 


ports. However, recall that the compressible fluid Reynolds equation is non linear, hence 


requiring of iterative methods – Newton-Raphson like- to achieve convergence to a unique 


solution. Moreover, the character of the equation changes from elliptical to hyperbolic as the 


speed or frequency (numbers) increase. As the literature extensively reports, predictions under 


these conditions using central difference schemes of finite elements with linear interpolation 


functions show numerical oscillations and eventually numerical instability. 


Fortunately, nowadays there is a method that avoids such difficulties by using interpolation 


or shape (analytical) functions that seamlessly transition from elliptic to parabolic flow 


conditions as the speed increases. See Ref. [8] for this important development that allows 


prediction of gas film static and dynamic force characteristics for arbitrarily high-speed gas 


bearing numbers. 


The flow domain in a pad is divided into four-noded rectangular finite elements 
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
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e
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N


L/L
l,


N
l:


1 where  yx N,N  is the global number of elements in the circumferential 


and axial directions, respectively.  Within an element the zeroth- and first-order pressures are 


functions of the nodal pressures and shape functions 41..i
e
i }{  , i.e.,  


   


4 4


0 0 ,
1 1


, ;
i i


e e e e e e
i i X Y


i i


P P P P    
 


        (A.1)  


These equations are substituted into the Reynolds equation, which is further multiplied by an 


identical set of weight functions and integrated over an element domain. The Petrov-Galerkin 


method leads to the following set of zeroth- and first-order finite element equations (not 


including a source of external pressurization) 


     ;e e e e
ji oi j jk P r q         


    , 1..4; ,;
ji i j j


e e e e
i j X Yk P r q            (A.2) 
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where   3
, , , , ,


e


e e e e e e e e
ji o o i x j x i z j z o i j x ek P H H d     





       , 


   0e
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e


e e e
j j eq m d





         (A.3) 
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


            


ke represents the element fluidity matrix, and re and qe denote the vectors of shear and squeeze 


flows, and nodal mass fluxes ( em ) through the element boundary e , respectively.  


Within a finite element 
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   11 ,, , the advanced shape functions are [8] 
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where 
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e
x


e e
o e


l


P H
 


  is a local Peclet number showing the ratio of convection (shear) flow to 


diffusion (Poiseuille) flow. At low bearing speed numbers ( 0e ), the novel shape functions 


reduce to the well known bilinear interpolation functions. For high speed numbers where fluid 


convection dominates the film flow, e , the shape functions produce a full upwinding 


fluidity matrix with negligible diffusive terms (artificial viscosity) 
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Eq. (A.2) are constructed for each element, assembled over the flow domain, and then 


condensed by enforcing appropriate boundary conditions, including the source terms arising 


from any external (orifice) pressurization.  The resultant global set of equations is  


     
G G GG o o ok P =Q + R      (A.6) 


where
1 1 1


; ;
Nem Nem Nem


e e e  


  
G


e e e sources
G G ok k R r Q q + q   for the equilibrium pressure field. A similar 


equation set follows for the first-order pressure fields. The asymmetric global fluidity matrix kG 


is nonlinear since its elements depend on the zeroth-order pressure field (
GoP ). 


Earlier developments relied on the continuous evaluation, assembly and decomposition of the 


global fluidity matrix. Presently, a line solver with successive under-relaxation is used. The 


procedure assembles the finite element equations along a line (constant axial coordinate) and 


solves them using the TDMA algorithm. The method is faster than the full matrix decomposition 


procedure since new pressures are immediately updated in the iterative procedure. Good 


convergence rates are found by selecting appropriate under relaxation factors (0.7 typically). 


See Refs. [8-10] for further details on the method implementation, including external 


pressurization (supply ports) and tilting pad bearings.  
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SUMMARY 
   Work in progress – still a lot of be done 
 
Introduction 
Figure 1 shows a tilting pad journal bearing comprised of four pads. Each pad tilts about 
its pivot making a hydrodynamic film that generates a pressure reacting to the static load 
applied on the spinning journal. This type of bearing is typically installed to carry a static 
load on a pad (LOP) or a static load in between pads (LBP). Commercial tilting pad 
bearings have various pivot designs such as rocker pivots (line contact), spherical pivots 
(point contact) and  flexure supported pivots. 


 
 


Figure 1. Schematic view of a four pad tilting pad bearing, Ref. [1] 
 
Accurate prediction of tilting pad bearing forces and force coefficients is essential to 
design and predict the dynamic performance of rotor-bearing systems. Parameters 
affecting tilting pad bearing force coefficients include elastic deformation of the bearing 
pads and pivots, thermal effects affecting the lubricant viscosity and film clearance, etc. 
[2,3].  
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ANALYSIS 
Rocker and spherical pivots in tilting pad allow nearly frictionless pad rotation. An ideal 
rocker TPB, shown in Fig. 3(a), allows the pad to roll without slipping around a 
cylindrical pivot inside the curvature of the bearing. A spherical TPB, seen in Fig. 3(b), 
allows the pad to rotate about a spherical pivot fixed to the inside curvature of the 
bearing.   


     
 


(a) (b) 
 
Figure 3. Rocker pivot (a) and spherical pivot (b) in a tilting pad journal bearing 
[15] 
 
The flexure pivot TBP, depicted in Fig. 4, is a modern advancement in TBP designs. It is 
a two piece configuration that uses electron discharge machining to manufacture the pad, 
connected by a flexure thin web to the bearing housing. This design eliminates tolerance 
stack ups that usually occur during manufacturing and assembly, pivot wear, and 
unloaded pad flutter problems which occur in conventional tilting pad bearings [16].  


 


 
 
 


Figure 4. Schematic view of flexure pivot TPB [13] 
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As seen in Fig. 5, pivot flexibility makes the pad to displace along the radial (ξ ) and 
transverse (η ) directions. The pad also tilts or rotates with angle (δ ).  


δ


ξ


η


pivot


pad
δ


ξ


η


pivot


pad


 
 
 


Figure 5. Displacement coordinates in a tilting pad with idealized depiction 
of pivot stiffnesses 


 
Coordinate system and film thickness 
Figure 6 shows the geometry and coordinate system for a tilting pad journal bearing. A 
local coordinate is placed on the bearing surface with the }{x  axis in the circumferential 
direction and the }{z  axis in the axial (in plane) direction. Inertial axes },,{ ZYX have 
origin at the bearing center. YX ee ,  represent the journal center displacements along the 


X,Y axes. The position of a tilting-pad is referenced to the angular coordinate 
R
x


=θ , 


with lΘ  as the pad leading edge angle, tΘ  as the pad trailing edge angle, and PΘ as the 
pad pivot point angle.  ( )kkk ηξδ ,,  denote the thk  pad rotation and radial and transverse 
displacements; padNk ,...1= . 
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Figure 6.  Geometry and nomenclature for a tilting pad with flexible pivot 
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The fluid film thickness in the thk  pad is [17], 
 


)sin()()cos()()sin()cos( p
kk


pp
k


YXp
k RreeCh Θ−−+Θ−−+++= θδηθξθθ  (1) 


 
where pC  is the pad machined radial clearance, and mpp CCr −=  is the pad preload with 


mC  as the bearing assembled clearance. Presently, for simplicity, a bearing pad is 
assumed rigid. 
 
Journal motion perturbation analysis 
The bearing supports a static load with components { }YoXo WW , . At speed Ω, the static 
load determines operation with the journal at its static equilibrium position ( YoXo ee , ). At 
equilibrium, in the thk pad, the ensuing film thickness is{ }k


oh  generating a hydrodynamic 


pressure field { }k
oP . Each pad undergoes a rotation k


oδ  and the pivot deflects or displaces 


( ),k k
o oξ η .  


 
Consider small amplitude journal center motions ( XeΔ , YeΔ ) of frequency ω about the 
static equilibrium point ( YoXo ee , ). Hence, the journal center position, pad rotation angle 
and pivot displacements are  


ti
XXoX eeete ωΔ+=)( ,    ti


YYoY eeete ωΔ+=)( ,  
 


tikk
o


k et ωδδδ Δ+=)( ,  tikk
o


k et ωξξξ Δ+=)( ,  tikk
o


k et ωηηη Δ+=)( ,  
padNk ,..1=   (2) 


The pads film thicknesses and hydrodynamic fluid film pressures are also the 
superposition of equilibrium (zeroth order) and perturbed (first order) fields, i.e.,   
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padNk ,..1=   (6) 


 
Pad fluid film forces and pad moment 
Fluid film reaction forces acting on the rotating journal are a result of the hydrodynamic 
pressure fields, 
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padNk ,..1=  (7) 


The fluid film moment acting on a tilting pad is a result of these forces. i.e.  
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k
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k
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k
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k FRFFtRM η−=Θ−Θ+−= ]sincos)[(  
padNk ,..1=  (8) 


 
where R is the pad radius and t is the pad thickness. See Appendix A for details on the 
derivation of Eq. (8) 
 
The fluid forces and moment are decomposed into static and dynamic parts, i.e. 
 


tik
XXXYXYXXX


k
Xo


tik
X


k
Xo


k
X eZZZeZeZFeFFF ω


ηξδ
ω ηξδ }{ Δ+Δ+Δ+Δ+Δ−=Δ+=  


 
tik


YYYYYYXYX
k


Yo
tik


Y
k


Yo
k


Y eZZZeZeZFeFFF ω
ηξδ


ω ηξδ }{ Δ+Δ+Δ+Δ+Δ−=Δ+=  (9) 
 


tik
YYXX


k
o


tikk
o


k eZZZeZeZMeMMM ω
δηδξδδδδ


ω ηξδ }{ Δ+Δ+Δ+Δ+Δ−=Δ+=  
padNk ,..1=  


 
where the zeroth order fluid film forces ( k
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k


Xo FF , ), and pad moment ( k
oM ) are: 
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padNk ,..1=  (11) 
 
In Eq. (9), ( )kZαβ  are fluid film impedance coefficients whose real part and imaginary 
part give stiffness and damping coefficients, respectively. For the force impedances due 
to journal center displacements ( XeΔ , YeΔ ),   
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where )cos(θ=Xh  and )sin(θ=Yh . 
 
San Andrés [2] carries out the substitution of Eqs. (3-4) into the Reynolds equation to 
obtain a nonlinear PDE for the equilibrium pressure { }oP  and linear PDEs for the first 
order fields. In Ref. [2], San Andrés shows that the first order pressure fields satisfy 
homogeneous boundary conditions. Hence, the dynamic pressure fields due to angular 
( kδ ), radial ( kξ ), and transverse ( kη ) motions of the thk  pad satisfy the following 
relationships  
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A major simplification follows from Eq. (13), i.e., ( kkk PPP ηξδ ,, ) are linear combinations of 


( k
Y


k
X PP , ).  Thus impedance coefficients due to pad rotation, and pad-pivot radial and 


transverse displacements ( kZαβ , ηξδβα ,,, = ) are readily expressed as functions of the force-


displacement impedances ( kZαβ , YX ,, =βα ). Reference [18] details the formulae for each 
fluid film impedance coefficient.  
 
Pad Equilibrium Equations and Pad Equations of Motion 
The sum of the pads fluid film reaction forces must balance the external load ( YX WW , ) 
applied on the journal. The external forces add a static (equilibrium) ( YoXo WW , ) load to a 


dynamic part ( ), i t
X YW W e ωΔ Δ .  
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The equations of motion for the thk  pad are  
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where k
PM , k


PF ξ , k
PF η  are the pad pivot reaction moment and forces, and kM , kFξ , kFη  


are the fluid film forces  acting on the thk  pad.  
 


The pad mass matrix is [ ]
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with b and c as the radial and transverse distances from the pad center of mass to the pad 
pivot, respectively. km  and k


PI  are the pad mass and mass moment of inertia about the 
pad pivot. )( 22 bcmII kk


G
k
P ++= , where k


GI  is the pad moment of inertia about its center 
of mass. See Appendix A for details on the derivation of Eq. (16) 
  
The hydrodynamic pressure field determines the fluid film forces and moment acting on a 
pad. The pressure fields are obtained from solution of the fluid flow equations, either the 
Reynolds equation or bulk-flow equations. See Notes 7 and Notes 10 for details on the 
equations and the method of solution. 
 







NOTES 16.  ANALYSIS OF TILTING PAD BEARINGS © Luis San Andrés (2010) 7


Evaluation of pivot nonlinear stiffness 
The pivot stiffness is, in general, a nonlinear function of the applied (fluid film) load 
acting on a pad. Consider, as sketched in Figure 7, a typical radial force ξPF  versus pivot 
nonlinear radial deflection (ξ ). 
 


 
Figure 7. Typical force versus pivot (nonlinear) radial deflection 


 
The local pivot stiffness is the slope of the load versus displacement curve, i.e., 


 
P


P
P


F
K


ξ
ξ


ξξ ∂


∂
=       (17) 


 
The assumption of small amplitude motions about an equilibrium position allows the 
pivot reaction radial force to be expressed as 
 


PoPoPP KFF ξξξξξ Δ+=      (18) 
 
where )( PooP fF ξξ =  is the static load on the pivot, and PoPK ξξξ Δ  is the force due to 
radial displacement ( ξΔ ) of the pad.  
 
The analysis of tilting pad bearings typically assumes either an ideal point contact or an 
ideal line contact, along with a negligible resistance to pad rotation [7]. The prediction 
of pivot stiffness in Ref. [7] is based upon Hertzian contact stress formulas in Ref. [11]. 
Ref. [7] details stiffness equations for a spherical pivot (point contact) and cylindrical 
pivot (line contact). Assuming the material properties of the pad pivot and its contact 
housing are the same, Kirk and Reedy [7] state the following pivot stiffness equations for 
physical parameters in US units: 
 
Spherical pivot (point contact model) 


Radial  
Force  


ξξPK


ξ


ξPF


oPK ξξ
oPF ξ


Poξ


ξPF


Pξ


Radial Deflection 


)(ξξ fFP =
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3


2


)968.0(
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PoPH
P DD


FDDEK
−


=ξξ      (19) 


 
Cylindrical (rocker) pivot (line contact model) 
 


⎥
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3
1)1(2 ν


π
ξξ    (20) 


 
Above E and  ν  are the pivot material Young Modulus and Poisson ratio, respectively. 


HD  and PD  are the pivot housing diameter and pivot diameter, respectively. PoF  is the 
applied load on the pivot.  
 
For an idealized flexure pivot pad bearing, Chen [9] treats the pad as a lumped inertia at 
the free end of a cantilever beam, see Fig. 8.  


 
Figure 8: Cantilever beam model of a tilting pad with flexural web 


 
The web deforms radially (ξ ) and transversely (η ) and the pad rotates with angular 
dispalcement (δ ).  The flexure pivot stiffness matrix is written as  
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where [9] 
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Above A , webL , I , and E  are the web cross sectional area, length of the flexure web, 
web area moment of inertia, and web modulus of elasticity, respectively. PoF  is the load 
passing through the support thin web. The equations above show the flexure stiffness 
coefficients are nonlinear. 
 
Bearing rotordynamic force coefficients 
Tilting pad bearing force coefficients are determined at the journal static equilibrium 
position and for a particular excitation frequency (ω ), usually synchronous ( Ω=ω ), or 
subsynchronous ( Ω<ω ).  
 
The journal center displaces along the },{ YX  axes = two degrees of freedom (DOF). Each 
pad, on the other hand, has one rotation and two deflections, k),,( ηξδ  = three DOF. The 
total number of DOF in the bearing = 2 + 3 Npads. Hence, the motion of the journal 
combined with those of the pads is complicated.  
 
A simplification follows by assuming the pads move with the same frequency as the 
journal whirl frequency (ω ).  Substitution of Eq. (9) into Eq. (15) leads to the frequency 
reduced impedance coefficients [17]  
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The frequency reduced stiffness and damping coefficient matrices are [ ]RK  and [ ]RC , 
respectively. The pivot stiffness matrix ][ k


pivotK  for the thk  pad of a flexure tilting pad 
bearing is found according to Eq. (21).  
 
Under ideal operating conditions, the pads of a spherical or rocking tilting pad bearing 
will only deflect radially. Therefore, the matrix ][ k


pivotK  will contain an entry for the 
radial stiffness ( ξξPK ) only. For simplicity and absence of empirical data, pivot damping 


][ k
pivotC  coefficients are negligible.   


 
Iterative method for finding the static equilibrium position 
The applied static load ( YoXo WW , ) determines the journal static equilibrium position 
( Xoe , Yoe ). The analysis must calculate this operating eccentricity along with the static 
deflections and rotation for each pad.  
 


0 0
1 1


0; 0
N Npads pads


k k
Xo X Yo Y


k k
W F W F


= =
+ = + =∑ ∑    (30)    


 
On each pad, the pivot reaction moment and forces must equal the pad fluid film moment 
and forces. From Eq. (15) 
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A Newton-Raphson iterative procedure is devised to simultaneously satisfy the moment 
and forces balance of each pad as well as the static load condition on the journal. During 
the thn  iteration, Eq. (31) may not be satisfied, i.e., 
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In order for the residual vector { } { }0
nkr → , pad displacements are incremented such 


that in the next iteration 
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Assuming that the displacement increments { }Tk k kδ ξ ηΔ Δ Δ  are small, Eq. (31) is 


rewritten as  
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where ][ k
cK , the real part of ][ k


cZ , represents the static fluid film stiffnesses due to pad 
rotation and translations. Thus, the pad displacement vector is updated incrementally 
using the following: 
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In the process above, the journal position ( Xoe , Yoe ) remains invariant while the iterative 
method balances the static forces on each pad.  
 
In order to balance the static load, i.e. ( ) 0, =+ YXoo FW , a similar Newton-Raphson 
procedure is used to estimate improved journal eccentricity displacements, 
{ }YX
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 as the residual vector of static forces and  
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as the matrix of reduced (bearing) static stiffness coefficients. Note that for the static 
case 0=ω , the impedances ][ k


aZ , ][ k
fPZ + , and ][ k


bZ  have no imaginary part. Hence, 


][][ k
a


k
a ZK = , ][][ k


fP
k


fP ZK ++ = , and ][][ k
b


k
b ZK = . 


 
Comparison between predicted static and dynamic coefficients and Ref. 
[14] test measurements. 
Figure 9 depicts a schematic view of a five pad, rocker back, TPB tested by Carter and 
Childs [14]. Bearing force coefficients were experimentally obtained for shaft speeds 
from 4k-12k rpm and static loads from 0-19.5 kN.    
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Figure 9: Five pad tilting pad bearing, Ref. [14] 
 
Mineral oil (Mobil DTE) ISO VG32 lubricated the bearing. The lubricant inlet supply 
pressure and temperature are 1.55 bar (gauge) and 43° C, respectively. The load applied 
to the bearing is along the -Y direction. Table 1 details the bearing geometry and fluid 
properties. 


 
Table 1: Test bearing geometry and operating conditions, Ref. [14] 
 


Rotor diameter, D 101.587 mm 


Pad axial length, L 60.32 mm 


Pad number and arc length 5 (57.87°) 


Pivot offset 60% 


Loaded radial pad clearance, pC  110.5 mm 


Loaded radial bearing clearance, bC  79.2 mm 


Pad preload, 
p


b
p C


Cr −=1  0.283 


Pad mass, pm  1.0375 kg 


Pad mass moment of inertia (at pivot), pI  0.000449 kg- 2m  


Fluid Properties, Ref. [19] Mobile DTE ISO VG32 


Viscosity @ 40° C 31 cSt 


Viscosity @ 100° C 5.5 cSt 


Density @ 15°C 850 kg/ 3m  


Specific heat 1951 J/(kg-K) 


Journal speed Ω  


Y 


X


Static Load 
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For load-between-pad configuration (LBP), Carter and Childs [14] present 
nonsynchronous force coefficients versus load. Figure 10 shows Ref. [14] predicted and 
experimental direct stiffnesses for a journal speed of 4 krpm. Experimental direct 
stiffness YYK  is over predicted by ~28% for a static load of 14.8 kN.   
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Figure 10: Predicted and experimental direct stiffness for operation shaft 


speed of 4 kprm, Ref. [14] 
 
The experimental direct stiffness XXK  is over predicted at low loads (0-6 kN), but is 
under predicted at high loads (7-14.8 kN). The tilting pad bearing model assumes the 
pivot to be rigid, thus, when a flexible pivot is implemented into the model, the predicted 
direct stiffnesses will decreases.  
 
Pad rocker pivot 
The rocker pivot deflection equation as a function of load is given according to Kirk and 
Reedy [7]. Figure 11 shows rocker pivot deflection as a function of load. 
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Figure 11: Rocker pivot deflection versus load 
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Rocker pivots usually cover the full axial length of the bearing pad, and thus are 
generally stiffer than spherical pivots. 
 
Journal eccentricity and static stiffness coefficient predictions are predicted at a journal 
speed of 4,000 rpm. Figure 12 shows the predicted direct static force coefficients versus 
static load given a flexible rocker pivot and a rigid pivot for an isothermal flow case.  The 
direct static stiffnesses decrease for a flexible pivot, the difference amounting to a large  
percentage, ~ 33%.  
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Figure 12: Predicted static direct stiffnesses versus static load 


 
 
Figure 13 shows the predicted bearing static eccentricity versus applied load when 
considering both a rigid pivot and a flexible pivot. As the static load increases, the journal 
eccentricity increases. At a given static load, the journal eccentricity given a flexible 
pivot is larger than the eccentricity given a rigid pivot. This is because at a particular 
static load, the film thickness on a pad remains the same whether the pivot is flexible or 
rigid thus ensuring that the static load remains the same. If the pivot is flexible, the pad 
displaces radially, allowing the journal to displace. For a flexible pivot, the radial pad 
displacement increases with increasing static load, hence the difference between the 
journal eccentricity of a rigid pivot and a flexible pivot increases as the static load 
increases. 
 


Flexible Pivot 


Rigid Pivot 
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Figure 13: Predicted bearing static eccentricity versus static load (-Y 


direction) 
 
 
 
Some observations 
At a given load, journal eccentricity for a flexible pivot is larger than journal eccentricity 
for a rigid pivot bearing. Pivot flexibility decreases the direct static stiffness coefficients,  
a ~33% difference is noted between direct static stiffnesses of a flexible pivot and a rigid 
pivot bearings  
 
Future work 
Further work will be conducted to perform extensive comparisons between predicted 
force coefficients and Childs et al. [1,12-14] test data.  
 
References [20-24] note that for a spherical pivot tilting pad bearing, the pad slides 
about the pivot instead of rotating about a point (rolling without slipping). 
References [20,22,24] find that as the pad slides about the pivot, friction impedes the 
tilting motion of the pad, thus affecting the journal eccentricities and increasing cross-
coupled stiffness. Future work will be performed to account for the sliding motion and 
friction of a spherical pivot.  
 
References [20,22] also note that for a rocker pivot, cross-coupled stiffnesses are small 
and journal eccentricities are well predicted when assuming the pad rotates about a line 
contact. 
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Flexible Pivot 
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Literature Review  (written by Jared Wilson, edited by Luis San Andres) 
Lund (1964) [4] presented one of the first computational models predicting tilting pad 
bearing force coefficients. Even though predicted bearing force coefficients differ from 
experimental force coefficients obtained by Hagg and Sankey [5], Lund sets the 
foundation for modeling tilting pad bearing force coefficients. Sine Lund’s original work, 
improved bearing models have followed that account for fluid inertia and turbulence flow 
effects, mechanical energy dissipation and heat transfer, and elastic deformation of the 
bearing pads, for example. Pad pivot stiffness has also been included in predictive models 
to bring about agreement with test data [6-9]. 
 
A review follows on the advances in modeling tilting pad bearing stiffness and damping 
force coefficients and the importance of pivot stiffness on the bearing dynamic force 
coefficients.  
 
Lund [4] presents a comparison between predicted force coefficients and test results 
obtained by Hagg and Sankey [5] for a six pad, 50 degree arc tilting pad bearing. Figure 2 
depicts the coordinate system and a representation of the bearing stiffness and damping 
coefficients as mechanical springs and dashpots. The bearing stiffness K and damping C 
coefficients include both direct (XX, YY) and cross-coupled (XY, YX) components. 
 
 


 
 


Figure 2: Conceptual depiction of stiffness and damping coefficients in a 
fluid film journal bearing 
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With the applied static load along the X direction, Ref. [4] shows predictions of direct 
stiffnesses ( XXK , YYK ) decreasing with increasing Sommerfeld1 numbers (S). Predicted 


XXK  is consistently about three times larger than YYK , but experimental results show that 


XXK  becomes larger than YYK  as S decreases, with XXK  about twice as large as YYK  at 
S~ 0.1. At a low Sommerfeld number2  of 0.1, the predicted direct stiffness YYK is similar 
to the experimental YYK ; however, the predicted XXK  is larger than the experimental 


XXK . At a higher Sommerfeld number3 of 3, the experimental YYK  is substantially under 
predicted with the experimental XXK  slightly under predicted. Comparison between 
theoretical and experimental damping shows that experimental direct damping XXC  is 
substantially over predicted at a low S~ 0.1; while at a high S=3, the experimental direct 
damping coefficient is predicted fairly well.  Experimental direct damping YYC  is slightly 
over predicted at a low Sommerfeld number of 0.1; however, as S increases, YYC  is 
increasingly under predicted. Lund’s bearing model does not account for flexibility in the 
pad pivot. In actuality, the pivot stiffness is in series with the fluid film stiffness, 
hence affecting the bearing pad overall stiffness and damping coefficients.  
 
Later, in 1988, Someya [10] publishes experimental force coefficients for a five pad 
(LOP) tilting pad bearing.  A static load in the X direction is applied on the bearing, as 
shown in Figure 2. Predictions of the direct stiffnesses ( XXK , YYK ) versus increasing 
Sommerfeld numbers (S) show a decreasing trend while the experimental results show an 
increasing trend. Thus, experimental direct stiffness coefficients at low S (high bearing 
loads) are over predicted and at high S (low bearing loads) are under predicted. Predicted 
damping coefficients ( XXC , YYC ) increase with increasing S, as the experimental direct 
damping coefficients also do. At low S, experimental direct damping coefficients are over 
predicted by a factor of three, but at S~ 0.5 they are only over predicted by 5% to 10%. 
This signifies that experimental damping coefficients become more over predicted as the 
bearing load increases, similar to the results in Ref. [4]. Someya does not consider pivot 
stiffness in the analytical model, and as a result, bearing stiffness and damping 
coefficient are over predicted at high loads.  
 
Over a decade after Lund’s analysis, Rouch [6] observes that the behavior of pivoted-pad 
bearings can be significantly affected by the flexibility of pad pivots, especially in large, 
heavily loaded bearings. To account for pivot flexibility, pad translation in the radial 
direction is included in the bearing analysis. Using a typical five pad bearing, Rouch 
shows the effects of pivot stiffness on the bearing frequency reduced (pads move with the 
same frequency as the shaft rotational speed) force coefficients for operation at three 


                                                 
1 The Sommerfeld number is a non-dimensional number relating bearing static performance characteristics 


and is written as 
2


⎟⎟
⎠


⎞
⎜⎜
⎝


⎛
=


PC
R


W
NLDS μ


 where μ =fluid viscosity, N=shaft speed(rev/s), L=pad length, 


D=bearing diameter, R=bearing radius, PC =pad clearance, and W=applied load 
2 Large bearing loads, or low shaft speeds, or light lubricant viscosity, or large journal eccentricity 
3 Low bearing loads, or high shaft speeds, or large lubricant viscosity, or small journal eccentricity 







NOTES 16.  ANALYSIS OF TILTING PAD BEARINGS © Luis San Andrés (2010) 18


shaft speeds. In the analysis, all pads have the same pivot stiffness, but it is noted that in 
actuality, pivot stiffness is a function of the static load acting on each pad, hence each 
pad has a different pivot stiffness. Rouch applies a static load in the Y direction, see 
Figure 2, and determines how pivot stiffness affects the bearing dynamic force 
coefficients. Direct damping coefficients ( XXC , YYC ) increase rapidly with an increase in 
pivot stiffness and then level out at a pivot stiffness over 1010  N/m.  The bearing direct 
stiffnesses ( XXK , YYK ) increase with increasing pivot stiffness, leveling off at a pivot 
stiffness higher than 1010  N/m.  The cross-coupled stiffness YXK  decreases with 
increasing pivot stiffness and goes to zero around a pivot stiffness between  810  and 910  
N/m, and then increases until leveling off at a pivot stiffness over 1010  N/m. Rouch also 
varies pivot stiffness to determine how it affects rotor stability. He finds that for large 
rotors, pivot stiffness and corresponding foundation flexibility can be significant 
factors in determining the stability of the rotor. 
 
In 1988, Kirk and Reedy [7] review Hertzian contact stress analysis in an effort to 
improve tilting pad bearing pivot designs. Typical pivot designs range from line 
contact applicable to a rocker tilting pad bearing, to a point contact found in a ball-
in-socket bearings. The analysis considers an ideal line or point contact and negligible 
resistance to pad rotational motion. The calculation of pivot stiffness is based upon the 
results of Hertzian contact stress as given by Roark [11]. Using Hertzian contact stress 
formulas, pivot stiffness is a function of its material properties, contact area, and applied 
load.  Kirk and Reedy report stiffness equations for pivot designs of a sphere contacting a 
flat plate, a sphere contacting a sphere, a sphere inside a cylinder, and a line contact 
pivot.  Comparing predicted synchronous speed bearing stiffness coefficients with and 
without pivot stiffness over a range of shaft speeds, Ref. [7] notes that pad pivots 
representing a line contact and a point contact pivot behave similarly. For these cases, 
when pivot stiffness is considered, both synchronous speed reduced bearing damping and 
stiffness coefficients decrease. Kirk and Reedy also present the percentage differences 
between calculated pivot stiffness using the Hertzian approximation and a more exact 
general solution with pad pivot curvature effects. The authors find there is only a small 
difference between calculated pivot stiffness using the Hertzian approach and the exact 
solution.  Ref. [7] concludes that pivot flexibility can reduce the bearing damping 
coefficients, synchronous speed reduced, by as much as 72% if small radii spherical 
pivots are used. 
 
In 1990, Brockwell et al. [8] present predicted and experimental stiffness and damping 
force coefficients of a five pad, rocker tilting pad bearing for shaft speeds of 15, 30, 45, 
and 60 Hz over a bearing load range of 1.7 to 4.5 kN. The analysis considers pivot 
stiffness as a function of load using the line contact pivot stiffness equation in Ref. [7].  
Brockwell et al. present the bearing direct stiffness coefficients ( XXK , YYK ) and direct 
damping coefficients ( XXC , YYC ) versus applied static load in the Y direction, see Fig. 2. 
The authors find the trend of predicted and experimental force coefficients versus load to 
be similar. Ref. [8] includes a comparison of predicted bearing direct damping 
coefficients using a pad rigid pivot and a pad flexible or elastic pivot. Predicted direct 
damping coefficient derived using a pad flexible pivot compare fairly well with the 
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experimental values as the bearing load increases; while the direct damping coefficients 
derived using a pad rigid pivot increasingly over predict experimental coefficients as the 
bearing load increases. Taking into account the pad pivot flexibility leads to a significant 
improvement in predicting the damping coefficients at high loads, in particular. However, 
in general, the force coefficients are still over predicted.  Brockwell et al. attribute this 
over prediction in part to noise associated with signals from the displacement transducers.  
 
In 1995, Kim et al. [3] analyze the dynamic force characteristics of a tilting pad journal 
bearing similar to that in Ref. [8]. The analysis considers cross film variable viscosity, 
heat transfer effects in the lubricant flow, pad elastic deformation, heat conduction effects 
in the pads, and elastic deformation effects in the pivot. Modal deflection modes are used 
to approximate the deformation of the pads top surface.  Using the same bearing 
characteristics and load and frequency range, Kim et al. compare predicted 
synchronously reduced bearing stiffness and damping force coefficients with the 
experimental and analytical results reported by Brockwell et al. [8].  At shaft speeds of 30 
and 45 Hz, Kim et al. predict direct stiffnesses ( XXK , YYK ) which correlate very well 
with the experimental coefficients.  The predicted direct damping coefficients ( XXC , YYC ) 
match the experimental coefficients better than in Ref. [8] predictions, but a slight 
divergence between predicted and experimental values appears at high bearing loads.  
 
In 1994, Chen [9] presents a general method for calculation of the dynamic force 
coefficients in tilting pad journal bearings. Flexibility of the tilting pad pivot in the radial, 
transverse, and rotational directions is taken into account. The analysis also models, at 
that time, the newly developed flexure-pivot tilting pad bearing.  The pad is taken as a 
lumped inertia on the free end of a slender cantilever beam, and whose stiffnesses are 
found from simple bending formulas. For a five pad (LBP) flexure picot bearing, Chen 
compares predicted and experimental stiffness and damping force coefficients for a rigid 
pivot and a flexible pivot with load dependent pivot stiffness. Modeling with the flexible 
pivot, damping coefficients decrease by ~ 8% and stiffness coefficients by ~ 3% as 
compared to the coefficients obtained assuming a rigid pivot. Comparing a flexure-pivot 
with a line in contact pivot configuration, the damping coefficients are found to be lower 
for the flexure-pivot while the cross-coupled coefficients that result from the transverse 
resilience of the support web increase.  
 
Al-Ghasem and Childs [12] present experimental rotordynamic coefficients for a four pad 
LBP) flexure pivot tilting pad bearing (FPB)4. The bulk flow model by San Andrés [2] is 
used to predict the static and dynamic forced performance of the FPB. The model takes 
into account pivot rotational stiffness, but neglects pivot deflection along the pad radial 
and transverse directions. Predicted direct stiffness coefficients ( XXK , YYK ) versus 
applied load show a trend similar to the experimental ones. However, predicted direct 
stiffnesses are larger than experimental ones, most noticeably at large static loads. 
Predicted XXK  at an applied load of ~ 9 kN and shaft speed of 8 krpm shows the largest 


                                                 
4 Childs et al. static load is applied on the bearing in the –Y direction as per Figure 2. 
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over prediction, and differs from experimental XXK  by ~ 35%5.   Direct damping 
coefficients ( XXC , YYC ) increase with increasing static load, but decrease with increasing 
shaft speed. Direct damping coefficients are reasonably well predicted for low loads 
(~1.6 kN), but at high loads (~9 kN) these coefficients are over predicted significantly. 
Predicted XXC  at an applied load of ~ 9 kN and shaft speed of 8 krpm shows the largest 
over prediction, and differs from experimental XXC  by ~ 35%6.  Refs. [6-9] note that at 
high loads, bearing direct damping and stiffness force coefficients reduce when pivot 
flexibility is considered. Thus, predicted direct damping and stiffness force coefficients 
would improve if radial pivot stiffness was considered in San Andrés [2] model. 
 
In 2008, Hensley and Childs [13] tested at higher loads the same flexure pivot tilting pad 
bearing in Ref. [12]. Experimental force coefficients are found for applied loads ranging 
from ~ 9 kN to 19.5 kN, and shaft speeds between 6 to 12 krpm.  It is important to note 
that the bearing clearance is slightly larger than that reported in Ref [12]; therefore 
stiffness and damping force coefficients at corresponding static loads in Ref. [13] are 
slightly lower than those in Ref. [12].  Hensley and Childs present experimental direct 
stiffness and damping coefficients versus increasing static load. Predicted direct 
stiffnesses are higher than experimental direct stiffness coefficients, most noticeably at 
the highest load. Predicted XXK  at an applied load of 17 kN and shaft speed of 8 krpm 
shows the largest over prediction, and differs from experimental XXK  by ~ 53%. 
Similarly, predicted direct damping coefficients are higher than experimental direct 
damping coefficients, again most noticeably at the highest applied load. Predicted XXC  at 
an applied load of 17 kN and shaft speed of 8 krpm shows the largest over prediction, 
differing from experimental XXC  by ~ 68%. 
 
Carter and Childs [14] report rotordynamic force coefficients for a 5-pad, rocker-pivot, 
tilting pad bearing in a LBP configuration. Using a similar test setup as in Ref. [12], 
experimental bearing force coefficients are obtained over load ranges from ~ 2 N to 19 
kN, and shaft speed ranges from 4 to 13 krpm.  Using San Andrés [2] bulk flow model, 
predictions are made for the experimental direct stiffness ( XXK , YYK ) and direct damping 
( XXC , YYC ) force coefficients. Both predicted and experimental direct stiffness 
coefficients increase with increasing static load and increasing shaft speed. However, 
unlike in Refs. [1,3], YYK  is under predicted while XXK  is over predicted.  The most 
significant difference between predicted and experimental direct stiffness coefficients is 
seen at an applied load of ~ 19 kN and a shaft speed of 10 krpm, with a ~ 12% difference 
for YYK  and a ~ 30% difference for XXK . Measured direct damping coefficients are 
almost completely insensitive to changes in static load. Direct damping force coefficients 


                                                 
5The percent difference equals 


E


EP


K
KKdiff −


=_% , where PK  and EK are the predicted stiffness 


coefficient and experimental stiffness coefficients, respectively.  
6 The percent difference equals 


E


EP


C
CCdiff −


=_% , where PC  and EC are the predicted damping 


coefficient and experimental damping coefficients, respectively. 
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( XXC , YYC ) are over predicted and become increasingly over predicted with increasing 
static loads. The largest difference seen is between predicted and experimental YYC  at a 
static load of ~ 19 kN and a shaft speed of 10k rpm, with predicted YYC  ~ 50% larger 
than experimental YYC . Again a reoccurring trend is noticed between predicted and 
experimental force coefficients. As the applied static load increases, the difference 
between predicted and experimental force coefficients increases.  
 
In 2008, Harris and Childs [1] report experimental static performance characteristics and 
rotordynamic coefficients for a four pad, ball-in-socket, tilting pad journal bearing. Also 
included are predictions of journal static eccentricity, bearing power loss, oil outlet 
temperature rise, and rotordynamic force coefficients derived from the bulk flow model 
in Ref. [2]. By applying a static load to the bearing housing and measuring the relative 
displacement between the bearing housing and the rotor, a nearly uniform pad pivot 
stiffness m


MN
pK 354=  is found as the slope of the applied load versus recorded 


displacement. The pivot stiffness is expected to increase as the applied load increases, 
however this was not the case experimentally. The measured deflection accounts for the 
stiffness of the pad babbitt, the pad itself, the pivot, the pivot shim, and the bearing 
housing. The recorded stiffness measurements are lower than the pivot stiffnesses 
calculated using Kirk and Reedy [7] spherical pivot stiffness equation.  
 
With regard to the rotordynamic force coefficients in Ref. [1], direct stiffness coefficients  


XXK  and YYK  are significantly over predicted, and the disagreement worsens as shaft 
speed increases. At a shaft speed of 12 krpm and a high static load of ~ 19.5 kN, a unit 
load7 of ~ 1896 kPa, predicted direct stiffness coefficients are much larger than 
experimental direct stiffness coefficients, with a percent difference of ~ 66%. However, 
Harris and Childs calculate equivalent stiffness and damping coefficients by combining 
fluid film flexibility with pivot flexibility for each pad. The equivalent stiffness and 
damping coefficients from each pad are assembled to obtain the equivalent coefficients 
for the entire tilting pad bearing. The equivalent bearing stiffness coefficients decrease, 
and surprisingly, under predict the experimental values. The coefficient difference is ~ 
25% for a shaft speed of 12 krpm and an applied load of ~ 19.5 kN.  It is also important 
to note that experimental direct stiffness coefficients do not increase as substantially with 
load as reported in Refs. [12,14], most likely due to the low measured stiffness value of 
the pad8 and pivot.  Experimental direct damping coefficients XXC  and YYC  are also 
significantly over predicted, with a percent difference of ~ 86% at a shaft speed of 12 
krpm and an applied load of ~ 19.5 kN. Equivalent direct damping predictions, including 
the effect of pivot flexibility, under predict experimental direct damping coefficients with 
a difference of ~ 50%.  It is clear from Harris and Childs [1] that the measured stiffness 
of a pad and pivot directly affects the overall bearing stiffness and damping force 
coefficient predictions. 


                                                 
7 Unit load = W LD  where W is the static load, L is the length of the bearing, and D is the diameter of the 


bearing 
8 Pad babbitt also contributes to the low measured stiffness magnitude 
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Summary of literature review 
Lund [4] and Someya [5] present predictions of experimental rotordynamic force 
coefficients.  Their theoretical force coefficients over predict experimental force 
coefficients at low Sommerfeld numbers (large loads).  Rouch [6] finds analytically that 
bearing stiffness and damping coefficients increase dramatically with increasing pivot 
stiffness. Kirk and Reedy [7] report pad pivot stiffness as a function of load and material 
properties.  Using pivot flexibility in their model, both Brockwell et al. [8] and Kim et al. 
[10] present a comparison of predicted to experimental stiffness and damping 
coefficients.  Ref. [7] reports that accounting for pivot stiffness improves the dynamic 
force coefficient predictions, especially damping coefficients.  Chen [9] presents bearing 
force coefficient predictions for a rocker and flexure pad tilting pad bearing. The analysis 
takes into account both radial and transverse displacement in the pivot.  A comparison 
between rigid pivots and flexible pivots show that the model using flexible pivots reduces 
the bearing predicted stiffness and damping coefficients compared to the stiffness and 
damping coefficients found using a rigid pivot. 
 
Childs and students, Refs. [1,12-14], present tilting pad bearing experimental stiffness 
and damping coefficients for increasing static loads and shaft speeds. Direct stiffness 
tends to increase with load and shaft speed for a flexure tilting pad bearing, Refs. [12,13], 
and rocker tilting pad bearing, Ref. [14]. The ball-in-socket tilting pad bearing, Ref. [1], 
also gives similar results, except that the direct stiffness coefficients do not increase as 
significantly with static load and shaft speed, as reported in Refs. [12,13,14]. For each 
test bearing, predictions of the direct stiffness coefficients are too large, most noticeably 
at a high static load. In all four test bearings, experimental direct damping coefficients 
remain relatively constant with an increasing static load and increasing shaft speed, a 
occurrence not predicted by the model.  Overall, San Andrés [2] bulk flow model over 
predicts the experimental force coefficients, in particular at large static loads.  An 
improvement in bearing force coefficient predictions is noted in Ref. [1] when pivot 
stiffness is placed in series with the bearing force coefficients derived from a rigid pivot 
model. 
 
Including pivot stiffness as a function of load has shown to improve the predictions of 
bearing force coefficient, in particular damping coefficients, see Refs. [6-9]. 
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 APPENDIX A 
 
Fluid induced moment on pad   
The fluid film moment differential about the pad pivot is found by taking the cross 
product of vector r  with the differential force vector Fd , i.e. 


FdrMd ×=        (A.1) 


Including the pad thickness (t), the vector r  is, from Figure A.1,  


( ) [ ]( )sin 1 cosr R R tβ η β ξ⎡ ⎤= + − +⎣ ⎦     (A.2) 


 
 


Figure A.1. Tilting pad with pivot point P and pad thickness t 


 


The differential fluid film force vector can be written as 


dF dF dFη ξη ξ⎡ ⎤= +⎣ ⎦    (A.3) 


where cosdF P R d dzξ β β= −  and sindF P R d dzη β β= .  The differential moment is 
thus 


[ ]( )sindM R t P R d dzβ β κ= − +    (A.4) 
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Expanding Eq. (A.4), using a trigonometry identity, and substituting in ηdF  and ηdF , the 
differential fluid moment becomes 


( )( )cos sinY P X PdM R t dF dF R d dzθ⎡ ⎤= − + − Θ + Θ⎣ ⎦   (A.5) 


Integration over the pad surface gives the fluid moment M as 


( )[ ]PXPY FFtRM Θ+Θ−+−= sincos    (A.6) 


A change of coordinates results in the following transverse force equation: 


PXPY FFF Θ+Θ−= sincosη     (A.7) 


Substituting equation (A.7) into (A.5) gives the following simpler version of the pad 
moment equation: 


ηFtRM )( +−=  = ηFRM P−= ,       (A.8) 


with tRRp +=     


 


B. Derivation of Pad Mass Matrix 


The pad mass matrix ][ padM  is derived from the kinetic energy of a pad, 


)(
2
1


2
1 222


ηξδ vvmIT Gpad ++=       (A.9) 


where GI is a pad moment of inertia, and ξv  and ηv  are the pad velocity components in 
the radial and transverse directions, respectively. The pad center of mass translational 
velocities are 


[ ] ξαδδαδδξαδαδξξ −−−=−−−−−== sincoscossinsinsincos)cos1()( rrrra
dt
dd


dt
dv


[ ] ηαδδαδδηαδαδηη ++−=+−+−−== sinsincoscossin)cos1(cossin)( rrrrb
dt
dd


dt
dv


           (A.10) 







NOTES 16.  ANALYSIS OF TILTING PAD BEARINGS © Luis San Andrés (2010) 27


 
Figure A.2: Tilting pad with an offset pivot 


Let b be the radial distance from the pad center of mass to the pad pivot, and c be the 
transverse distance from the pad center of mass to the pad pivot, see Figure 2. 


Substitute
r
b


=)sin(α  and 
r
c


=)cos(α  into Eq. (A.10), and find 2
ξv  and 2


ηv  as 


222222222 )cos(2)(cos)sin(2*)cos()sin(2)(sin ξδξδδδδξδδδδδδξ +++++= bbcbccv  


222222222 )sin(2)(sin)cos(2*)cos()sin(2)(cos ηδηδδδδηδδδδδδη +++−−= bbcbccv  
           (A.11) 


Substitute Eq. (A.11) into Eq. (A.9) and simplifying gives the following kinetic energy 
equation of the pad: 


2 2 2 2 2 21 1 1( ) ( )
2 2 2
sin( )[ ( ) ( )]
cos( )[ ( ) ( )]


pad GT I m c b m


m c m b


m c m b


δ δ ξ η


δ ξδ δη


δ ηδ δξ


= + + + +


+ +


+ − +


  (A.12) 


The elements of the mass matrix ][ padM  are  derived from Eq. (A.12) using Lagrange’s 


method for first order terms. Higher order terms are assumed to be ~zero, i.e., 0≈δξ , 
0≈δη , and 02 ≈δ . 
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bmcmmT
dt
d )sin()cos( δδδδη


η
+−=⎟⎟


⎠


⎞
⎜⎜
⎝


⎛
∂
∂  


Since the pad angle of rotation (δ ) is very small, the assumption can be made that 
0)sin( ≈δ  and 1)cos( ≈δ . The pad mass matrix is thus: 
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   (A.14)  


with )( 22 bcmII GP ++= as the pad moment of inertia about the pivot. 
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NOMENCLATURE 
A  Flexure pivot web cross sectional area [ 2m ] 
a  Radial distance from pad mass center of gravity to pad surface [m] 
b  Radial distance from pad mass center of gravity to pivot [m] 
c  Transverse distance from pad mass center of gravity to pivot [m] 


pC   Journal bearing radial clearance 


mC   Assembled bearing radial clearance [m] 
][ kC   Tilting pad bearing pivot damping matrix [Ns/m] 


αβRC   Bearing Reduced damping coefficients at frequencyω ; YX ,, =βα  
[Ns/m] 
D  Bearing diameter [m] 


HD   Pivot housing diameter [m] 


PD   Pivot diameter [m] 
E  Young’s Modulus of pivot and pivot housing [Pa] 


YX ee ,   Journal eccentricity in the (X,Y) direction respectively 
k


XF , k
YF  Fluid film forces on pad along the {X,Y} axes [N] 


k
PF ξ , k


PF η  Fluid film forces on pad along the { }ηξ ,  axes [N] 
kk FF ηξ ,  Radial and transverse fluid film forces [N] 


h   Fluid film thickness [m] 
hho Δ,   Equilibrium film thickness, perturbed film thickness [m] 


I   Flexure pivot web area moment of inertia [ 4m ] 
k
pI   Pad moment of inertia at pivot [ 2kgm ] 


αβRK   Bearing reduced stiffness coefficients; YX ,, =βα  [N/m] 


][ kK   Tilting pad bearing pivot stiffness matrix [N/m] 


LR LLL ,,  Bearing axial length; LR LLL +=  


webL   Flexure pivot web length [m] 
k
PM   Moment from pivot rotational stiffness [N-m] 
kM   Fluid film moment on pad; })cos(){sin( k


Y
k
p


k
X


k
p FFR Θ−Θ  [Nm] 


][ k
massM  Pad mass matrix, includes pad inertia, angular momentum, and mass 


km   Pad mass [kg] 
N  Shaft rotational speed [rev/s] 
P   Fluid film pressure [ 2/ mN ] 


PPo Δ,   Fluid film equilibrium pressure, Fluid film perturbed pressure [ 2/ mN ] 
R   Pad radius [m] 


pR   Pad radius plus pad thickness [m] 


pr   Pad preload [m] 
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S  Sommerfeld number, 
2


⎟
⎟
⎠


⎞
⎜
⎜
⎝


⎛
=


pC
R


W
NLDS μ  


W  Applied static load [N] 
{X,Y,Z} Inertial coordinate system 


kZαβ   thk  pad impedance, kk CiK αβαβ ω+ , ηξδβα ,,,,, YX=  
kδ   Pad rotational angle [rad] 
kη   Pad transverse displacement [m] 


μ   Fluid viscosity [ 2/ mNs ] 
υ   Poisson ratio of pivot and pivot housing 
θ   Circumferential or angular coordinate, x/R 


k
l


k ΘΘ ,   thk  pad angular length, thk  pad leading edge angular position [rad] 


pΘ   thk  pad pivot angular position [rad] 
ω,Ω   Rotational speed of journal, excitation or whirl frequency [1/s] 


kξ   Pad radial displacement [m] 
 
 





